用户名: 密码: 验证码:
云参数法干旱遥感监测模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱是全球重大自然灾害之一,也是最严重的气象灾害。干旱给国家经济、社会发展以及人民生产生活带来了严重的威胁和危害。由于遥感技术具有时效性高、监测范围广、客观准确以及成本低等特点,随着卫星遥感技术的飞速发展其应用于干旱监测已成为趋势与热点。目前为止,国内外出现了基于可见光、近红外、远红外以及微波等类型的干旱遥感监测模型,虽然每种方法都有其优势,但仍存在一定的问题:(1)由可见光、红外数据发展的植被指数和地表温度类方法对地表覆盖类型具有很强的依赖性,时空适应性差;微波遥感干旱监测到目前还没有一个成熟的算法,也没有真-正建立干旱指数;(2)缺乏『正演型干旱遥感监测模型,目前的所有干旱遥感监测模型基本都属于反演型模型,即从干旱导致的各种地表现象及地物反应中获取信息建立干旱监测模型,这类模型监测效果具有滞后性;(3)缺乏以序列数据为基础的时间域和频率域干旱遥感监测方法,目前所存在的方法基本属于空间域监测方法,主要针对单幅遥感影像进行干旱监测,并没有充分发挥遥感数据高时间分辨率的优势;(4)缺乏大空间时间尺度适应性的干旱遥感监测方法,目前的干旱监测研究都是针对小区域进行的,各类方法都具有区域适应性,即需建立区域影响系数库等,实际应用价值较小,难以大面积推广应用。针对以上问题,以时序遥感数据为基础建立一种大空间时间尺度适应性的正演型干旱遥感监测方法,对于防灾减灾、国民经济和社会的可持续发展有着重要的现实意义。
     本文主要研究内容和工作包括:(1)对国内外干旱遥感监测现状进行了较全面的总结,分析了该领域目前存在的问题和不足;(2)对干旱进行了详细的界定,总结了干旱的形成与特征,并结合我国干旱情况分析了干旱的影响与危害;(3)对目前存在的干旱遥感监测方法进行详细的分类,同时系统地归纳了干旱遥感监测方法,并分类别地对比分析了各种方法的优势和劣势;(4)在分析太阳辐射模型影响参数的基础上,结合遥感影像光谱信息,提取晴空亮度温度和反射率的影响因素,并具体分析各因素的影响函数,针对各因素的影响关系构建了晴空亮度温度和反射率的计算方法,同时确立其正常动态范围,以此构建自适应云检测方法,并进行了相关的实验分析和精度评定;(5)针对MODIS干旱遥感监测模型的不足,进行了云参数法干旱遥感监测模型研究,并结合实测数据进行了方法间与方法内的定量精度评定,同时针对国内近两年的较大型干旱事件进行了监测效果定性分析;(6)在对长时间序列云参数法监测结果分析的基础上,进行云参数背景值指标选择,对感兴趣区进行了云参数背景构建研究,结合实测数据进行了相关的实验分析。
     本文的创新之处体现在:
     (1)根据晴空地物的辐射光谱曲线,建立了晴空亮度温度及反射率计算公式,同时结合地表覆盖类型,确定了晴空亮度温度及反射率动态变化范围,提出了自适应云检测方法;
     (2)针对MODIS干旱遥感监测模型的不足,建立了连续模型,并对云参数进行时间、空间尺度修『正,构建了云参数干旱遥感监测模型,实验及业务证明该模型能够有效的进行干旱遥感监测;
     (3)在对长时间序列云参数法监测结果进行分析的基础上,分析了该模型在中国地区的监测效果,通过指标选择,提出了基于序列监测结果的云参数背景场构建方法,实验证明云参数背景场构建有利于提高模型的监测精度。
     通过本文的研究,可以得到以下结论:
     (1)干旱的危害与国民生产生活、社会经济发展、国家粮食安全乃至国家政局稳定都有直接的关系,因此利用高科技技术进行干旱防灾减灾是和谐社会的重要组成部分;相比传统基于地面观测气象干旱监测方法,基于遥感技术的干旱监测研究具有不可比拟的优势;
     (2)云参数干旱遥感监测模型的核心是三个云参数,因此云检测的精度直接影响着干旱监测结果的好坏。鉴于研究区域较大、持续时间较长,传统的固定阈值云检测方法难以满足精度要求,本文构建的自适应云检测方法分析了晴空亮度温度及反射率的变化规律,依据云在遥感影像中高反射率、低亮度温度的特性进行自适应云检测,实验结果表明该方法检测效果较好,可以作为云参数干旱遥感监测模型的信息源;
     (3)干旱是一个持续的过程,成灾范围一般呈片状,且干旱的发生不受时间和空间的限制。因此,实现大空间、长时间的干旱遥感监测一直是干旱监测领域的一个难点。本文针对这些问题建立的云参数法干旱遥感监测模型,是通过分析云与干旱的相关关系,构建相互独立的三个云参数,并从时间和空间尺度上进行了修正,提高了模型在空间、时间尺度上的适应性,同时利用具有高时间分辨率的国产静止气象卫星FY-2系列数据作为实验数据,实验结果表明该模型可以获取较高的干旱监测精度;
     (4)通过分析多年的干旱监测结果发现部分地区为监测盲区,为此本文结合多年监测结果和实测数据进行了云参数背景场构建研究,实验结果表明云参数背景场的构建有助于提高监测盲区的监测精度。但本文仅针对部分地区进行相关实验,云参数背景场的推广构建还有待于进一步研究。
Drought is the major natural disaster as well as one of the most severe meteorological disasters throughout the world. Aridity seriously threatens to do harm to national economic, social development and national production and life. With the rapid development of satellite remote sensing technology, which has the characteristics of high timeliness, wide space range, objectivity, accuracy, low-cost and so on, its application to drought monitoring becomes trends and hot spots. So far, many drought monitoring models based on the visible, near infrared, far infrared and microwave remote sensing technology have been presented at home and abroad. Although each method has its advantages, some problems still exist:(1) Firstly, as the methods, using vegetation index and surface temperature, which are supported by the data of visible, infrared data, have a strong dependence on land cover type, they are poor in temporal-spatial adaptability. In addition, for drought monitoring based on microwave remote sensing, no mature algorithm is available and no drought index has been built yet. (2) Another problem is the lack of forward-based drought monitoring model using remote sensing technology. The current models are basically inversion-type ones, which have the effect of latency, because they are built by the various drought-induced land surface phenomena and natural features objects responses. (3) In addition, it is the lack of time sequence data-based drought monitoring methods in the time and frequency domain. As the methods that currently exist are basically spatial monitoring methods and