用户名: 密码: 验证码:
中国煤中氟的环境地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氟是煤中含量较高的微量元素,大多在20-500mg/kg,平均值为150mg/kg左右。煤在燃烧时,其中的氟化物将发生分解,大部分以HF、SiF_4等气态污染物形式排入大气,不仅严重腐蚀锅炉和烟气净化设备,而且造成大气氟污染和生态环境的破坏。氟是人体所必需的微量元素,但摄入过量则会罹患氟斑牙和氟骨症。燃煤污染型氟中毒为我国所独有,导致了近1500万患者,这是人类有史以来最严重的环境污染导致的健康危害事件。因此,根据目前国内外对煤中氟的研究进展,研究中国煤中氟的含量、分布及其影响因素;燃煤型氟中毒的环境地球化学特征;选煤脱氟的机理;粮食中氟的分析方法既有理论意义又有现实价值。
     通过本文的研究,得出以下几点认识:
     1、通过在全国有计划的系统取样。统一采用当前最有效的分析方法——高温热水解—离子选择性电极法来获得中国煤炭的平均氟含量。与世界煤相比,中国煤含氟量正常,绝大部分(90%)煤的含氟范围为47~347mg/kg,全国煤氟平均含量为136mg/kg。澄清了长期以来关于中国煤炭高氟的错误认识,为正确计算燃煤的氟排放通量并评价其环境影响提供了较准确的基础资料。
     2、中国煤中氟含量与灰分显著正相关,表明煤中氟主要以无机矿物形式赋存。
     3、在本批样品中按变质程度的不同,煤含氟量由低到高依次为贫煤、长焰煤、无烟煤、气煤、焦煤、肥煤、瘦煤和褐煤。煤中的氟主要赋存于无机矿物中,以无机形态赋存的氟不受煤变质程度的影响。从褐煤到无烟煤,煤中的氟含量和煤变质程度之间没有必然的关系,在讨论煤氟含量与变质程度的关系时要考虑氟的赋存形态的影响,以统计分析的方法来研究其间的相互关系时要慎下结论,某些变化趋势不一定就是必然的规律。
     4、在本批样品中按地质时代的不同,煤中氟含量由低到高依次为早石炭世、中侏罗世、早侏罗世、早二叠世、晚石炭世、中石炭世、晚侏罗世、第三纪和晚三叠世。煤中的氟含量受物质来源、成煤环境、后期地质地球化学作用等多种因素的影响,而我国幅员辽阔、成煤期多、煤田分布广,而且同地质时
    
    中国科学院博_t学位论文
     代的不同煤矿区(或者地质单元)可以具有相同条件,也可具有不同条件,
     致使影响含氟量的各种因素大多只具有局部性,造成成煤时代等单一因素的
     作用可能为其它各种因素的作用所掩盖,对此有必要进行更深入具体的研究。
    5、拌煤的粘土取自土壤的淀积层,其氟含量非常高。中国煤氟的含量不高,远
     低于徒识层粘土的氟含量。在燃煤型氟中毒病区通常用粉煤与粘土加水搅拌
     制成湿的煤泥在无烟囱的炉灶内燃烧。使用烟煤和无烟煤的燃煤型氟病区的
     氟主要来自于拌煤的粘土。我们突破了长期以来关于氟源是高氟煤的错误认
     识,这为正确、有效地防治燃煤型地氟病提供了新的思路。
    6、在石煤污染型氟病区石煤的风化淋溶对水环境、粮食作物的含氟量影响不
     大,但其燃烧后释放出的的气态、气溶胶态和尘态氟会污染室内空气、粮食、
     蔬菜和饮水从而导致人体摄氟过量而中毒。改良炉灶,改变在厨房烘烤、存
     放辣椒的陋习,经常清扫室内,尤其是室内上部灰尘,防止灰尘坠落污染食
     物、饮水等,对预防氟中毒有重要意义。
    7、选煤可降低灰分、硫分,同时还能有效脱除煤中的氟及其他有害微量元素,
     从而可减少运输成本,降低粉煤灰的收集、处理和处置与有害微量元素的排
     放控制费用,提高燃烧热效率,符合以预防为主的国家环保政策,要大力倡
     导。
    8、我们采集的病区玉米第二次酸浸时浸出液含氟量低于检测限;而辣椒由于含
     油较多,辣椒油阻碍了氟的浸出,这导致浸泡两、三次后在浸出液中还能检
     测出氟。在地氟病区采用酸浸一离子选择性电极法测定氟含量时,玉米浸泡
     一次即可满足研究需要,而对于辣椒则宜进行多次浸泡。一次或多次未浸出
     的氟含量基本为一个定值,在研究地氟病时不用对此作太多考虑,但在制订
     粮食的含氟量及人体的摄氟量标准时要将这一部分氟考虑进去。
With a concentration scope of 20-500 mg/kg and an average value at 150 mg/kg, fluorine is one of the abundant trace elements in coal. Because of its presence in the daily diet at varying levels, fluorine often has an extraordinary significance in health and environments. During the combustion of coal, fluorine is released into the fume in the form of HF, most of which enters the atmosphere. Statistical data collected by the Chinese Ministry of Health in 2001 from 201 counties of 14 provinces, autonomous regions, and municipalities in China indicates that coal-burning fluorosis led to 18,138,780 cases of dental fluorosis and 1,594,799 cases of skeletal fluorosis. Coal-burning fluorosis in China is therefore one of the most serious health problems resulting from environmental pollution anywhere in the world.
    Based on the progress of study on fluorine in coals, this dissertation mainly studies the fluorine content and its distribution in Chinese coals, the environmental geochemistry of coal-burning endemic fluorosis, the fluorine reduction by coal cleaning and the determination of fluoride in corn and chili.
