用户名: 密码: 验证码:
淮河水系凤台至淮南主城区段水动力学及水质数学模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淮河水系凤台至淮南主城区段位于淮河中游,地处安徽省淮南市。淮河自西向东横穿淮南市,在凤台县附近受八公山的阻隔,河道曲折,受自然因素和人工开挖河渠的双重影响,具有二道河、河心洲(上下六坊堤)等地形特点。淮河作为淮南市重要的水上枢纽,是工农业用水、居民饮用水源地,与淮南市的经济发展、百姓的生活息息相关。但是由于气候、地理、历史等方面的原因,淮河中游河段极易发生洪水和干旱,且受人类工农业活动的影响,水质状况也不容乐观,部分监测断面水质甚至达到国家V类水。因此有必要对目标河段的水环境状况展开深入研究,以便全面了解污染物在时间和空间上的影响深度和广度。
     本文以淮河水系凤台至淮南主城区为目标河段,上游起始断面为淮南市凤台县鲁台子水文站,下游终止断面设为淮南市主城区田家庵区田家庵断面,研究对淮河中游大断面地形资料,部分年份的水文水质观测资料进行了数据统计分析。利用SMS(地表水模拟系统)中二维水动力学模型RMA2和物质输运模型RMA4,对目标河段特定年份丰水期和枯水期的水流水质状况进行了模拟计算。通过本论文的研究,对淮河水系凤台至淮南主城区段水动力学扩散特征、水质要素的扩散输移规律有了一定的认识,具体包括以下几个方面:
     (1)以特定洪水年2003年的水文资料对目标河段进行糙率率定,率定结果为n=0.02。通过对2004年洪水期和2009年枯水期水位、流速的模拟值和观测值比较,成功模拟了水位和流速的变化过程。相对误差δ、平均误差η、均方根误差σ较小。误差最小二乘法分析显示相关性系数R2平均在0.95以上,模型精确度较高,为污染物输运计算提供了可信的动力场。
     (2)分汊流水动力学模拟计算得出凤台大桥附近分汉口处南北汊分流比约为4:1,南汊分出的二级支汉南北分流比为约3:1,交汇口处南北汊分流比约3:2。分汊流整体水流流场模拟显示分汉型河道二道河以上河心洲(上六坊堤)分隔的南汊较北汊具有较好的通航条件,二道河以下河心洲(下六坊堤)分隔的南北汊通航能力较均衡。通过对上游不同流量级下交汇口处的流场模拟展示了交汇口处有河心滩出露,且为不稳定滩地,并分析了滩地形成的原因及其演化趋势。
     (3)水质模拟对目标河段接纳污染源进行了概化处理,对各排污口的排污量和排污浓度采取年平均统计分析方法,以丰水期2004年7月水质资料为基础,对鲁台子断面、平圩大桥断面、田家庵断面污染指标氨氮(NH3-N)、高锰酸钾指数(CODMn)、重铬酸钾指数(CODcr)进行了计算,模拟值和实测值吻合度较好,研究表明丰水期污染物径流输入较大,污染物高浓度区随着颍河向鲁台子推移,各下游断面污染物浓度与颍河排污相关率高。并以氨氮(NH3-N)为例,展示了特定时刻点污染源的时空分布特征。通过对分汊河道六个特征点的污染物动态变化过程计算,显示了丰水期受颍河口动态排污的影响,分汊型河道各汉分污整体均衡,局部存在一定差异,但差异规律不显著。
     (4)根据1956-2000年的实测流量资料,推求出鲁台子水文站95%、75%保证率下的设计流量,对水动力要素进行预测,结合目标河段沿淮排污口2003年全年排污资料,对凤台大桥断面、平圩大桥断面、田家庵断面的污染指标氨氮(NH3-N)和化学需氧量(CODCr)进行预测,模拟结果分析表明:小流量下(枯水期),当上游来水为《地表水环境质量标准》Ⅲ类水浓度时,水质稳定后下游各特征断面污染指标浓度严重超标。其中凤台排污口排污对下游断面水质“贡献率”较大,尤其对于分汊型河道交汇口不远处的平圩大桥断面(淮南饮用水源区的代表断面),受到上游污水和凤台排污的双重影响,污染物产生聚集效应,难以扩散推移。为体现污染源在河道中分布的时空变化,研究中以P=75%来水条件为例,模拟了不同时刻点CODCr在河道中的扩散状态,得出污染源排污强度和上游来水的水动力条件为制约下游水质的主要因素。
Fengtai to Huainan Urban Section of Huaihe River midstream is located in Huainan city of Anhui province. It flows through Huainan city from the west to the east.Because of the double influence of Bagongshan Mountain and artificial excavation,It is a typical braided channel which is composed of Erdaohe and river island(two flood-control dykes divided by Erdaohe).As the water translation, industrial-agricultural water and drinking water,it plays an irreplaceable role in economy and life.However,Owing to the influence of climate,geography and history, Flood and drought occur frequently in the area.Furthmore, under effects of human activities of industry and agriculture, water quality is not optimistic.Water quality of some monitoring sections is classified to V.Therefore,It is necessary to make a deep study on the water environment in this area so as to comprehensively understand the influence depth and rreadth imposed by pollutant, both spatially and temporally.