mainly for drought monitoring that is based on single remote sensing images. They do not give full play to the advantages of high temporal resolution remote sensing data. (4) Finally, there is a problem of the lack of large-scale space-time adaptive method for drought monitoring based on remote sensing, as the current drought monitoring studies are conducted for small areas, various methods are deficient in regional adaptability, coefficients of regional influence need to be established. Accordingly, their value of practical application and development are limited. For the above-mentioned problems, the proposition of a large-scale space-time adaptive forward-based drought monitoring method based on time-sequence remote sensing data has an important practical significance for drought disaster prevention and mitigation, sustainable development of national economy and society. This dissertation focus on the following content and work:(1) The status of domestic and foreign remote sensing drought monitoring were comprehensively summarized, followed by the analysis for the existing problems and deficiencies in the field. (2) A detailed and exact definition of drought was presented, following on which is a summary of formation and characteristics of drought and a analysis of the impact of drought, taken the drought condition in China into consideration. (3) Existing methods of remote sensing drought monitoring were classified in detail. Then following on a systematical summary of the drought monitoring methods is a comparative analysis of the advantages and disadvantages of each method in sub-categories. (4) Based on the analysis of parameters which affect solar radiation model, after the factors of reflectivity and brightness temperature in clear sky been extracted, with the combination of remote sensing spectral information, the two functions affected by these factors were specifically analyzed and the clear sky brightness temperature and reflectivity calculation formula with normal dynamic range was constructed in consideration of the impact of each factor. Consequently adaptive cloud detection method was built with correlate experimental analysis and accuracy evaluation. (5) Directing to the deficiency of MODIS remote sensing drought monitoring model, the research of remote sensing drought monitoring model of cloud parameter method was done intergrated with site data. In addition, the quantitative accuracy assessment was conducted among and within the methods, following on which was a qualitative analysis of monitoring results of nearly two-year comparative large domestic drought events. (6) Relying on the analysis of the monitoring results of cloud parameters method in the long time series and the selection of the indicators for background values of cloud parameter, the research on the construction of the ambient field of cloud parameters in monitoring blind area was done and related expereiments were conducted combined with the site data.
     This dissertation made innovations in the following there aspects:
     (1)Accorded to the radiation spectrum curve of surface features under clear sky, a clear sky brightness temperature and reflectivity formulas were established and the dynamic range of the clear sky brightness temperature and reflectivity was proposed with the consideration of land cover types. Accordingly, an adaptive method of cloud detection was presented.
     (2) Aiming at the deficiency of MODIS remote sensing drought monitoring model, a successive model was constructed, which was modified in time and space scales to build cloud parameters drought monitoring model that was effectively varified by the
     experiments and practical operation in remote sensing drought monitoring.