    Based on the study, some conclusions can be drawn:
    1. Fluorine contents in Chinese coalc are achieved through a designed nationwide samples collecting and consistently determining by the most effective method i.e. pyrohydrolysis. The contents of fluorine in Chinese coals show logarithm normal frequency distributions. The estimate of the most probable fluorine concentration for Chinese coals can be designated as 136 ppmw with the range for most of the Chinese coals of 47-347 ppmw.
    2. The concentration of fluorine versus ash content in 288 coal samples was studied. A significant positive correlation is inferred from this data, showing that fluorine increases in the samples studied, as does the ash content, suggesting that the fluorine compounds present in the Chinese coals are
    
    
    mainly of an inorganic nature.
    3. Fluorine in coal is predominantly associated with the inorganic constituents, and it is not affected when coal developed from lignite coal to anthracite. The fluorine content varying from lignite coal to anthracite can't be attributed to the coal-rank's varying.
    4. Fluorine contents in coal increase from C1, J2, J1, P1, C3, C2, P2, J3, R to T3. The concentration of fluorine in coal is strongly influenced by geological factors such as sedimentary environment, character of source rock, tectonic setting, and hydrogeological conditions. Most of these parameters have regional characteristics, whereas China's abundant coal resources are spread over widely distributed coal fields with large variations in coal-forming periods. Therefore, it is difficult to get any consistent relationship between the fluorine content and the coal-forming period for the nation as a whole.
    5. The clay mixed with the coal to make coal-clay is derived from illuvial lower soil and has a high fluorine level. The fluorine content of most coals in China is relatively low. Because of the similar geochemistry and the essentially identical habits of coal-clay usage in coal-burning endemic fluorosis areas, clay remains a major source of endemic fluorosis in China.
    6. Little fluorine pollution of surface water and plant is deduced from the stone-like coal's weathering and leaching. Fluorine released from stone-like coal combustion results in serious fluorosis. To improve stove and abandon the traditional backward habit of food baking and improve the room sanitation to avoid the contamination of dust is effective in get rid of fluorosis.
    7. Physical coal cleaning techniques are effective in fluorine reduction. At the same time,coal cleaning offers numerous benefits. It reduses the ash-forming mineral content of coal and increases the heating value, reducing transportation costs and increasing boiler efficiency. Coal cleaning also provides environmental benefits by reducing the sulfur dioxide and
    
    other HAPs emissions potential of the coal and the amount of ash for collection and disposal.
    8.