     The paper takes Fengtai to Huainan Urban Section as target river,Lutaizi hydrological station and Tianjia'an as the initial and final section. Based on a comprehensive analysis of the history terrain, hydrological and water quality measurement, A two-dimensional hydrodynamic and water quality mumercial model, RMA2and RMA4in SMS(Surface Water Modeling System),are applied to simulation the water flow and water quality in the high water period and low water period of specific years. Through reseach in this paper,The character of hydrodynamic and convective-diffusion of discharge pollutants are understood as follows:
     (1) Based on the hydrological data in2003, a specific torrent year,Calibration and validation of roughness are developed in the area,the result of calibration is n=0.02, Through comparison between simulation value and observed value of water level and flow velocity in high water period of2004and low water period of2009,the process of water level and flow velocity is simulated smoothly.Relative error8, mean error η and root-mean-square error σ can satisfy computational precision. Error analysis of the least square method shows that correlation coefficient R2is above0.95in average.The model provides an accurate hydrodynamic field for the calculation of pollutant diffusion-transportation.
     (2) The calibration results of the bitfurcated flow show that flow diversion ratio of South-North-Branch bifurcation near Fengtai Bridge is about4:1,south and north flow diversion ratio of the secondary branch sepatated from south branch is about3:1. flow diversion ratio of South-North-Passage in junction is about3:2.Tributary whole flow field simulation shows that south branch has better navigation condition than north branch above Erdaohe river.Downstream of Erdaohe river, South-North-Branch both have better navigation condition. Flow field analysis of the junction shows there are river island appearing in intersection, exactly unstable bottomland,then expatiates the reason and evolution trends of bottomland formation.
     (3) Water quality simulation conducts generalization on pollution source of the target stream.An annual average method is applied to calculate discharge capacity and concentration. Based on water quality data in July2004,the water quality model simulates the concentration curve of NH3-N、CODmn、CODCr of Lutaizi section,Pingwei bridge section and Tianjia'an section.The simulated data and measured data show good agreements. Study proves that the runoff input of wet season is rather large and the contaminant concentration of some sections is mainly influenced by Yinghe river.Then take NH3-N for example, study shows spatial and temporal distribution of pollution source in specific moments. Calculation on pollutant dynamic distribution of six feature points in the braided river shows that concentration distribution of each branch is balanced on the whole and exists some difference locally,but the differences are not obvious under the impact of the unsteady flow and dynamic pollution discharge.
     (4) Based on the flow data between1956to2000,desigh flows of Lutaizi hydrologic station under assurance rate of95%and75%are researched,the velocity fields are forecasted.Combining annual pollution discharge data of drain outlet in2003, NH3-N and CODCr concentration of Fengtai bridge section,Pingwei bridge section and Tianjia'an section are forecasted.The result shows when the water quality of Lutaizi section is classified to Ⅲ, the pollutant concentration of each section in downstream exceeds the standard greatly in low water period. Pollution discharge of Fengtai bridge has a rather large influence on water quality of each section in downstream, especially on Pingwei Bridge section(typical section of drinking water source area in Huainan).Due to the double influence of upstream drainage and pollution discharge of Fengtai bridge,the pollutants in the environment are tend to accumulate.In order to reflect temporal and spatial variation of pollution discharge,in this study,take P=75%for example,the paper simulates CODCr distribution at different moments,and concludes that discharge intensity of pollution source and hydrodynamic condition of upstream are the major restriction factors to the water quality of downstream.