     (3) Based on the analysis of monitoring results of cloud parameters model in long
     time series, the method of establishment of ambient field of cloud parameters, using a
     selected indictor, was promoted in the interesting area which extracted from this
     model in China area. The experimental results demonstrate that the construction of
     background field for cloud parameters contributed to improve monitoring accuracy in
     monitoring blind area.
     According to the research of this dissertation, conclusions could be derived as
     follows:
     (1) There is a direct relationship between the damage of drought and the conditions
     such as national produce and life activity, social economic development, national food
     security and even national political stability, so drought disaster prevention and
     mitigation using high technology is an indispensable component of a harmonious
     society. Compared to traditional ground-based observation of the meteorological
     drought monitoring method, drought monitoring based on remote sensing technology
     has unparalleled advantages.
     (2) The results of cloud detection directly affects the accuracy of fruits from drought
     monitoring of cloud parameter model whose core is three cloud parameters. As for the
     large study area and long duration, the traditional cloud detection methods with fixed
     threshold could hardly meet the accuracy requirements. Howerver, an adaptive
     method of cloud detection included the analysis of the variation of brightness
     temperature and reflectance under clear sky and the consideration of clouds'
     characteristics of high reflectivity and low brightness temperature. And related
     experiment results demonstrated that this method was better, so that it could serve as a
     source of information for the cloud parameters drought monitoring model.
     (3) Drought, as a continuous process, whose occurrence is free from time and space
     constraints and whose general scope is flaky, is diffucult to be monitored using remote
     sensing technology in a large-space and long-running scale. In this paper, aiming at
     these problems, remote sensing drought monitoring model based on cloud parameter
     was built by analyzing the correlation between clouds and drought, structuring the
     three cloud parameters which are independent of each other and modifying the model
     from time and space scales to enhance its adaptability in time and spatial scales. The
     results of experiment which based on FY-2 series of data, high time resolution of the
     domestic geostationary meteorological satellite, showed that this model could get
     comparative high precision in drought monitoring.
     (4) For the interseting area that abtained from the analysis of years of drought
     monitoring of cloud parameter model in some region, the studies on the construction
     of ambient field of cloud parameters were done combined with real data and the fruits
     of years of drought monitoring. The experimental results demonstrated that the
     construction of background field for cloud parameters contributed to improve
     monitoring accuracy in monitoring blind area. However, in this paper, related
     experiments were only carried out in subregion, so that the promotion of background
     cloud parameters remains to be further studied.
     Keywords:drought monitoring, FY-2C/D/E, dynamic threshold, cloud detecting,
     cloud parameter, temporal and spatial modification, background field
引文
Anderson L. O., Malhi Y., Aragao L. E. O. C., Ladle R., Arai E., Barbier N., Phillips O. Remote sensing detection of droughts in Amazonian forest canopies. NEW PHYTOLOGIST,2010, 187(3):733-750.
    Andrews M. D., Ardanuy P. E. Ageneralized scenario for cloud detection using MODIS. Geoscience and Remote Sensing Symposium,1990,1487-1489.
    Bailey R. G. Ecosystem geography.1996, New York:Springer.
    Bajgiran P. R., Darvishsefat A. A., Khalili A., Makhdoum M. F. Using AVHRR-based vegetation indices for drought monitoring in the Northwest of Iran. JOURNAL OF ARID ENVIRONMENTS, 2008,72(6):1086-1096.
    Bartsch A., Balzter H., George C. The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites. ENVIRONMENTAL RESEARCH LETTERS, 2009,4(4):1-9.
    Bawa K., Rose J., Ganeshaiah K. N., Barve N., Kiran M. C., Umashaanker R. Assessing biodiversity from space:an example from the Western Ghats. India. Conservation Ecology,2002, 6(2):7.
    Becker F., Li Z. L. Towards a local split window method over land surfaces. Interantional Journal of Remote Sensing,1990,11(3):369-393.
    Boegh E., Soegaard H., Hanan N., Kabat P., Lesch L. A remote sensing study of the NDVI-LST relationship and the transpiration from sparse vegetation in the Sahel based on high-resolution satellite data. Remote Sensing of Environment,1999,69(-):224-240.
    Bolten J. D., Crow W. T., Zhan X. W., Jackson T. J., Reynolds C. A. Evaluating the utility of remotely sensed soil moisture retrievals for operational agricultural drought monitoring. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2010,3(1):57-66.
    Bowers S. A., Hanks R. J. Reflection of radiant energy from soils. Soil Science,1965, 100(2):130-138.
    Campbell G. S. An introduction to environmental biophysics.1977, Heidelberg:Springer.
