用户名: 密码: 验证码:
怒江两种鲃亚科鱼类的生物学与资源量初步比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于形态特征、年龄、生长、食性、繁殖、种群现状及种群动态等方面对2006年—2008年采自怒江的后鳍吻孔鳃(Poropuntius opisthopterus)和保山新光唇鱼(Neolissochlus wynaadensis)进行了比较研究,主要研究结论如下:
     1、形态特征:Fisher逐步判别分析结果表明两种鱼类在侧线鳞数、背鳍前鳞数、围身体鳞数、尾柄长/尾柄高、背鳍前距/背鳍后距等方面有显著差异(P<0.01)。结果显示从形态特征上可以区分后鳍吻孔鲃和保山新光唇鱼;
     2、年龄与生长:两种鱼类均采用耳石为最终年龄鉴定材料,脊椎骨和鳞片为辅助鉴定材料。样本中后鳍吻孔鳃由1~11龄11个年龄组组成,体长50~350mm,体重2.1~1900.0g,保山新光唇鱼由2~10龄9个年龄组组成,体长72~455mm,体重6.6~2750.5g。两种鱼类均具生长速度较慢、L∞值相对较大和拐点年龄较高的共同特性,由退算体长估算出的von Bertalanffy生长参数分别为:后鳍吻孔鲃L∞=497.66mm,k=0.117/年,t0=0.571年,ti=10.79年;保山新光唇鱼L∞=667.95mm,k=0.120/年,t0=0.783年,ti=10.65年;
     3、食性特征:两种鱼类消化系统结构相似,食物中以底栖无脊椎动物为主(重量指数%W>60%),兼有植物碎片、落水昆虫和浮游植物等,其中有13种饵料生物相互重叠。饵料生物中的无脊椎动物大多属于营底栖或中下层自游泳生活的生物类群。初步判定后鳍吻孔鳃和保山新光唇鱼为食底栖无脊椎动物鱼类;
     4、繁殖特征:两种鱼类性比分别为后鳍吻孔鳃1:1.59,保山新光唇鱼1:1.73。最小性成熟个体体长分别为后鳍吻孔鳃177mm,相应年龄为4.32龄,保山新光唇鱼为230mm,相应年龄为4.29龄;5月为两种鱼类的繁殖高峰期,属一次性产卵类型鱼类,成熟卵径分别为1.33±0.17mm和1.35±0.20mm;相对怀卵量分别为后鳍吻孔鳃24.68±9.36粒/g,保山新光唇鱼17.99±3.73粒/g;
     5、种群现状及种群动态:以20种已知生活史类型鱼类为参照物,判断两种鱼类均为偏k选择型鱼类;根据体长股分析(LCA)模型,2006-2008年后鳍吻孔鳃和保山新光唇鱼的年平均资源量为6.58×104kg和8.03×104kg,对应年平均资源数量为0.76×106尾和0.29×106尾。根据B—H动态综合模型,两种鱼类当前开发率(Ecur)均高于最佳渔业开发率(Emax),且当前渔业点Ecur和Lc/L∞均位于渔获量等值曲线的D象限,评估结果显示两种鱼类均处于过度利用状态。建议降低捕捞强度,提高捕捞规格,以保证两种鱼类资源的可持续利用。
Comparative study on the morphological characters, age, growth, feeding habits, reproduction and population dynamics of Poropuntius opisthopterus and Neolissochlus wynaadensis was catched in the Nu River during 2006 to 2008 was carried out. The main findings are as follows.
     1. Morphological characteristic. Using the Fisher Discriminant method, statistical results showed large difference (P<0.01) between Poropuntius opisthopterus and Neolissochlus wynaadensi in the scales number of lateral line scales, scales number in front of dorsal fin, scales number around the body, the ratio of the length to the height of caudal peduncle and the ratio of the distance from the start point of the dorsal fin to the head and the distance from the start point of the dorsal fin to the start point of the caudal fin. So, it can be easily distinguished between Poropuntius opisthopterus and Neolissochlus wynaadensis from the morphological characteristics.