引文
[1]王宝义.淮河流域水质预报系统规划与设计[D],中国科技大学学位论文,2004
    [2]贲鹏,倪晋.淮河蚌埠闸至老子山段水动力学数学模型研制及应用[J],江淮水利科技,2010(2):11-12
    [3]褚金庭.沙颍河流量和水质对淮河污染的影响[J],水资源保护,2001,65(3):4-7
    [4]李云生,刘伟江,吴悦颖等.美国水质模型研究进展综述[J],水利水电技术,2006(2),68-73
    [5]王福军编著.计算流体动力学分析[M],清华大学出版社,2004
    [6]Triart G D.Finite difference scheme for the numerical solution of fluid flow and heat teansfer problems on non-staggered grids[J].Numerical Heat Transfer,part B,1990,17(1):43-62
    [7]朱伯芳.有限单元法原理与应用(第二版)[M],中国水利水电出版社,1998
    [8]Lu Y J,Zuo L Q,Shao X J,et al.A 2D mathematical model for sediment transrort by waves and tidal currents.China OceanEngineering[J],2005,19 (4):571-586
    [9]Rodi W.Turbulent models and their application in hydraulics-a state of the art review[M].IAHR Publication,Delf,the Netherlands,1980
    [10]Demuren A O,Rodi W.Side discharge in open channel:mathematic model[J].Journal of Hydraulic Engineering,1983,109(12):1707-1723
    [11]Demuren A O.A numerical model for flow in meandering channels with natural bed topography[J],Water Resources Researth,1993,19(4):1269-1277
    [12]陈景仁著.湍流模型及有限分析法[M].上海:上海交通大学出版社,1989
    [13]Lasscson R E,Stoker J J,Troesch B A.Numerical Solution of flood perdiction and river regulation problems(Ohio-Missippi floods)[J],1954
    [14]Streeter H W Phelps E B.A study of the pollution and natural purification of the Ohio river[J]. Public Health Bulletin No.146, Washington D.C.,1925
    [15]Demuren A O and Rodi W.Calculation of flow and pollutant dispersion in meandering channels,Joural of Fluid Mechanics[J],1985,172(11):65-72
    [16]Jian Y,McCorquodate J A.Depth-averaged hydrodynamic model in curvilinear collocated grid.Journal of Hydraulic Engneering[J],1997,123 (5):380-388
    [17]Sladkvich M.Simulation of transport phenomena in shallow aquatic environment.Journal of Hydraulic Engineering[J],2000,126(2):123-136
    [18]Zhu T T.Water quality model modeling of Deep Hollow Lake using CCHE2D[C].World Water & Environmental Resources Congress 2003,June 23-26,Philadelphia
    [19]Nils Reidar B.Olsen,Richard D.Hedger,George.Glen.3D numerical modeling of microcystis distribution in water reservoir[J].Journal of Environmental Engineering,2000,126(10):948-953
    [20]叶守权.水库水环境模拟预测与评价[M].北京:中国水利水电出版社,1998.
    [21]雒文生,宋星原.用耦合模型进行水质随机模拟研究[J].水利学报,1995,(3):12-20.