    Campbell G. S., Norman J. M. An introduction to environmental biophysics,2nd edn.1998, Heidelberg:Springer.
    Campbell J. B. Introduction to remote sensing.2002, New York:The Guildford Press.
    Carlson T. N.. Gillies R. R., Perry E. M. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sensing of Reviews,1994,9(-):161-173.
    Chen P. Y., Srinivasan R., Fedosejevs G. An automated cloud detection method for daily NOAA-14 AVHRR data for texas, USA. International Journal of Remote Sensing,2002, 23(15):2939-2950.
    Choi H., Bindschadler R. Cloud detection in Landsat imagery of ice sheets using shadow matching technique and automatic normalized difference snow index threshold value decision. Remote Sensing of Environment,2004,91(2):237-242.
    Edward E. A. Fundamentals of solar energy conversion.1983, Addison-Wesley Publishing Company.
    Friedl M. A., Davis F. W. Sourse of variation in radiometric surface temperature over a tallgrass prairie. Remote Sensing of Environment,1994,48(-):1-17.
    Geiger R. The climate near the ground.1965, Harvard:Harvard University Press.
    Geiger R., Aron R. H., Todhunter P. The climate near the ground,6th edn.2003, Langham:Rowman & Littlefield Publishers.
    Ghulam A.. Qin Q. M., Teyip T. Modified perpendicular drought index (MPDI):a real-time drought monitoring method. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING,2007,62(2):150-164.
    Goodman A. H., Henderson S. A. Cloud detection and analysis: a review of recent progress. Atmospheric Research,1988,21(-):203-228.
    Gutierrez M., Johnson E. Temporal variations of natural soil salinity in an arid environment using satellite images. JOURNAL OF SOUTH AMERICAN EARTH SCIENCES,2010,30(1):46-57.
    Han P., Wang P. X., Zhang S. Y., Zhu D. H. Drought forecasting based on the remote sensing data using ARIMA models. Mathematical and Computer Modelling,2010,51 (11-12):1398-1403.
    IPCC. Hydrology and Water Resources, Working Group II:Impacts, Adaptation and Vulnerability. 2001, Climate Change 2001:Third Assessment Report, UNEP, WMO.
    Jain S. K., Keshri R., Goswami A., Sarkar A. Application of meteorological and vegetation indices for evaluation of drought impact:a case study for Rajasthan. India. NATURAL HAZARDS.2010, 54(3):643-656.
    John A. D.. William A. B. Solar engineering of thermal processes. John Wiley & Sons. Inc,1980, 62-98.
    Kahle A. B. A simple thermal model of earth's surface for geologic mapping by remote sensing. Journal of Geophysical Research.1977.82(B11):1678-1680.
    Karner O., Digrolamo L. An automatic cloud detection over ocean. International Journal of Remote Sensing,2001,22(15):3047-3052.
    Kogan F. N. Remote sensing of weather impacts on vegetation in non-homogeneous areas. Interantional Journal of Remote Sensing,1990,11(8):1405-1419.
    Kogan F. N. Application of vegetation index and brightness temperature for dought detection. Advances in Space Research,1995,15(11):91-100.
    Krishna T. M., Ravikumar G., Krishnaveni M. Remote sensing based agricultural drought assessment in palar basin of Tamil Nadu State, India. Journal of Indian Society of Remote Sensing, 2009,37(1):9-20.
    Labed J., Stoll M. P. Spatial variability of land surface emissivity in the thermal infrared band: spectral signature and effective surface temperature. Remote Sensing of Environment,1991, 38(-):1-17.
    Lacava T., Dileo E. V., Pergola N., Tramutoli V. Space-time soil wetness variations monitoring by a multi-temporal microwave satellite records analysis. Physics and Chemistry of the Earth,2006, 31(-):1274-1283.
    Mand P., Hallik L., Penuelas J., al. e. Responses of the reflectance indices PRI and NDVI to experimental warming and drought in European shrublands along a north-south climatic gradient. REMOTE SENSING OF ENVIRONMENT,2010,114(3):626-636.
    Martin H., Tomas K. Surface temperature change of spruce forest as a result of bark beetle attack: remote sensing and GIS approach. European journal of forest research,2008,127(-):327-336.
    McCune B., Keon D. Equations for potential annual direct incident radiation and heat load. Journal of Vegetation Science,2002,13(4):603-606.
    Mendicino G., Senatore A., Versace P. A Groundwater Resource Index (GRI) for drought monitoring and forecasting in a mediterranean climate. JOURNAL OF HYDROLOGY,2008, 357(3-4):282-302.
    Mohanty B. P., Skaggs T. H. Spatio-temporal evolution and time-stable characteristics of soil moisture within remote sensing footprints with varying soil, slope, and vegetation. Remote Sensing of Environment,2001,24(9-10):1051-1067.