     2. Age and growth. The otoliths of Poropuntius opisthopterus and Neolissochlus wynaadensis were the main material to definite the age, and opercula and scale were used as the supplementary material. Samples collected for Poropuntius opisthopterus included 11 age groups from 1 to 11 year,50 to 350mm in body length and 2.1 to 900.0 in body weight; Samples collected for Neolissochlus wynaadensis included 9 age groups from 1 to 10 year,72 to 455mm in body length and 6.6 to 2750.5 in body weight. Poropuntius opisthopterus and Neolissochlus wynaadensis have similar growth performance as slow growth rate, relatively large value of L∞and high inflection point of the weight growth. Their von Bertalanffy growth parameters derived from back-calculated body length were as follows. For Poropuntius opisthopterus,L∞=497.66 mm, k=0.117/year,t0=0.571 year, ti=10.79 year; for Neolissochlus wynaadensi, L∞=661.95 mm, k=0.120/year, to= 0.783 year, ti=10.65 year.
     3. Feeding habits. The food composition of Poropuntius opisthopterus and Neolissochlus wynaadensis were similar. They mainly feed on invertebrate animals(weight percent%W>60%), plant debris, water insects and phytoplankton, and 13 species of these food overlapped. Most of invertebrate animals live in the bottom of the water or belong to the self-swimming species in middle level or lower level of the water. From above, it can be preliminary deduced that Poropuntius opisthopterus and Neolissochlus wynaadensis mainly feed on bottom invertebrate animals.
     4. Reproduction. The sex ratio of Poropuntius opisthopterus and Neolissochlus wynaadensis were 1:1.59 and 1:1.73. The minimum body length and age of male individuals at first maturity of Poropuntius opisthopterus and Neolissochlus wynaadensis were 177 mm,4.32 years and 230 mm,4.29 years, respectively. The peak of spawning activity for both of them took place in May, the mean diameter of mature eggs of them were 1.33±0.17mm and 1.35±0.20mm, the mean relative fecundity of Poropuntius opisthopterus and Neolissochlus wynaadensis was 24.68±9.36 egg/g and 17.99±3.73 egg/g, respectively.
     5 population status and population dynamics:Compared with the life-history patterns of 20 kinds of fishes, the results showed that the life-history pattern of Poropuntius opisthopterus and Neolissochlus wynaadensis tended to be K-selection. According to length-based cohort analysis (LCA) model, during 2006 to 2008, the average annual stock biomass of Poropuntius opisthopterus and Neolissochlus wynaadensis were 6.58×104 kg and 8.03×104 kg, with the number of 0.76×106 individuals and 0.29×106 individuals respectively. According to Beverton-Holt dynamic model, the current exploitation ratio (Ecur) of Poropuntius opisthopterus and Neolissochlus wynaadensis was less than the maximum exploitation ratio (Emax), and the yield isopleths with Ecur and Lc/L∞belong to quadrant D. These results indicated that the fish stock was over-exploited. To protect the resource of two species, the fishing mortality coefficient must be reduced, and the first capture age should be put off by limiting the mesh.
引文
*岳兴建,刘绍平,张耀光,段辛斌,陈大庆.怒江鱼类区系分布及生物多样性(待发表).