    [22]庄巍,逢勇,吕俊.河流二维水质模型与地理信息系统的集成研究[J],水利学报,2007(增刊),552-558
    [23]徐祖信,尹海龙.黄浦江二维水质数学模型研究[J],同济大学学报,2003,18(3):261-265
    [24]茅泽育,赵雪峰,江春波.感潮河段盐水入侵的河口水质模型[J],水利学报,2009,40(5):521-528
    [25]龚春生,姚琪,赵棣华等.浅水湖泊平面二维水流水质底泥污染模型研究[J],水科学进展,2006,17(4):496-501
    [26]金春久,王超,范晓娜等.松花江干流水质模型在流域水资源保护管理中的应用[J],水利学报,2010,41(1):87-92
    [27]王崇浩,曹文洪,张世奇.黄河口潮流与泥沙输移过程的数值研究[J],水利学报,2008,39(10):1256-1263
    [28]廖振良,徐祖信.苏州河中游水质模型的开发研究[J],上海环境科学,2002,21(3):136-142
    [29]史铁锤,王飞儿,方晓波.基于WASP的湖州市环太湖河网区水质管理模式[J],环境科学学报,2010,30(3):631-640
    [30]李杰,林晶,吴增茂.Fall Lake水库内溶解物输运模型[J],水科学进展,2011,22(3):414-420
    [31]潘晓东,王伟卓,唐健生等.哈达山水库水动力学与水质模拟研究[J],人民黄河,2010,32(8):61-62
    [32]储鏖.Delft 3D在天文潮与风暴潮耦合数值模拟中的应用[J],海洋预报,2004,21(3):30-36
    [33]张照举.象山港内潮流和泥沙运动的特性及其受建桥影响的数值计算[D],清华大学学位论文,2005
    [34]骆辉煌.改善五里湖水环境维持性调水数值模拟研究[J],中国水利水电科学 研究院学报,2005,3(4):271-276
    [35]林卫青,卢士强,矫吉珍.长江口及毗邻海域水质和生态动力学模型及应用研究[J],水动力学研究与进展:A辑,2008,23(5):523-530
    [36]贾海峰,张岩松,何苗.北京水系多藻类生态动力学模型[J],清华大学学报(自然科学版),2009,12(20):1992-1996
    [37]张世强,邹松兵,刘勇.基于Mapobjects的GIS应用开发浅析[J],遥感技术与应用,2000,15(3)194-198
    [38]钱宁.关于河流分类及成因问题的讨论[J],地理学报,1985,40(1):2-10
    [39]钱宁,张仁,周志德.河床演变学[M],北京:科学出版社,1987
    [40]童朝锋,严以新,孟艳秋等.分汊河道分流比估算方法[J],水利水电科技进展,2011,31(6):7-10
    [41]李克锋,赵文谦,李嘉等.河渠分汊段的流速分布与不规则边界处理[J],水动力研究与进展:A辑,1994,9(2):131-137
    [42]余文畴.长江中下游河道水力和输沙特征的初步分析—初论分汊河道形成条件[J],长江科学研究院院报,1994,11:16-22
    [43]齐珺,杨志峰,熊明等.长江水系武汉段水动力学过程三维数值模拟[J],水动力学研究与进展:A辑,2008,23(2):213-219
    [44]白玉川,杨建民,黄本胜.二维水沙数学模型在复杂河道治理中的应用[J],水利学报,2009,09:25-30
    [45]NICHOLAS A P,SMITH G H S. Numerical simulation of three-dimensional flow hydraulics in a braided channel[J], Hydrological Processes,1999,13(6):913-929
    [46]Weerakoon.S.B.and Tamai,N.Three-dimensional calculation of flow in river confluences using boundary fitted co-ordinates[J],Hydroscience andHydr.Engrg. 7.1989:51-62
    [47]Weerakoon.S.B.Kawahara,Y and Tamai,N. Three-dimensional flow structure in channel confluences of rectangular section[C]. Proc.25th IAHR Congr.A, ,International Association for Hydroaulic Research,Madrid,1991:372-380
    [48]Bradbook K.F,Biron,P,Lane,S.N,Richards,K,S and Roy,A.G,Role of bed discordance at asymmetrical river confluences[J],Hydroscience andHydr.Engrg. 7:51-62
    [49]冯镜洁,李然,王协康等.河流交汇分离区特性研究[J],水动力学研究与进展:A辑,2009,24(3):321-325
    [50]杨具瑞,刘爱云.江心洲河段平面二维数值模拟[J],水利学报,1998,09:71-74
    [51]刘亚坤,曾平.天然分汉河流的平面二维数值模拟[J],水利学报,1996,07:47-53