    Murtagh F., Barreto D., Marcello J. Decision boundaris using bayes factors:the case of cloud masks. IEEE Transactions On Geoscience and Remote Sensing,2003,41(12):2952-2958.
    Nemani R. R., Running S. W. Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. Journal of Application Meteorlogical,1989,28(4):276-284.
    Njoku E. G., O'Neill P. E. Multi-frequency microwave radiometer measurement of soil moisture. IEEE Transaction Geosicence Remote Sensing,1982.20(4):468-475.
    Palmer W. C. Meteorological drought US. Weather Bureau Research Paper,1965,45(-):58.
    Paltrige G. W., Platt C. M. R. Radiative Processes in Meteorology and Climatology.1976, New York:Elsevier Scientific Publication Company.
    Pierce K. B., jun.Lookingbill T., Urban D. A simple method for estimating potential relative radiation (PRR) for landscape-scale vegetation analysis. Landscape Ecology,2005,20(2):137-147.
    Price J. C. Thermal inertia mapping: a new view of the earth. Journal of Geophysical Research, 1997,82(C18):2582-2590.
    Reshmidevi T. V., Jana R., Eldho T. I. Geospatial estimation of soil moisture in rain-fed paddy fields using SCS-CN-based model. AGRICULTURAL WATER MANAGEMENT,2008, 95(4):447-457.
    Rhee J., Im J., Carbone G. J. Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sensing of Environment,2010,114(12):2875-2887.
    Rojas O., Vrieling A., Rembold F. Assessing drought probability for agricultural areas in Africa with coarse resolution remote sensing imagery. Remote Sensing of Environment,2011, 115(1):343-352.
    Rossow W. B., Garder L. C., Lacis A. A. Global, seasonal cloud variations from satellite radiance measurements. Part I:Sensitivity of analysis. Journal of Climate,1989,2(-):419-462.
    Rubio E., Caselles V., Badenas C. Emissivity measurements of several soils and vegetation types in the 8-14μm wave band:analysis of two field methods. Remote sensing of Environment,1997, 59(3):490-521.
    Salisbury J. W.. D'Aria D. M. Emissivity of terrestrial materials in the 8-14mm atmospheric window. Remote Sensing of Environment,1992.42(2):83-106.
    Samanta A., Ganguly S., Myneni R. B. MODIS Enhanced Vegetation Index data do not show greening of Amazon forests during the 2005 drought. NEW PHYTOLOGIST,2010,189(1):11-15.
    Sandolt I., Rasmussen K., Andersen J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment,2002,79(2-3):213-224.
    Saunders R. W., Kriebel K. T. An improved method for detecting clear sky and cloudy radiances from AVHRR data. International Journal of Remote Sensing,1988,9(1):123-150.
    Schmugge T. J., Gloersen P., Wilheit T. Remote sensing of soil moisture with microwave radiometers. JGR,1974,79(2):317-323.
    Shaban A. Indicators and Aspects of Hydrological Drought in Lebanon. WATER RESOURCES MANAGEMENT,2009,23(10):1875-1891.
    Simpsona J. J., Gobata J. I. Improved cloud detection in GOES scenes over the oceans. Remote Sensing of Environment,1995,52(2):79-94.
    Sobrino J. A., Raissouni N., Li Z. L. A comparative study of land surface emissivity retrieval from NOAA data. Remote Sensing of Environment,2001,75(-):256-266.
    Stowe L. L., Davis P. A., Mcclain P. E. Scientific basis and initial evaluation of the CLAVR-1 global clear/cloud classification algorithm for advanced very high resolution radiometer. Journal of Atmospheric and Oceanic Technology,1999,16(6):656-681.
    Stowe L. L., McClain E. P., Carey R. Global distribution of cloud cover derived from NOAA/AVHRR operational satellite data. Advances of Space Research,1991,11(3):51-54.
    Stowe L. L., Vemury S. K... Rao A. V. AVHRR clear sky radiation data sets at NOAA/NESDIS. Advances of Space Research.1994,14(1):113-116.
    Summerell G., Shoemark V., Grant S., Walker J. P. Using Passive Microwave Response to Soil Moisture Change for Soil Mapping:A Case Study for the Livingstone Creek Catchment. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,2009,6(4):649-652.
    Tadesse T., Wilhite D. A., Harms S. K., Hayes M. J., Goddard S. Drought Monitoring Using Data Mining Techniques:A Case Study for Nebraska, USA. Natural Hazards,2004,33(1):137-159.