    1. 蔡焰值,何长仁,蔡烨强,蒋君.中华倒刺鲃生物学初步研究.淡水渔业,2003,33(3):16—18
    2. 蔡子德,林岗,倪家延,叶钊,唐志斌,张盛.光倒刺鳃的繁殖生物学研究.广西农业科学,2007,38(2):200—204
    3. 柴辛娜,李明,张随成,胡圣虹.基于鱼耳石元素空间分布鉴定鲫鱼生长年龄.分析化学,2009,37(增刊):83—83
    4. 常剑波.长江中华鲟繁殖群体结构特征和数量变动趋势研究.[博士论文].武汉:中国科学院水生生物研究所,1999
    5. 陈国宝,李永振,陈丕茂,舒黎明.鱼类最佳体长频率分析组距研究.中国水产科学,2008,15(4):659—666
    6. 陈馄慈,邬国民,李恒颂.珠江斑鳠年龄和生长的研究.中国水产科学,1999,6(4):62—66
    7. 陈小勇,杨君兴.中国“四须鲃”类的系统整理.动物学研究,2003,24(5):377—386
    8. 陈毅峰.色林错裸鲤的年龄鉴定.动物学报,2002a,48(4):527—533
    9. 褚新洛,陈银瑞.云南鱼类志(上册).北京:科学出版社,1989
    10.代应贵,陈毅峰,王晓辉.瓣结鱼食性的研究.淡水渔业,2007,37(5):14—18
    11.段中华,孙建贻,常剑波,向阳,谭得清,苗志国.网湖鲫鱼的生长与资源评估.湖泊科学,1994,6(3):257—266
    12.段中华,孙建贻.瓦氏黄颗鱼年龄与生长的研究.水生生物学集刊,1999,23(6):617—623
    13.费鸿年,张诗全.水产资源学.北京:中国科学技术出版社,1990
    14.郭丽丽,严云志,席贻龙.长江芜湖段赤眼鳟的年龄与生长.水生生物学报,2009,33(1):130—135
    15.郭焱,蔡林钢,张人铭.赛里木湖高白鲑的年龄与生长.大连水产学院学报,2005,20(2):100—104
    16.贺舟挺.西藏拉萨异齿裂腹鱼年龄与生长的研究.[硕士学位论文].华中农业大学,2005
    17.胡德高,柯福恩,张国良.葛洲坝下中华鲟产卵场的调查研究.淡水渔业,1992,5:6—10
    18.黄权,周景祥.鸭绿江花羔红点鲑的生长模型和生活史类型研究.吉林农业大学学报,1999,21(2):60—62
    19.黄永春,蔡葆青,陈祈辉,王好镇,连凤英.黑脊倒刺鲃的生物学特性及人工养殖技术.水利渔业,2004,24(2):25—27
    20.黄永春.黑脊倒刺鲃繁殖生物学特性的研究.福建农业学报,2009,24(1):14—18
    21.乐佩琦.中国动物志硬骨鱼纲、鲤形目(下卷).北京:科学出版社,2000
    22.李凡,李显森,赵宪勇.底拖网调查数据的Delta—模型分析及其在黄海小黄鱼和银鲳资源评估中的应用.水产学报,2008,32(1):145—151
    23.李红敬.珠江水系黑脊倒刺鲃的食性研究.安徽农业科学,2007,35(24):7482—7483
    24.李辉权.以体长为基础的资源评估方法及其软件.南海水产研究,1994,(9):6—17
    25.李堃.云南高原湖泊特有鱼类的生物学与遗传多样性研究.[硕士学位论文].中国科学院研究生院.2006
    26.李文静,王剑伟,谢丛新,谭得青.厚颌鲂的年龄结构及生长特性.中国水产科学,2007,14(2):215-222
    27.梁象秋,方纪祖,杨和荃.水生生物学(形态和分类).北京:中国农业出版社,1996
    28.江林源,余晓丽,陈福艳.养殖条件下倒刺鳃的年龄与生长.湛江海洋大学学报,2003,23(4):6—13
    29.刘建康,曹文宣.长江流域的鱼类资源及其保护对策.长江流域资源与环境,1992,1(1):17—22
    30.刘军.青海湖裸鲤生活史类型的研究.四川动物,2005,24(4):455—485
    31.刘军.色林错鲤生活史类型的模糊聚类分析.水利渔业,2006,26(2):17—18
    32.刘建虎,卿兰才.中华倒刺鳃年龄与生长研究.重庆水产,2002,58:27—32
    33.罗凯军,代应贵,邹习俊,韩雪.光倒刺鳃的年轮特征与生长研究.贵州畜牧兽医.2008,32(3):10—12
    34.倪海儿.东海宽体舌鳎的个体生殖力.水产学报,2000,24(4):318—323
    35.潘炯华,郑文彪.广东北江南方白甲鱼的生物学研究.水产学报,1986,10(4):419—431
    36.邱顺林,陈大庆,林康生.长江鲥鱼种群数量变动的初步研究.中国水产科学研究院学报,1988,1(1):36—46
    37.区又君,廖锐,李加儿,勾效伟.驼背鲈的年龄与生长特征.水产学报,2007,31(5):624—632
    38.沈建忠,曹文宣,崔奕波.用鳞片和耳石鉴定鲫年龄的比较研究.水生生物学报, 2001,25(5):462—466
    39.沈伟,姜亚洲,程家骅.东海发光鲷的年龄与生长特性.中国水产科学,2009,16(4):588—595
    40.施琼芳.鱼类生理学.北京:农业出版社,1991,308—318
    41.谭细畅,史建全,张宏.EY60回声探测仪在青海湖鱼类资源量评估中的应用.湖泊科学,2009,21(6):865—872
    42.陶江平,乔晔,谭细畅,常剑波.中华鲟回声信号判别分析及其在葛洲坝产卵场的空间分布.科学通报,2009,54(1):1—8
    43.田辉伍,岳兴建,陈大庆,邓华堂,刘绍平.怒江东方墨头鱼的年龄结构与生长特性.动物学杂志,2010,45(1):104—110
    44.王春,易祖盛,林小涛,陈湘粦.倒刺鲃生活史各阶段的食性分析.动物学杂志,2007,42(4):101—107
    45.王剑伟.稀有鮈鲫的繁殖生物学.水生生物学报,1992,16(2):165—174
    46.王晓辉,代应贵.瓣结鱼的年轮特征与年龄鉴定.上海水产大学学报,2006,15(2):247—251
    47.王雪辉,邱永松,杜飞雁.珠江口水域鳓鱼生长和死亡参数估算.热带海洋学报,2004,23(4):42—48
    48.吴清江.长吻鮠(Leiocassis longirostris Gunther)的种群生态学及其最大持续渔获量的研究.水生生物学集刊,1975,5(3):387—406
    49.伍献文.中国鲤科鱼类志(上卷).上海:海科学技术出版社,1977
    50.熊飞,陈大庆,刘绍平,段辛斌,史建全.青海湖裸鲤不同年龄鉴定材料的年轮特征.水生生物学报,2006,30(2):185—191
    51.徐钢春,顾若波,闻海波,许爱国.澄湖似刺鳊的年龄和生长特征.中国水产科学,2009,16(3):307—315
