用户名: 密码: 验证码:
燃气轮机燃烧室参数化CFD模拟方法的研究和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来燃气轮机性能不断提高,对于燃烧室的要求也日益苛刻,数值模拟方法在燃烧室的设计中越来越重要,而目前数值计算面临的周期比较长、由于结构更改频繁导致的巨大的人力投入等问题只有采用参数化的CFD数值模拟方法才能够解决,同时参数化CFD模拟方法也为燃烧室的自动优化设计奠定了基础。
     所谓燃烧室的参数化CFD模拟方法是指用参数(变量)而不是数值(定量)建立燃烧室的CFD模型、分析CFD计算结果,通过简单地改变模型中的某些参数值,就可以建立和分析一个新的模型。首先,本文在现有商业软件UG、ANSYS Workbench、Fluent的基础上,提出并建立了燃气轮机燃烧室的参数化CFD模拟方法:
     (1)实现几何建模的参数化:在UG中建立参数化的燃烧室(或部件)的几何模型模板,并用UG/Open UIStyle设计对话框实现设计参数的可视化输入,用UG/Open API编写对话框的回调函数,由设计参数确定燃烧室(或部件)的几何参数。标记几何参数以及几何的体和面,为计算前处理和后处理做准备。该步骤实现了从设计参数输入到几何模型更改的自动化。
     (2)编写脚本文件实现几何模型→生成网格→前处理→求解→后处理过程的自动化:脚本文件中含有几何输入参数、边界条件输入参数,并且在后处理中得到计算结果的输出参数。该步骤实现了由输入参数到得到输出参数整个模拟过程的自动化。
     (3)通过VC编程调用UG/Open API函数、修改并运行脚本文件、建立输出参数和输入参数之间的关系来实现参数的传递,即将燃烧室的初步设计、从几何建模到模拟后处理过程、根据模拟结果改进燃烧室结构这一系列过程进行了封装,初步实现了从给定燃烧室设计参数到结构实现的自动化。
     然后对该方法的各个步骤按照先简单、后复杂,先局部后整体的步骤进行了详细的考核,证明了该方法的有效性、可靠性和高效性:(1)通过研究一个双级旋流器的几何参数对其流场的影响,验证了几何参数化的可行性以及该方法用于设计方案比较的优越性;(2)通过研究某型涡扇发动机燃烧室在不同工况下的性能,验证了边界条件参数化的可行性以及该方法用于燃烧室不同状态性能比较的优越性;(3)实现了三种不同结构的贫预混燃烧室开孔规律的自动迭代设计,以达到所要求的流量分配规律。
     最后,综合应用参数化CFD模拟方法,实现了一个筒形燃烧室从给定燃烧室设计参数开始,按照初步设计、数值模拟、结果后处理与分析、改进设计方案并更新几何结构进一步进行数值模拟的反复自动迭代过程,直到数值模拟结果符合设计要求为止。通过该算例考核了从给定设计参数到结构实现过程自动化运行的可行性和高效性。
     本文实现的燃气轮机燃烧参数化CFD模拟方法大大缩短了燃烧室的CFD模拟周期,节省大量的人力,为进一步开展燃烧室自动优化设计做了一定的准备工作。
In recent years, the requirements for combustor are more and more rigorous and expanded with the development of gas turbine performance. And the numerical simulation method is more and more important for combustor design. But there are problems faced by the numerical simulation method:the analysis cycle time is rather long and the manual labor needed is large because of frequently changing the geometry model. Only the parametric CFD modeling approach can solve the above-mentioned problems. Moreover, the parametric approach can be used for combustor automated optimization design.
     The parametric CFD modeling approach builds and analyzes the combustor CFD model using parameters not values.Then a new model can be built and analyzed just by changing the values of the parameters. Firstly, this paper brings up and builds the parametric CFD modeling approach to gas turbine combustor basing on softwares UG, ANSYS Workbench and Fluent.
     (1) Implementation of parameterizing geometry modeling:The parametric geometry model templates of combustors (or parts) are built in UG. Design parameters can be input visually using dialogs created by UG/Open UIStyle. The callback functions of the dialogs are compiled using UG/Open API functions, and they determine the geometry parameters by design parameters. The geometry parameters, bodies and faces are marked preparing for preprocess and postprocess. This step realizes the automation from geometry parameters input to geometry model update.
     (2) Compile script to realize the automation of the five processes:Geometry Modeling→Grid Generation→Preprocessor→Solving→Postprocessor. The script includes geometry input parameters and boundary condition input parameters. And output parameters can be created in the postprocessor. This step realizes the automation of the whole simulation process from input parameters to output parameters.