引文
1. Akers D.J. The redistribution of trace elements during the benefication of coal [A]. In: Swine D. J, Goodarzi F. Environmental aspects of trace elements in coal [M]. Dordrecht: Kluwer Academic Publishers, 1995,93-110.
    2. Akers D, Dospoy R. Role of coal cleaning in control of air toxics [J]. Fuel Process Technol, 1994,39:73-86.
    3. Ando M, Tadano M, Yamamoto S, Tamura K, et al. Health effects of fluoride pollution caused by coal burning. Sci Total Environ, 2001,271:107-116.
    4. Antony EJ.. The effect of halogen on EBC system. In: The Proceedings of the 12th Int Conf on Fluidized Bed Combustion, 1993. 41-52.
    5. Beising R, Kirsch H. The contents of the trace element fluorine in fossil fuels during combustion. VGB Kraftwerkstechnik, 1974. 54: 268-286.
    6. Bouska V and Pesek J.. Quality parameters of lignite of the North Bohemian basin in the Czech Republic in comparison with the world average lignite. International Journal of Coal Geology, 1999, 40:211~235.
    7. Croosley HE. Fluorine in coal. Ⅲ The manner of occurrence of fluorine in coals. J. Soc. Chem. Ind., London, Trans. Commun., 1944,63, 289-292.
    8. DeVito M.S, Rosendale L.W, Conrad V.B. Comparision of trace elements of raw and clean commercial coals [J]. Fuel Process Technol, 1994,39:87-106.
    9. Durie RA, Schafer HNS. The inorganic constituents in Australian coals. Ⅳ Phosphorus and fluorine - their probable mode of occurrence. Fuel, 1964. 43: 31-41.
    10. Finkelman RB. Modes of occurrences of trace elements in coal. US Geol. Surv. Open-File Rep., No. OFR-81-99, 1981. 301 pp.
    11. Finkelman R.B.Modes of occurrence of environmentally-sensitive trace elements in coal [A]. In: Swine D.J, Goodarzi F. Environmental aspects of
    
    trace, elements in coal [M]. Dordrecht: Kluwer Academic Publishers, 1995,24-50.
    12. Finkelman RB. Modes of occurrence of environmentally-sensitive trace elements in coal. In: Environmental aspects of trace elements in coal (eds. Finkelman R. B, Orem W, Castranova V, Tatu C.A, et al. Health impacts of coal and coal use: possible solutions. Int J Coal Geol, 2002,50:425-443.
    13. Gao G.L, Yan B, Yang L. Determination of toatal fluorine in coal by the combustion-hydrolysis/fluoride-ion selective electrode method. Fuel, 1984, 63:1552-1555.
    14. Godbeer WC, Swaine DJ. Fluorine in Australian coals. Fuel. 1987,66:794-798.
    15. Godbeer WC, Swaine D J, Goodarzi F. Fluorine in Canadian coals. Fuel. 1994,73:1291-1293.
    16. Horton L. Progress review No. 6: the consitution of coal. J. Inst. Fuel, 1950. 23, 91-95.
    17. Hou P.S. The control of coal-burning fluorosis in China. Fluoride, 1997,30:229-232.
    18. Iiham D, Rodney RR, Heinz HM, et al.. Environmentally critical elements in channel and cleaned samples of Illinois coals. Fuel, 1998, 77: 95-107.
    19. Kunstmann FH, Harris JF, Bodenstein LB, et al.. The occurrence of boron and fluorine in South Aferican coals and their behaviour during combustion. Fuel Res. Inst. S. Afr. Bull., 1963.63:45.
    20. Lattrell GH, Kobvuen JN, Yoon RH. An evaluation of coal preparation technologies for controlling trace element emissions. Fuel Process Technol, 2000, 65-66: 407-422.
    21. Lessing R. Fluorine in coal. Fuel, 1934, 13: 347-348.
    22. Li YH, Wang WY, Yang LS, Li HR. Environmental epidemic characteristics of coal-burning endemic fluorosis and the safety threshold of coal fluoride in China. Fluoride 2003; 36:106-12.
    23. Li R. B, Tan J. A, Wang W. Y, Wang L. Z. A study on fluoride as the source of
    
    endemic dietary fluorosis in Guizhou, China. Fluoride, 1983,16:66.