    52.许学龙.水产资源数理统计学基础讲座.水产科技情报,1977,(增刊):36—47
    53.严朝晖,史为良.大伙房水库鲢鳙的生长及生长模型.水产学报,1995,19(1):28—34
    54.严利平,李建生,唐敏等.应用体长结构VPA评估东海群系澳洲鲐资源量.中国水产科学,2007,14(增刊):97—102
    55.杨明生,王剑伟,李文静.厚颌鲂年龄材料的比较.动物学杂志,2004,39(2):58—61
    56.杨瑞斌,边书京,周洁,谢丛新.梁子湖麦穗鱼食性的研究.华中农业大学学报,2004,23(3):331—334
    57.叶昌臣,唐启升.太平洋鲱黄海种群的数量估算.动物学杂志,1980,11:3—7
    58.叶富良,陈刚.19种淡水鱼类的生活史类型研究.湛江海洋大学学报,1998,18(3):11-17
    59.叶钊,林岗,张盛,李秀珍,倪家延,唐志斌,蔡子德.光倒刺鳃的食性研究.广西农业科学,2007,38(4):455—458
    60.易伯鲁,梁秩燊.长江家鱼产卵场的自然条件和促使产卵的主要外界因素.水生生物学集刊,1964,5(1):1—15
    61.易伯鲁,余志堂,梁秩燊.葛洲坝水利枢纽与长江四大家鱼.湖北:湖北科学技术出版社,1988
    62.殷名称.鱼类生态学.北京:中国农业出版社,1995
    63.殷瑞,刘群.应用体重结构的实际种群分析模型估算捕捞死亡系数和资源量的初步研究.南方水产,2007,3(2):36—41
    64.詹秉义.渔业资源评估.北京:中国农业出版社,1995
    65.张建斌,田树魁,易勇,梁云安,李映明,段佳伟,李志勇.保山四须鳃的生物学特性研究.淡水渔业,2003,33(2):52—53
    66.张健东.中华乌塘鳢的生长、生长模型和生活史类型.生态学报,2002,22(6):841—846
    67.张其永,洪万树,邵广昭.网箱养殖卵形鲳鲹和布氏鲳鲹分类性状的研究.台湾海峡,2000,29:499—506
    68.张堂林.扁担塘鱼类生活史策略、营养特征及群落结构研究.[博士学位论文],中国科学院研究生院,2005
    69.张学健,程家骅.鱼类年龄鉴定研究概况.海洋渔业,2009,31(1):92—99
    70.钟华平,刘恒,耿雷华.怒江水电梯级开发的生态环境累积效应.水电能源科学,2008,26(1):52—55
    71.周剑,陈先均,李孟均.白甲鱼食性的初步研究.水利渔业,2007,27(5):83—83,107
    72.朱秀芳,陈毅峰.巨须裂腹鱼年龄与生长的初步研究.动物学杂志,2009,44(3):76—82
    73. Allen H A, Kenneth H C, Joeclyn L N. Application of an ion-exchange separation technique and thermal ionization mass spectrometry to Ra226 determination in otoliths for radiometric age determination of long-lived fishes. Can J Fish Aquat Sci,1999, 56:1329-1338
    74. Alverson, Carney. A graphic review of the growth and decay of population cohorts. ICES J Mar Sci,1975,36:133-143
    75. Ault J S, Bohnsack J A, Meester G A. A retrospective (1979-1996) multispecies assessment of coral reef fish stocks in the Florida Keys. Fish Bull,1998,96 (3), 395-414
    76. Baker M S, Wilosn C A, VanGent D L. Testing assumptions of otolith radiometric aging with two long lived from the northern Gulf of Mexico. Can J Fish Aquat Sci, 2001,58:1244-1252
    77. Beverton R J H, Holt S J. A review of the lifespan and mortality rates of fish in nature, and their relation to growth and other physiological characteristics. In:CIBA Foundation Colloquia on Ageing,1959,5:142-180
    78. Beverton R J H. Patterns of reproductive strategy parameters in some marine teleost fishes. J Fish Biol,1992,41 (Suppl.B):137-160
    79. Blunh B A, Brey T. Age determination in the Antarctic shrimp Notocrangon anatarcticus (Crustaces:Decapoda) using the auto fluorescent lipofuscin. Marine Biology,2001,138:247-257
    80. Booth A J, Buxton C D. Management of the panga Pterogymnus laniarius (Pisces: Sparidae). on the Agulhas Bank, South Africa using per-recruit models. Fish Res, 1997,32:1-11
    81. Bowen S H. Quantitative description of the diet, pages 513-532 in B R Murphy and D W willis, editers, fisheries techniques. American Fisheries Society Bethesda Maryland USA,1996