     (3) Parameters pass from one part to the next one using VC programming, which uses UG/Open API functions, runs script, and builds the relationship between output parameters and input parameters. It means that the preliminary combustor design, the processes from geometry modeling to postprocessor and improvement of the combustor configuration according to the results are all packaged and it can realize the automation from giving the design parameters to improved configuration.
     Secondly, this paper progressively validates the effectiveness, reliability and efficiency of the approach:(1) The effects of four geometric parameters of a dual-stage swirler on its flow fields are studied using this approach, which demonstrates the feasibility of parameterizing the geometry and the advantages of the approach for comparison of different design schemes; (2) The performances of a turbofan engine combustor on four operation conditions are studied using this approach, which demonstrates the feasibility of parameterizing the boundary conditions and the advantages of the approach for comparison of combustor performances on different operation conditions; (3) The open pore of the three different lean-premixed combustors is automated iterative designed to meet the required flow distribution.
     Finally, automated iterative design of a cylindrical combustor is realized using the approach comprehensively. Starting from the design parameters input, the processes including preliminary design, numerical simulation, postprocessing, scheme improving and geometry updating are iterated until the results meet the requiements. This example can demonstrate the feasibility and efficiency of the automated iteration.
     The parametric CFD modeling approach realized by this paper can reduce the cycle time of combustor simulation and can save the labor largely. All contribute to the following development of the combustor automated optimization design.
引文
[1]倪维斗,焦树建.我国发展燃气轮机的可行道路[J].清华大学学报(哲学社会科学版),2000,Vo1.6(15):60-66.
    [2]张文普,丰镇平.燃气轮机技术的发展与应用[J].燃气轮机技术,2002,Vo1.15(3):17-22.
    [3]崔玉峰.合成气燃气轮机燃烧室数值模拟与试验研究[D].北京:中国科学院工程热物理研究所,2005.
    [4]焦树建.燃气轮机燃烧室(修订本)[M].北京:机械工业出版社,1990.
    [5]彭泽琰等.航空燃气轮机原理[M].北京:国防工业出版社,2008.
    [6]Mongia H C. Aero-Thermal Design and Analysis of Gas Turbine Combustion Systems: Current Status and Future Direction[C]. AIAA Paper 1998-3982.
    [7]Mohammad B S and Jeng S M. Design procedures and a Developed Computer Code for Preliminary Single Annular Combustor Design[C]. AIAA Paper 2009-5208.
    [8]Rizk N K and Mongia H C. Three-Dimensional Gas Turbine Combustor Emission Modeling. [J] ASME Journal of Engineering for Gas Turbine and Power, Vol.115, 603-611.
    [9]侯晓春,季鹤鸣,刘庆国等.高性能航空燃气轮机燃烧技术[M].北京:国防工业出版社,2002.
    [10]Gosman A D, Pun W M, Runchal A K, Spalding D B and Wolfstein M. Heat and Mass Transfer in Recirculating Flows[M]. London:Academic Press,1969.
    [11]Patankar S V张政译.传热与流体流动的数值计算[M].北京:科学出版社,1984.
    [12]Spalding D B. A General Computer Program for Fluid Flow, Heat Transfer and Chemical Processes[R]. Imperial College Report HT5/81/10,1981.
    [13]Mongia H C, et al. Combustor Design Criteria Validation[M]. USARTL-TR-78-55A,55B, 55C,1979.
    [14]Burrus D L, et al. Numerical Models for Analytical Predictions of Combustor Aero-thermal Performance Characteristics[C]. AGARD CPP-442,1987.
    [15]Stubbs R M, Liu N S. Preview of National Combustion Code[C]. AIAA Paper 1997-3114.
    [16]Mongia H C. Perspective of Gas Turbine Combustion Modeling[C]. AIAA Paper 2004-0156.
    [17]Mongia H C. Recent Progress in Comprehensive Modeling of Gas Turbine Combustion[C]. AIAA Paper 2008-1445.
    [18]Fuller E J and Smith C E. Integrate CFD Modeling of Gas Turbine Combustors[C]. AIAA Paper 1993-2196.
    [19]McGuirk J J and Spencer A. Computational Methods for Modeling port Flows in Gas Turbine Combustors[C]. ASME Paper 1995-GT-414.
    [20]McGuirk J J and Spencer A. Coupled and Uncoupled CFD Prediction of the Characteristics of Jets from Combustor Air Admission Ports[C]. ASME Paper 2000-GT-0125.
    [21]严传俊.模型燃气轮机燃烧室中三元两相反应流的数值计算[J].工程热物理学报,1990,11(1):91-97.