    [52]林怡然.谈淮河凤台段的治理[J],治淮,1994,07:19-21
    [53]蔡成风,刘友兆.淮南市耕地资源生产潜力及人口承载能力研究[J],国土资源科技管理,2006,23(2):9-14
    [54]李建平,李绪谦,王存政.伊通河水环境容量与污染防治对策的研究[J],世界地质,2001,20(2):184
    [55]王超,朱党生,程晓冰.地表水功能区划分系统的研究[J],河海大学学报(自然科学版),2002,30(5):8-11
    [56]关卉.九洲江广东段水环境容量研究[J],水资源保护,2003(2):20-21
    [57]李青山,冯明样,王福庆.水功能区划实用手册[M],长春:东北师范大学出版社,1999:254-269
    [58]水利部淮河水利委员会.淮河流域及山东半岛水资源评价[R],2005
    [59]况敬静.安徽省淮河流域底泥中PAHs污染形状研究[D],安徽理工大学学位论文,2007
    [60]水利部淮河水利委员会,治淮汇刊(年鉴)[R],2001,26-2005,30
    [61]谭炳卿,吴培任,宋国君.论淮河流域水污染及其防治[J],水资源保护,2005,21(6):4-10
    [62]USERS GUIDE TO GFGEN VERSION 4.5[Z]. U.S.Army, Engineer Research and Development Center Waterways Experiment Station Coastal and Hydraulics Laboratory,2003
    [63]USERS GUIDE TO RMA2 WES VERSION 4.5[Z], U.S.Army, Engineer Research and Development Center Waterways Experiment Station Coastal and Hydraulics Laboratory,2003
    [64]鲁海燕.SMS模型在杭州湾潮流模拟中的应用[J],浙江水利科技,2003.3.
    [65]程心一.计算流体力学—偏微分方程的数值解法[M],北京:科学出版社,1984
    [66]何建京,王惠民.流动形态对曼宁糙率系数的影响研究[J],水文,2002,22(6):22-24
    [67]武汉水利电力学院.水力学[M],北京:人民教育出版社,1979
    [68]Zhao D H,Shen H W,Tabios III G O,et al.Finite-Volume Two-Dimensional Unsteady-Flow Model for River Basins[J].Journal of Hydraulic Engineering,ASCE,1994,120(7):863-883
    [69]USERS GUIDE TO RMA4 WES VERSION 4.5[Z], U.S.Army,Engineer Research and Development Center Waterways Experiment Station Coastal and Hydraulics Laboratory,2003
    [70]杜平安.有限元划分的基本原则[J],机械设计与制造,2000(1):34-36
    [71]成建梅,陈崇希,孙红林.三角网格等值线自动生成方法及程序实现[J],水利学报,1998(10):23-26
    [72]徐祖信,尹海龙.黄浦江二维有限元计算网格生成技术[J],水动力学研究与进展:A辑,2003,18(3):327-331
    [73]王晓航.基于GIS的二维溃坝洪水演进数值模拟及可视化系统研制[D],河海大学学位论文,2007
    [74]陈整风,陈晓成.2003年淮河王家坝站洪水特性分析[J],安徽水利科技,2005(2):16-17
    [75]河流水质水量综合评价方法研究送审稿[M].安徽省水文局,2004.12
    [76]合工大数学系编著.数值计算方法[M].合肥工业大学出版社,2004.3
    [77]贺俐,陈桂兴.计算方法[M].武汉水利电力大学出版社,1998
    [78]李正最.用带权最小二乘法分析水位流量关系[J],水文,1991(4):35-38
    [79]程绪水.上下联动科学防污—2004年淮河水污染联防综述[J],防汛与抗旱,2004(9):7-9
    [80]杜霞,彭文启.水质变化驱动机制及经济体排污量估算方法[J],人民黄河,2011,33(4):28-30
    [81]杨迪虎.淮河淮南、蚌埠段动态纳污能力分析[J],水资源保护,2005,(4):56-59
    [82]吴师.淮河鲁台子—石头埠段动态纳污能力估算及水质污染预测预报[J],水资源保护,2005,(4):52-55
    [83]唐劲松.沂沭泗流域江苏片水环境容量研究[D],河海大学学位论文,2004
    [84]刘玉年,施勇,程绪水等.淮河中游水量水质联合调度模型研究[J],水科学进展,2009,20(2):178-183
    [85]孙笑微.水资源水量和水质联合优化配置研究初探—以河套灌区为例[D],北京工业大学学位论文,2010
    [86]傅慧源.长江干流水域纳污能力及限制排污总量研究[J],人民长江,2008(23):56-59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700