    Tansey M. A. Investigating the potential for soil moisture and surface roughness monitoring in dry lands using ERS SAR data. International Journal of Remote Sensing,2001,22(11):2129-2149.
    Ulaby F. T., Aslam A., Dobson M. C. Effect of vegetation cover on the radar sensitivity to soil mositure. IEEE Transaction Geo-science Remote Sensing,1982,220(4):476-481.
    Verbesselt.J., Lhermitte S., Coppin P., Eklundh L.. Jonsson P. Biophysical drought metrics extraction by time series analysis of SPOT Vegetation data. IEEE International Symposium on Geoscience and Remote Sensing,2004,3(-):2062-2065.
    Vicente-Serrano S. M. Evaluating the impact of drought using remote sensing in a Mediterranean, semi-arid region. NATURAL HAZARDS,2007,40(1):173-208.
    Vicente-serrano S. M., Cuadrat-prats J. M., Romo A. Early prediction of crop production using drought indices at different time-scales and remote sensing data: applcation in the Ebro Valley(north-east Spain). International journal of remote sensing,2006,27(3):511-518.
    Volcani A., Karnieli A., Svoray T. The use of remote sensing and GIS for spatio-temporal analysis of the physiological state of a semi-arid forest with respect to drought years. Forest Ecology and Management,2005,215(1-3):239-250.
    Wang J. P., Bughrara S. S. Monitoring of gene expression profiles and identification of candidate genes involved in drought responses in Festuca mairei. Molecular Genetics and Genomics,2007, 277(5):571-587.
    Wang L. L., Qu J. J. NMDI:A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophysical Research Letters,2007,34(20):
    Watson K., Rowen L. C, Offield T. W. Application of themal modeling in the geologic interpretation of IR images. Remote Sensing of Environment,1971,3(2017-2041.
    Weimann A. Soil moisture with ERS-1 SAR data in the East German loess soil area. International of Journal of Remote Sensing,1998,19(2):237-243.
    WMO. International Meteorological Vocabulary (2nd).1992, WMO.
    Wylie D. P., Menzel W. P., Woolf H. M., Strabala K. I. Four years of global cirrus cloud statistics using HIRS. Journal of Climate,1994,7(-):1972-1986.
    Yirdaw S. Z., Snelgrove K. R., Agboma C. O. GRACE satellite observations of terrestrial moisture changes for drought characterization in the Canadian Prairie. JOURNAL OF HYDROLOGY, 2008,356(1-2):84-92.
    Yoshino M. M. Climate in a small area: an introduction to local meteorology.1975, Tokyo:University of Tokyo Press.
    Zeng X. B., Robert E. D. Derivation and evalustion of global 1-km fractional vegetation cover data for land modeling. Journal of Applied Meteorology,2000,39(6):826-839.
    Zhao S. H., Yang Y. H., Qiu G. Y., Qin Q. M, Yao Y. J., Xiong Y. J.. Li C. Q. Remote detection of bare soil moisture using a surface-temperature-based soil evaporation transfer coefficient. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION,2010,12(5):351-358.
    包书新.基于MODIS数据的云识别研究.2008,吉林:吉林大学硕士论文.
    蔡斌,陆文杰,郑新江.气象卫星条件植被指数监测土壤状况.国土资源遥感.1995,26(4):45—50.
    陈海山,朱伟军,邓自旺,李春.江苏冬季气温的年代际变化及其背景场分析.南京气象学院学报,2004,27(4):433.442.
    陈俊蕙.MODIS数据云检测算法研究.中国农业大学学报农业与生命科学版,2007,
    陈乾.用植被指数监测干旱并估计冬麦产量.遥感技术与应用,1994,9(3):12.18.
    陈维英,肖乾广,盛永伟.距平植被指数在1992年特大干旱监测中的应用.环境遥感,1994,9(2):106—112.
    陈伟,周红妹,袁志康.基于气象卫星分形纹理的云雾分离研究.自然灾害学报,2003,12(2):133—139.
    邓振镛,倾继祖,黄蕾诺.干旱对农业危害的特点及其减灾技术.安徽农业科学,2009,37(32):16177—16]79.
    董国权,李正直.干燥裸地红外辐射统计特性:发射率起伏的影响.红外与毫米波学报,1993,12(6):459—463.
    董新奕.风云二号C卫星数据的云检测与云分类算法研究.2008,武汉:武汉大学硕士论文.
    樊倩.基于FY-2C时序数据的干旱监测研究.2010,武汉:武汉大学硕士论文.
    高磊,覃志豪,卢丽萍.基于植被指数和地表温度特征空间的农业干旱监测模型研究综述.国土资源遥感,2007,3(1。7.
    高懋芳,覃志豪,徐斌.用MODIS数据反演地表温度的基本参数估计方法.干旱区研究,2007,24(1):1]3-119.