    [22]严传俊.三维贴体坐标系下燃烧室中两相反应流的数值模拟[J].燃烧科学与技术,1995,1(1).
    [23]赵坚行等.先进燃烧室涡流杯流场计算[J].工程热物理学报,2000,21(1):110-114.
    [24]赵坚行.燃烧的数值模拟.北京:科学出版社,2002.
    [25]雷雨冰,赵坚行等.三级涡流器环形燃烧室化学反应流场的数值研究[J].推进技术,2005,26(3):215-218.
    [26]颜应文,赵坚行等.环形燃烧室两相喷雾燃烧的大涡模拟[J].航空动力学报,2006,21(5):824-830.
    [27]蔡文祥,赵坚行等.带圆筒头部火焰筒两相燃烧流场及性能计算[J].推及技术,2007,28(2):122-126.
    [28]徐榕等.斜切径向旋流器环形燃烧室数值模拟[J].航空动力学报,2010,36(2):45-50.
    [29]崔玉峰,徐纲等.数值模拟在合成气燃气轮机燃烧室设计中的应用[J].中国电机工程学报,2006,26(16):109-116.
    [30]赵光军.RO110重型燃气轮机燃烧室掺混特性的数值研究[D].北京:清华大学,2008.
    [31]吴治永,林宇震等.基于CFD分析改进三旋流燃烧室头部设计[J].推进技术,2009,30(5):353-357.
    [32]吴超.湍流燃烧模型在燃烧室数值计算中的应用研究[D].沈阳:沈阳航空工业学院,2009.
    [33]何敏等.低热值气体燃料燃烧室数值模拟与试验研究[J].航空发动机,2010,36(3):38-41.
    [34]Tangirala V E, et al. Parametric Modeling Approach to Gas Turbine Combustion Design[C]. Proceedings of ASME Turbo Expo,2000-GT-0129.
    [35]Samareh J A. Status and Future of Geometry Modeling and Grid Generation of Design and Optimization [J]. Journal of Aircraft,1999, Vol.36(1):97-104.
    [36]Dawes W N. Reducing Bottlenecks in the CAD-to-Mesh-to-Solution Cycle Time to Allow CFD to Participate in Design[J]. Joural of Turbo machinery,2001, Vol.123:552-557.
    [37]Lai M K, Reynolds R S and Armstrong J. CFD-Based, Parametric, Design Tool for Gas Turbine Combustors from Compressor Deswirl Exit to Turbine Inlet[C]. ASME Paper 2002-GT-30090.
    [38]Malecki R E, et al. Application of a CFD-Based Analysis System to the PW6000 Combustor to Optimize Exit Temperature Distribution-Part I:Description and Validation of the Analysis Tool[C]. Proceedings of ASME Turbo Expo,2001-GT-0062.
    [39]Snyder T S, et al. Application of a CFD-Based Analysis System to the PW6000 Combustor to Optimize Exit Temperature Distribution-Part Ⅱ:Comparison of predictions to full annular rig test data[C]. Proceedings of ASME Turbo Expo,2001-GT-0064.
    [40]Motsamai O S, et al. Multi-disciplinary Design Optimization of a Combustor [J]. Engineering Optimization,2008, Vol.40(2):137-156.
    [41]Dudebout R, et al. Integrated Process for CFD Modeling and Optimization of Gas Turbine Combustors[C]. Proceedings of ASME Turbo Expo, GT2004-54011.
    [42]Pegemanyfar N, et al. Development of an Automated Preliminary Combustion Chamber Design Tool[C]. Proceedings of ASME Turbo Expo, GT2006-90430.
    [43]Pegemanyfar N, et al. Automated CFD Analysis within the Preliminary Combustor Design System Precodes Utilizing Improved Cooling Models[C]. Proceedings of ASME Turbo Expo, GT2007-27409.
    [44]梁炳南.燃气轮机机匣建模及模态分析[D].大连:大连海事大学,2009.
    [45]黄勇UG/Open API、MFC和COM开发实例精解[M].北京:国防工业出版社,2009.
    [46]浦广益ANSYS Workbench 12基础教程与实例详解[M].北京:中国水利水电出版 社,2010.
    [47]ANSYS Inc. ANSYS FLUENT 12.0/12.1 Documentation, Theory Guide[M/OL].USA, 2010.
    [48]Shih T H, et al. A new k-ε eddy viscosity model for high Reynolds number turbulence flows- Model Development and Validation [J]. Compute Fluids,1995,24(3):227-238.
    [49]胡正义等.航空发动机设计手册第9册:主燃烧室[M].北京:航空工业出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700