    24. Liang DT, Anthony EJ, Loewen BK, et al. Halogen capture by limestone during fluidized bed combustion. In: The Proceedings of the 11th Int Conf on Fluidized Bed Combustion, 1991. 917-922.
    25. Luo KL, Ren DY, Xu LR et al. Fluorine content and distribution pattern in Chinese coals. International Journal of Coal Geology, 2004.57:143~149.
    26. Lyth, Endemic fluorosis in China [J]. The Lancet, 1946,16:233-235.
    27. Martinez-Tarazona MR, Suarez-Fernandez GP, Cardin JM. Fluorine in Austurian coals. Fuel. 1994,73:1209-1213.
    28. Swaine DJ and Goodarzi F. Environmental Aspects of Trace Elements in Coal. Dordrecht, Kluwer Academic Publishers, 1995.24~50.
    29. Swaine DJ. Trance Elements in Coal. London: Butterworth, 1990. 109-113.
    30. Thomas J, Glass HD, White WA, Trendel RM. Fluoride content of clay minerals and argillaceous earth minerals. Clays Clay Miner., 1977. 25: 278-284.
    31. Wang L.F, Huang J.Z. Outline of control practice of endemic fluorosis in China. Soc Sci Med, 1995,41:1191-1195.
    32. Wu DS, Zheng BS, Wang AM, et al. Fluoride exposure from burning coal-clay in Guizhou Province, China. Fluoride, 2004a, 37(1): 20-27.
    33. Wu DS, Zheng BS, Tang XY, et al. Fluorine in Chinese coals. Fluoride, 2004b, 37(2):
    34. Zhang Y, Cao S.R. Coal burning induced endemic fluorosis in China. Fluoride, 1996,29:207-211.
    35. Zheng BS, Ding ZH, Huang RG at el. Issues of Health and disease relating to coal use in southwestern China. International Journal of Coal Geology, 1999.40: 119~132.
    36.安冬,何光煜,王泉弟,胡小强.室内敞灶燃煤所致二氧化硫、砷、氟污染及其危害.环境与健康杂志,1995.12:167-169.
    37.安冬.社会经济因素对贵州地方性氟中毒的影响.中国地方病学杂
    
    志,1998,17;7—8.
    38.安冬,王述全,胡小强,等.贵州氟病试点区健康教育转播效果评估.中国地方病学杂志,2001,20;386-387.
    39.白学信.综合治理燃煤污染型地氟病浅见.中国地方病防治杂志,1991,6:126-127.
    40.白学信,周定友,梁代华,等.烧石煤引起开水含氟量升高揭谜.中国地方病防治杂志.1994,9:305—306.
    41.曹守仁,刘昌议,汤瑞琦.地方性氟中毒防治科研工作.见:《中国地方病防治四十年》编委会.中国地方病防治四十年.北京:中国环境科学出版社,1990a,73-81.
    42.曹守仁.长江三峡地区煤烟氟中毒的环境特征研究.见:中华人民共和国卫生部地方病防治司.三峡改灶降氟科研论文集.哈尔滨:中国地方病防治研究中心,1990b,5—15.
    43.曹守仁.煤烟污染性氟中毒.中国地方病学杂志,1991,10:369-373.
    44.曹守仁.煤烟污染与健康.北京:中国环境科学出版社,1992.91-99.
    45.曹宗平.CaO和CaCO_3降氟效果实验研究.中国地方病学杂志,2001,20:399.
    46.陈国阶,余大富.环境中的氟.北京:科学出版社,1990.
    47.陈怀满.土壤中化学物质的行为与环境质量.北京:科学出版社,2002.24.
    48.陈明军,张正义,吴绍红.燃煤(低氟)性氟污染致食物型氟中毒调查.中华预防医学杂志,1991,25(3):171-173.
    49.陈萍,唐修义.中国煤中的氟.中国煤田地质,2002(增刊),25-28.
    50.陈庆沐,刘玉兰.氟的土壤地球化学与地方性氟中毒.环境科学,1981,2(6):5-9.