    82. Brett J R. Environmental factors and growth, In:Hoar W S, Randall D J, Brett J R, eds. Fish physiology. Bioenergetics and growth, London:Academic Press,1979, 8:596-675
    83. Caddy J F, Mahon R. Reference points for fisheries management. FAO Fish Tech Pap,1995,347:83
    84. Campana S E, Thorrold S R. Otoliths, increments, and elements:Keys to a comprehensive understanding of fish populations. Can J Fish Aqant Sci,2001,58 (1):30-38
    85. Chen Y F, Jackson D A, Harvey H H. A comparison of von Bertanlanffy and polynomial functions in modeling fish growth data. Can J Fish Aquat Sci,1992,49: 1228-1235
    86. Chen Y F, He D K, Cai B. The reproducetive Strategies of an Endemic Tibetan Fish, Gynmocypris selincuoens. J Freshwater Ecol,2004,19:255-262
    87. Cortes.E. A critical review of methods of studying fish feeding based on analysis of stomach contents:application to elasmobrabch fishes. Can J Fish Aquat Sci,1997, 54 (32):726-738
    88. Curtis G L, Ramsey J S, Scamecchia D L. Habitat use and movements of shovelnose sturgeon in pool 13 of the upper Mississippi River during extreme low flow conditions. Env Biol Fish,1997,50 (2):175
    89. Cushing D H. Fisheries biology:a study in population dynamics. Madison:University of Wisconsin Press.1981,2nd ed.295
    90. Djabali F, Mehailia A, Koudil M, et al. A reassessment of equations for predicting natural mortality in Mediterranean teleosts. NAGA,1994,17 (1),33-34
    91. Dong C Lou, Bruce D Mapstone, Garry R Russ, Gavin A Begg, Campbell R Davies. Using otolith weight-age relationships to predict age based metrics of coral reef fish populations across different temporal scales. Fisheries Research,2007,83: 216-227
    92. Fowler A J, Doherty P J. Validation of annual growth increments in the otoliths of two species of damselfish from the southern Great Barrier reef. Aust J Mar Fresh Res, 1992,43:1057-1068
    93. Froese R, Binohlan C. Empirical relationships to estimate asymptotic length, length at first maturity and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data. J Fish Biol,2000,56:758-773
    94. Gaughan D J, I C Potter. Analysis of diet and feeding strategies within an assemblage of estuarine larval fish and an objective assessment of dietary niche overlap. Fish Bull,1997,95:722-731
    95. Grover M C. Changes in size and age at maturity in a population of kokanee ureka period of declining growth conditions. J Fish Biol,2005,66:122-134
    96. Gulland J A. Fish stock assessment:A manual of basic methods. New York: FAO/Wiley Ser 1,1971,223
    97. Gunderson D R. Surveys of fisheries resources. New York:John Wiley and Sons, 1993:1-31
    98. Gutreuter S. Considerations for estimation and interpretation of annual growth rates//Summerfelt R C, Hall G H eds. Age and Growth of Fish. Ames, IA:The Iowa State University Press,1987,115-126
    99. Hansson S. Methods of studying fish feeding:a comment. Can J Fish Aquat Sci, 1998,55:2706-2707