    郭虎,王瑛.王芳.旱情灾情监测中的遥感应用综述.遥感科学与应用,2008,23(1):111—116.
    郭茜,李国春.用表观热惯量计算土壤含水量探讨.中国农业气象,2005,26(4):215—219.
    后尚,田瑞,闫素英.呼和浩特地区太阳辐射模型分析.可再生能源,2008.26(2):79—82.
    胡艳.MODIS干旱监测模型在湖北样区的实现及稳定性分析.2005,武汉:武汉大学硕士论文.
    李德仁.遥感用于自然灾害监测预警大有作为.科技导报(北京),2007,25(6):1.
    李晶.内蒙古自治区干旱灾害时空分布规律及预测研究.2010,呼和浩特:内蒙古农业大学硕士毕业论文.
    李喆,谭德宝,秦其明,崔远来.基于特征空间的遥感干旱监测方法综述.长江科学院院报,2010,27(1):37-41.
    刘良明,胡艳,鄢俊洁,谭德宝.MODIS干旱监测模型各参数权值分析.武汉大学学报信息科学版,2005,30(2):139-142.
    刘良明,向大享,文雄飞,杨娜.云参数法干旱遥感监测理论与方法.环境遥感学术会议自然灾害遥感专题研讨会论文集,2007,39-44.
    刘良明,向大享,文雄飞,杨娜.云参数法干旱遥感监测模型的完善.武大学报信息科学版,2009,2(3):207-209.
    刘良明.基于EOS MODIS数据的遥感干旱预警模型研究.2004,武汉:武汉大学博士论文.
    刘万侠,王娟,刘凯.植被覆盖地表主动微波遥感反演土壤水分算法研究.热带地理,2007,27(5):411—420.
    刘星文,冯永进.应用热惯量编制土壤水分图及土壤水分探测效果.土壤学报,1987,24(3):272-281.
    刘颖秋,宋建军,张庆杰.干旱灾害对我国社会经济影响研究.2005,北京:中国水利水电出版社.
    刘志刚,李元祥,黄峰.基于动态聚类的MODIS云检测算法.遥感信息,2007,4(.):33—35.
    路京选,曲伟,付俊娥.国内外干旱遥感监测技术发展动态综述.中国水利水电科学研究院学报,2009,7(2):265-271.
    马乃霭.遥感信息模型.1997,北京:北京大学出版社.
    毛克彪.基于热红外和微波数据的地表温度和土壤水分反演算法研究.2007,北京:中国农业科学技术出版社.
    彭珂珊.干旱对西部地区的危害及防治对策.中国农业资源与区划,2002,23(1):26-30.
    齐述华,王长耀,牛铮.利用温度植被旱情指数(TVDI)进行全国旱情监测研究.遥感学报,2003。7(5):420-427.
    齐述华.干旱监测遥感模型和中国干旱时空分析.2004.北京:中国科学院遥感应用研究所博士论文.
    乔平林.张继贤,王翠华.应用AMSR-E微波遥感数据进行土壤湿度反演.中国矿业大学学报,2007.36(1):262—265.
    秦大河.干旱.2003.北京:气象出版社.
    邱国全,夏艳君,杨鸿毅.晴天太阳辐射模型的优化计算.太阳能学报,2001,22(4):456—459.
    邱玉宝,施建成,蒋玲梅.AMSR-E被动微波土壤水分与降水率时空相关性分析研究.北京师范大学学报(自然科学版),2007,43(3):350-355.
    沈志宝,左洪超.青藏高原地面反射率变化的研究.高原气象,1993,12(3):294—301.
    施建成,李震,李新武.目标分解技术在植被覆盖条件下土壤水分计算中的应用.遥感学报,2002,6(6):412-415.
    宋爱国,王福然.北京地区晴天太阳辐射模型初探.太阳能学报,1993,14(3):251.255.
    宋小宁,赵英时.MODIS图像的云检测及分析.中国图像图形学报A版,2003,8(9):1079—1083.
    孙家抦.遥感原理与应用.2003,武汉:武汉大学出版社.
    孙治安,翁笃鸣.我国地表反射率的气候计算及其时空分布特征.南京气象学院学报,1987,10(2):189-200.
    覃志豪,李文娟,徐斌,张万昌.利用Landsat TM6反演地表温度所需地表辐射率参数的估计方法.海洋科学进展,2004,22(增刊):129—137.
    谭德宝,刘良明,鄢俊洁.MODIS数据的干旱监测模型研究.长江科学院院报,2004,21(3):11-15.
    王鹏新,龚健雅,李小文.条件植被温度指数及其在干旱监测中的应用.武汉大学学报信息科学版,2001,26(5):412-418.