    51.陈树元,卞咏梅,刘绍考.氟对农作物、家畜和蚕桑的影响.环境污染与防治,1990,12(2):10—14.
    52.陈文敏.洁净煤技术基础[M].北京:煤炭工业出版社,1997.107
    53.程胜高,王艳林,运珞珈。高硫煤中有机硫赋存状态与微生物脱硫机理,中国环保产业。1996(12):34—35。
    54.耿书生,杨芳莉,陈社芳,等.豫西水文地球化学坏境与地方性氟中毒发病关系的探讨.中国地方病学杂志,1988.7:374-376.
    
    
    55.贵阳市卫生防疫站等.煤烟烘炕食物所致地方性氟中毒调查.中华预防医学杂志,1981,15:281-283.
    56.贵阳医学院等.贵州省地方性食物性氟中毒病.中华预防医学杂志,1979,13:148-151.
    57.贵阳医学院环卫组等.贵州织金县地方性食物性氟中毒病调查[J].新医学.1981,12:342-343.
    58.贵阳医学院.地方性氟病[M].贵阳:贵州人民出版社,1986.17.
    59.郭英廷,王延斌,方爱民等.贵州西部晚二叠世煤层中的有害微量元素及其分布.煤田地质研究文集.北京:煤炭工业版社,1996.188~194.
    60.韩德馨主编.中国煤岩学.徐州:中国矿业大学出版社,1996.22.
    61.湖北恩施地区卫生防疫站等.食物型地方性氟中毒的调查.中华预防医学杂志,1980,14:164-167.
    62.黄彩海,杨丽娟.粉煤灰中氟污染地下水的试验研究.环境科学,1989.10(3):26~29.
    63.吉荣娣,全笑江,曹守仁.用燃烧水解法测定食品中的全氟.见:卫生部地方病防治司.三峡改灶降氟科研论文集.哈尔滨:中国地方病防治研究中心,1990,153-156.
    64.江远福.生活燃煤污染型地方性氟中毒研究进展.中国地方病防治杂志,1994,9(2):104-105.
    65.李福成.高岭土拌煤烘烤玉米引起疾病的报告.中华预防医学杂志,1988,22:225.
    66.李福成.煤烘玉米铝氟联合中毒病区环境因素的调查.广东微量元素科学,2001,8:37-40.
    67.李惠清,徐世义,汪梅.镇雄县不同拌煤粘土及层次深度含氟量研究.中国地方病学杂志,1995,14:290-291.
    68.李经达,文师吾,卢四清,安飞云,等.高氟土壤拌煤燃烧所致地方性氟中毒.湖南医科大学学报,1992,17:143-146.
    69.李良寿,汪一鸣.口腔流行病学.银川:宁夏人民出版社.1992.
    70.李日邦,郑大贤.土壤—植物生态系统中植物吸收氟的研究.见:地方病科学委
    
    员会地氟病专题组.全国第二届地方性氟中毒学术交流会议论文摘要汇编.吉林:实用地方病学杂志编辑部,1985,48-49.
    71.李日邦,谭见安,王五一,王丽珍.贵州地方性食物性氟中毒氟源探讨.中华医学杂志,1982,62:425-428.
    72.李文华.我国主要高硫煤和石煤中氟的分布.煤炭分析及利用,1986.(2):27~37.
    73.李永华,王五一,杨林生,侯少范.燃煤污染型氟中毒流行特点及氟安全阈值研究,中国地方病学杂志,2002,21:41-43.
    74.林美琪,闵冬,谢小毛,陈一新.石灰代粘土制作型煤降低空气氟污染的研究.中国地方病防治杂志,1995,10:292-293.
    75.刘东生,陈庆沐,余志成,等.我国地方性氟病的地球化学问题.地球化学,1980,1:13-21.
    76.刘峰.新世纪煤炭工业对选煤技术的期待.洁净煤技术,2001,7(2):5-7.
    77.刘建忠,姚强,曹欣玉等.煤中氟化物的测量及分布规律初探.煤田地质与勘探,1999.27(2):9~12.
    78.刘建忠,齐庆杰,周俊虎,曹欣玉,等.煤高温燃烧除氟脱硫添加剂研究.燃烧科学与技术,2000,6:335-337.