    100. Hofer R, Krewedl G, Koch F. An energy budget for an omnivorous cyprinid:Rutilus rutilus (L). Hydrobiologia,1985,122:53-59
    101. Jones R. Assessing the effects of changes in exploitation pattern using length composition data. FAO Fish Teeh PaP,1984,256
    102. Jones R. The use of length composition data in fish stock assessment (With notes on VPA and Cohort analysis). FAO Fish Circ,1981,734:55
    103. Joseph L, Godwin W S. Biology of the hill stream fish, Garra mullya (Sykes)// Ponniah A G, Gopalakrishnan A eds. Endemic Fish Diversity of Western Ghats. Lucknow U P, India:NBFGR-N ATP Press, National Bureau of Fish Genetic Resources,2000,276-277
    104. Kevin M Boswell, Matthew P Wilson, Charles A Wilson. Hydro acoustics as a Tool for Assessing Fish Biomass and Size Distribution Associated with Discrete Shallow Water Estuarine Habitats in Louisiana. Estuaries and Coasts,2007,30 (4):607-617
    105. Lam T J. Environmental influences on gonadal activity in fish. Hoar W S ed, Fish physiology, London:Academic Press,1983:65-166
    106. Liao H, Pierce C L, Larscheid J G. Diet Dynamics of the Adult piscivorous Fish Community in Spirit Lake, Iowa, USA 1995-1997. Ecology of Freshwater Fish, 2002,11:178-189
    107. Liao H, Pierce C L, Larscheid J G. Empirical assessment of indices of prey importance in diets of predacious fish. Trans Amer Fish Soc,2001,130:583-591
    108. Macdonald P D M, Pitcher T J. Age-groups from size frequency data:a versatile and efficient method of analyzing distribution mixtures. Fish Res Board Can,1979,36: 987-1001
    109. Marvin A. Barnes, Geoffrey Power. A comparison of otolith and scale ages for western Labrador lake whitefish, Coregonus clupeaformis. Environmental Biology of Fishes,1984,10 (4):297-299
    110. Mehmet KARATAS, M faith CAN. Growth, Mortality and Yield of Barbel, Barbus plebejus (Bonaparte,1839) in Almus Dam Lake (Tokat, Turkey). Pankistan Journal of Biological Sciences.2005,8 (9):1237-1241
    111. Mike S, Ratsch G, Weston J, et al. Fisher discriminant analysis with kernals. In: Hu YH, Larsen J, Wilson E, et al (Eds):Neural Networks for Signal Processing, Ⅸ. New York:IEEE Press,1999,41-48
    112. Moreau J. Mathematical and biological expression of growth in fishes:recent trends and further developments// Summerfelt R, Hall G H eds. The Age and Growth of Fish. Ames, IA:The Iowa State University Press,1987,81-113
    113. Morita M. A new model of growth back-calculation incorporating age effect based on otolih. Can J Fish Aquat Sci,2001,58:1805-1811
    114. Nicieza A G, Metcalfe N B. Growth compensation in juvenile Atlantic salmon: responses to depressed temperature and food availability. Ecology,1997,78:2385-2400
    115. P L Horn. Age and growth of Patagonian toothfish (Dissostichus eleginoides) and Antarctic toothfish (D. mawsoni) in waters from the New Zealand subantarctic to the Ross Sea, Antarctica. Fisheries Research,2002,56:275-287