    王鹏新,孙威.基于植被指数和地表温度的干旱监测方法的对比分析.北京师范大学学报自然科学版,2007,43(3):319-323.
    王鹏新,孙威.条件植被温度指数干旱监测方法的研究与应用.科技导报,2006,24(4):56-58.
    王素萍,冯建英.2009年4.6月全国干旱状况及其影响.干旱气象,2009,27(2):193—196.
    王燕,吕达仁.GMS5反演中国几类典型下垫面晴空地表温度的日变化及季节变化.气象学报,2005,63(6):957.968.
    王志伟,瞿盘茂.中国北方近50年干旱变化特征.地理学报,2003,58(S1):62-68.
    翁笃鸣.中国辐射气候.1997,北京:气象出版社.
    吴艾笙,钟强.黑河实验区的地表反射率与植被指数.大气科学,1993,17(2):155-162.
    肖乾广,陈维英.气象卫星监测干旱灾害的研究.卫星气象中心技术报告,1995,9509.
    辛景峰.中国科学院遥感应用研究所博士后出站报告.2003.北京:中国科学院遥感应用研究所.
    徐芳.AMSR-E数据监测干旱的方法研究及其在河北省干旱监测中的应用.2008,南京:南京信息工程大学硕士学位论文.
    徐娜.干旱的危害.中国减灾,2004,10(1):26.
    许国鹏,李仁东,梁守真.基于改进型温度植被干旱指数的旱情监测研究.世界科技研究和发展,2006,28(6):51—55.
    杨娜.基于云参数干旱遥感监测模型与集合卡尔曼滤波的土壤湿度同化研究.2010,武汉:武汉大学博士论文.
    杨绍锷,闫娜娜,吴炳方.农业干旱遥感监测研究进展.遥感信息,2010,1(1):103—109.
    杨世琦,高阳华,易佳.干旱遥感监测方法研究进展.高原山地气象研究,2010,130(2):75—78.
    杨昕.基于DEM的地面光热资源模拟与农业应用.2004,西安:西北大学硕士论文.
    余凡.FY-2C数据在干旱监测中的应用研究.2007,武汉:武汉大学硕士论文.
    袁苇,李宗谦,刘宁.基于双谱模型的被动微波遥感土壤湿度反演.电波科学学报,2004,19(1):2-19.
    袁文平,周广胜.干旱指标的理论分析与研究展望.地球科学发展,2004,19(6):982-991.
    张春桂,陈惠,张星,潘卫华,林晶.基于遥感参数特征空间的福建省干旱监测.自然灾害学报,2009,18(6):146—153.
    张家团,屈艳萍.近30年来中国干旱灾害演变规律及抗旱减灾对策探讨.中国防汛抗旱,2008,5(-):47-51.
    张景书.干旱的定义与逻辑分析.干旱地区农业研究,1993,11(3):972100.
    张强,高歌.我国近50年旱涝灾害时空变化及监测预警服务.科技导报,2004,7(-):21-24.
    张强,潘学标.干旱.2009,北京:气象出版社.
    张仁华.改进的热惯量模式及遥感土壤水分.地理研究,1990,9(2):101-110.
    张如意,王玉花.FY-2C星辐射定标及其结果分析.上海航天,2005,22(增刊):31—35.
    张书余.干旱气象学.2008,北京:气象出版社.
    张文江,陆其峰,高志强,彭建.基于水分距平指数的2006年四川盆地东部特大干旱遥感响 应分析.中国科学D辑:地球科学,2008,38(2):251-260.
    张学艺,张晓煜,李剑萍.舒志亮.我国干旱遥感监测技术方法研究进展.气象科技.2007,35(4):574-578.
    张钟军.覆盖植被的地表微波辐射模型研究.2004,北京:北京师范大学.
    章庆辰,高素华.我国东北、西北地区大于不同界限温度期间的积温与太阳总辐射、日照时数的相关分析.中央气象局气象科学研究院,1982,21-22.
    赵广敏,李晓燕,李宝毅.基于地表温度和植被指数特征空间的农业干旱遥感监测方法研究综述.水土保持研究,2010,17(5):245-250.
    http://www.weather.com.cn/static/html/article/20090630/37016_1.shtml
    http://www.weather.com.cn/zt/kpzt/943673.shtml
    http://www.weather.com.cn/science/zhfy/gh/jdal/02/65195.shtml
    http://news.xinhuanet.com/weather/2008-02/29/content_7691681.htm
    http://news.hexun.com/2011-02-16/127344876.html
    http://www.cpc.ncep.noaa.gov/cgi-bin/gl_Soil-Moisture-Monthly.sh

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700