    79.刘石潭,廖国保,曹国基.石煤灰渣开发利用大有可为——益阳石煤发电厂灰渣综合利用的调查.煤矿资源开发与利用,1992,(7):17—18.
    80.鲁百合.我国煤层中氟和氯的赋存特征.煤田地质与勘探,1996.24(1):9~11.
    81.雒昆利.李日邦,王丽珍,等.中国煤中氟的含量和分布规律与来源.环境科学,2001.22:38—41.(增刊)
    82.雒昆利,徐立荣,李日邦,等.中国华北地区和西北地区动力煤氟的排放量.科学通报,2002,47:873-877.
    83.毛大钧.鄂西南石煤煤烟污染的三个突出问题.湖北预防医学杂志,1999,(3):24—25.
    84.煤炭科学院地质勘探分院地址研究所.中国南方石煤资源综合考察报告[C].1982.
    
    
    85.齐庆杰,刘建忠,周俊虎等.煤中氟化物分布与赋存特性研究.燃料化学学报,2000a,28(2):376~378.
    86.齐庆杰,刘建忠,周俊虎,等.煤中微量元素氟测定方法的研究进展.煤炭转化.2000b,23:7-11
    87.齐庆杰,刘建忠,曹欣玉,周俊虎,等.燃煤过程中CaO及钙基固氟剂对氟析出的控制.化工学报,2003,54:226-231.
    88.齐庆杰,刘建忠,曹欣玉,等.煤中氟分布与燃烧排放特性.化工学报,2002,53:572-577.
    89.全国牙病防治指导组.第二次全国口腔健康流行病学抽样调查.北京:人民卫生出版社.1999.
    90.全笑江,吉荣娣,应波.生物及矿物样品中氟含量的测定方法比较.环境与健康杂志,1992,9:29-31.
    91.沈彦民.关于高氟粮食氟源的研究.中国地方病防治杂志,1987,2:111-113.
    92.苏宏灿,毛大钧,袁作银.石煤中氟、硒、镉在清江中上游迁移的现状.湖北预防医学杂志,2001,11(1):37—38.
    93.苏玉水.贵州省氟病综合治理的初步探讨.中国地方病防治杂志,1991,6:226.
    94.孙殿军.应加强地方性氟中毒防治中热点问题的研究.中国地氟病学杂志,2004,23:97-99.
    95.孙淑庄.燃煤氟中毒区总摄氟量及摄氟途径研究.卫生研究,1993,22:44-50.(增刊3)
    96.孙玉富,滕国兴,于光前,徐春蓓,等.摄氟量与燃煤污染型氨中毒关系的流行病学研究.中国地方病学杂志,1993,12:351-352.
    97.田建英.我国地方性氟中毒流行现状及评述.中国地方病防治杂志,1987,2:107-110.
    98.田兆顺.王堏,郑来义,等.地方性氟中毒与环境氟含量关系的研究.中国地方病学杂志,1985,4:310-313.
    99.陶长林.国外选煤动态分析.选煤技术,1999,(3):44-48.
    100.万桂敏,张仁和.植物氟的测定及样品预处理方法的探讨.中国地方病防治杂志,1988a,3:172-175.
    
    
    101.万桂敏,张仁和,陈志.粮食、蔬菜中氟化物分析方法的比较研究.中国地方病学杂志,1988b,7:337-339.
    102.王连方,孙幸之,徐训凤,等.食物及生物样品氟测定方法的探索.环境与健康杂志,1985,2:24-26.
    103.王庆一.中国煤炭工业:演变及前景(上).中国煤炭,2001,27(1):6-12.
    104.王述全,段荣祥,王泉弟.石灰水拌煤降氟效果的探讨.中华预防医学杂志,1995,29:125.
    105.王煦曾,朱榔如,王杰.中国煤田的形成与分布.北京:科学出版社,1992,69-71.
    106.吴代赦,郑宝山,唐修义,等.中国煤中的氟含量及其分布.坏境科学,2004a.(待刊)
    107.吴代赦,郑宝山,王爱民.贵州省燃煤型氟中毒地区的氟源新认识.中国地方病学杂志,2004b,23:135-137.