    116. Pauly D and Soriano ML. Some practical extensions to Beverton and Holt's relative yield-per-recruit model. In:JL Maclean, LB Dizon, LV Hosillo (Eds). The first Asian fisheries forum. Asian Fisheries Society, Manila,1986,491-496
    117. Pauly D, David N. A BASIC program for the objective extraction of growth parameters from length-frequency data. Meeresforschung/Rep,1981, Mar Res 28: 205-211
    118. Pauly D, Morgan G R. Length-based Methods in Fisheries Research. ICLARM Conference Proceedings,1987
    119. Peterson C G J.1892. Fiskenes biologiske forhold i Holbaek Fjord,1890-91. Beret. Danm Biol St,1890 (1) 1:121-183
    120. Pope, J G. An investigation of the accuracy of Virtual Populations Analysis using Cohort Analysis. Res Bull IC-NAF,1972,9:65-74
    121. Ricker W E. Handbook of computations for biological statistics of fish populations. Fish Res Bd Can Bull, (Fei H N, Yuan V W. translated in1984)Beijing: Science Press,1975,141-163
    122. Ricker W E. Linear regressions in fishery research. J Fish Res Board Can,1973, 30:409-434
    123. Ricker WE. Computation and interpretation of biological statistics of fish populations.Bull. Fish Res Board Can,1975,191:382
    124. Sahar Fahmy MEHANNA. Stock Assessment and Management of the Egyptian Sole Solea aegyptiaca Chabanaud,1927 (Osteichthyes:Soleidae). in the Southeastern Mediterranean, Egypt. Turk J Zool,2007,31:379-388
    125. Shepherd J G. A weakly parametric method for estimating growth parameters from length composition data. In:Pauly D, Morgan G R (Eds). Length-based Methods in Fisheries Research. ICLARM Conference Proceedings,1987,113-119
    126. Sinclair A, Gavaris S, Mohn B. Risk assessment in fisheries management. Can Mar Sci Supp,1996,15
    127. Smith S J, Hunt J J, Rivard D. Risk evaluation and biological reference points for fisheries management. Can Spec Pub Fish Aqua Sci,1993,120
    128. Tonn W M, Holopainen I S, Pasxkowski C A. Density-dependent effects and the regulation of crucial carp populations in single-species ponds. Ecology,1994,75(3): 824-834
    129. Vander Zanden M J, Rasmussen J B. Primary consumer δ13C and δ15N and the tropic position of aquatic consumers. Ecology,1999,80:1395-1404
    130. Victor B C, Brothers E B. Age and growth of the fallfish Semotilus corporalis with daily growth increments as method of annulus verification. Can J Zool,1982,60: 2543-2550
    131. Wang WM, Amraratne Yakupitiyage. Ovarian development and spawning pattern of Neosalanx pseudotaihuensis Zhang in Xujiahe Reservoir, Hubei Province. Journal of Lake Sciences.1999,11 (4):338-345
    132. Welch T J, Van Den M J, Avyle R K. Precision and relative accuracy of striped bass age estimates from otolith, scales, and anal rays and spines. N Am J Fish Mang,1993, 13:616-620

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700