    108.吴宗鑫,陈文颖.以煤为主多元化的清洁能源战略.北京:清华大学出版社,2001.11.
    109.谢建明,李选时,石晓明,等.耒阳县地方性氟中毒的氟源调查.环境与健康杂志,1986,3(4):9—10.
    110.严良荣.碳质页岩综合利用与氟中毒、硒中毒的防治[C].见:中华人民共和国卫生部地方病防治司.三峡改灶降氟科研论文集.哈尔滨:中国地方病防治研究中心,1990,495—497.
    111.鄢明才,迟清华.地壳化学元素丰度——中国华北地台地壳化学元素的丰度与分布.张艳君主编.地球化学 第30届国际地质大会论文集,第19卷 北京:地质出版社.1998.
    112.颜诗树,任天培.川东地区石煤氟的赋存状态研究[J].矿物岩石,1989,9(3):109—112.
    113.杨居荣.煤矿露采粉尘污染对农田生态坏境的影响.生态学杂志,1988.7(1):9~12.
    114.袁三畏.中国煤质论评.北京:煤炭工业出版社,1999.1—2.
    115.詹福初.徐尚敖,谢海林,等.常山县芳村镇燃煤污染型地方性氟中毒调查报
    
    告.地方病通报,1993,8(2):83—85.
    116.张家骅,李素珍.火电厂燃煤中氟化物的转化迁移问题.环境科学与技术,1994.(1):6~9.
    117.张淑新,齐庆杰,刘建忠,等.石灰石的孔隙结构特性及对固氟反应的影响.燃料化学学报,2002,30:311-315.
    118.赵炳成,任改英.民用燃煤固氟剂及相应固氟技术的研究.中国环境卫生,2000,3:109-114.
    119.赵继尧,唐修义,黄文辉.中国煤中微量元素的丰度.中国煤田地质,2002(增刊):5—13.
    120.郑宝山,黄荣贵.西南地区燃煤污染型氟中毒的环境地球化学研究.见:地方病科学委员会地氟病专题组.全国第二届地方性氟中毒学术交流会议论文摘要汇编.吉林:实用地方病学杂志编辑部,1985a,47-48.
    121.郑宝山,黄荣贵,王爱民.西南地区室内燃煤污染型氟中毒的环境地球化学研究.地方病通讯,1985b,3:49-51.
    122.郑宝山,黄荣贵.中国煤炭含氟量的研究.中国地方病防治杂志,1988,3:70-72.
    123.郑宝山.地方性氟中毒与工业氟污染的研究,北京:环境科学出版社,1992.12—15.
    124.郑来义,李跃,田兆顺.氧瓶燃烧法在茶叶氟分析中的应用.中华预防医学杂志,1988,22:361-362.
    125.郑明东.煤中氟的测定研究.煤炭分析及利用,1994,(3):35~37.
    126.支家兰,张晓,孙承志,等.贵州省安顺县田坝中间村地方性氟中毒流行因素初探.中国地方病防治杂志,1988,7(4):249-250.
    127.中国环境监测总站主编.中国土壤元素背景值.北京:中国环境科学出版社,1990.351.
    128.中国科学院地理研究所 李日邦等.贵州地方性食物性氟中毒氟源探讨[J].中华医学杂志,1982,62:425-428.
    129.周代兴.贵州省西南部食物性氟中毒差异性及其原因调查.见:地方病科学委员会地氟病专题组.全国第二届地方性氟中毒学术交流会议论文摘要汇
    
    编.吉林:实用地方病学杂志编辑部,1985a,22-23.
    130.周代兴,傅强.以不同含氟量煤粑烘烤的食物复制小白鼠氟中毒模型.中华医学杂志,1985b,65:692-693.
    131.周代兴,傅强,王志良,周陈.拌煤粘土含氟量与燃煤污染型氟中毒关系的调查.中国地方病防治杂志,1991,6:243-244.
    132.朱建明.鱼塘坝黑色富硒岩石中硒的赋存状念及其对局域环境的效应研究:[博士学位论文].贵阳:中国科学院地球化学研究所,2001,18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700