用户名: 密码: 验证码:
无源探测系统及其关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今世界电子战技术的发展,有源的单基地探测系统遇到了“隐身技术、反辐射导弹、超低空突防以及电子干扰”的四大威胁,由此诞生了双基/多基地的无源探测系统。无源探测系统是利用相关的电磁波探测理论与信号处理技术,获取第三方发射的电磁信号,进行空间电磁波信息获取的综合应用集成系统。它通过被动地感知、分析、处理外界辐射源的目标散射信号,可以实现对目标的探测、定位、跟踪和识别,又叫做无源雷达、双/多基地雷达、被动雷达、非合作照射源雷达或非合作无源探测系统。无源探测系统与普通有源探测系统相比,具有抗干扰、抗反辐射导弹、抗低空突防和反隐身武器(通常称为“四抗”特性)且隐蔽性好、战场生存能力强、低空探测性能好,系统相对简单,无需额外占用宝贵的无线频谱。因此,对无源探测系统的研究具有重要的意义。本文研究了以GSM基站信号作为非合作照射源的无源探测系统,围绕弱信号检测,将系统分为三大关键技术环节,分别是天线、数字接收机和数据处理算法。以微弱目标电磁波信号检测为目的展开分析,完成了以下工作:
     天线是捕获空中目标反射的微弱电磁信号的首要环节。研究了微带阵列及其相关技术,提出用弱耦合处理的方法有效降低微带阵列幅度的副瓣值及对角加载的方向图控制DLAPC算法,提高了常用的DBF处理算法的效率,兼顾成本等因素,设计实现了八单元微带感应阵列。用Matlab等软件进行了仿真验证,完成了阵列的加工测试校正。测试结果为:微带阵列的波束宽度小于15o,增益39dBi,栅瓣电平小于-12.8dB,具有宽带、高增益的良好性能,有利于捕获环境中目标反射的微弱回波信号。
     接收机是完成对天线接收的微弱信号进行放大、变频、数模转换等处理,获取高信噪比数据的重要环节。根据无源雷达接收机相关的基础技术理论和软件无线电思想,用FPGA等芯片设计及实现了GSM无源探测数字化中频接收机,给出了系统实现方案,设计了二阶数字锁相环,提高了环路稳定性,评估分析了误差在阶跃输入的极端状况下的稳定性。对接收机进行了计算机仿真和室内测试,测试结果表明:接收机的输入和输出信号波形具有较好的一致性,接收机输入信号的动态范围为60dB,灵敏度为-120dBm,自动频率控制AFC捕获范围为±250KHz,验证了设计系统的功能和性能,满足了设计要求。
     数据处理算法是从获取的目标数据中获得目标参数的关键环节。提出了高阶模糊函数与两次门限检测相结合的方法提高弱信号信噪比和处理效率。第一,设计一种高阶模糊函数算法,对GSM多项式相位回波信号进行了参数估计,并与Monto-Caro算法的检测效果进行了对比,验证了高阶模糊函数可以有效地实现类似GSM多项式相位回波信号的参数估计;第二,高阶模糊函数算法要求的信噪比较高,为此设计二次门限检测方法消除干扰噪声提高信噪比:其大部分先在每帧预处理时用时域方法消除,残留的少部分在帧间累加时消除。经两次门限处理后更有效地处理微弱信号,同时降低运算量和存储量,提高信号处理的实时性。
     用灰色理论改进了扩展卡尔曼算法并应用到GSM无源探测系统,减小了EKF在机动目标跟踪时的发散。用灰色卡尔曼算法进行跟踪处理,经对匀速及机动目标仿真实验,验证了其可行性。
     最后,对所设计实现的无源探测系统进行了外场试验。在武汉天河机场附近进行了外场试验,测得飞机起飞阶段的多普勒频率,其中最大为390Hz,计算所得的飞机速度约为每小时220公里,与实际起飞阶段速度较为接近,对民航客机的最大探测距离为最大3.0km,试验成功。
     以GSM信号为非合作照射源构建的无源探测系统,可以作为城市防空雷达网的有效补充,来探测突破其它防空探测网络的目标,如直升飞机、飞艇、巡航导弹等;另外,以单个GSM无源探测系统为节点,以通信线路互联为分布式的GSM无源探测系统,则能构建一个更大范围的无源探测网络,对于提高城市防空能力具有重要意义,也可以用来探测路面车辆和水面来往船只。
Nowadays, the active single base detection system facees four threats of"electronic interference, anti-radiation missile, super low air penetration and stealthtechnology” because of the rapid development of electronic warfare technology. Thepassive detection system mainly uses the related detection theories of electromagneticwave and signal processing technology to acquire the non cooperationelectromagnetic echo signals reflected by a target, and this may be a comprehensiveapplication and integrated system for electromagnetic wave information in space. Byreceiving echo signals passively, analyzing and dealing with target scattering signalsfrom the external emitters, so as to realize the target detecting, locating, tracking andrecognizing, hence, it's also called as passive radar, bistatic radar, the non cooperationilluminator source radar or non-cooperative passive detection system. Compared withcommon active detection system, the passive detection system is characterized withthe anti-interference, anti-radiation missile, anti super low penetration and anti-stealthpotential (so-called" four counteraction") and the characteristics of good elusive, highability of battlefield survival and low air detection, system structure is simplerelatively, not need to take up frequency spectrum resource, can use all sorts of civilsignal as detection radiation source. Therefore, passive detection system is paid closeattention and vigorously developed, and has more and more vital significance in themodern electronic warfare. This paper studies on a passive illuminator detectionsystem based on the GSM base station signal as the non cooperation source. Thesystem is divided into three key technology links that is antenna, digitalized receiverand data processing algorithms, respectively. And aims at weak target electromagneticwave signal detection for developing and analysis, and completed the followingresearch work:
     Antenna is the first key link for capturing the weak electromagnetic signalreflected by the air targets. The micro strip array and related technology was studied,and a weak coupling method was used to effectively reduce the amplitude side lobe of micro strip array. The diagonal loading pattern control algorithm DLAPC was putforward to improve the efficiency of the commonly used DBF processing.Considering for the factors such as cost, designed and implemented the8elementsmicro strip array, used software Matlab for its simulation, completed the array process,test and correction. The processed micro strip array is with features of the beam widthless than15o, gain more than38.9dBi, side lobe level less than12.8dB, and hasbroadband, high power gain, wide band, small volume, light weight, good flexibility,high reliability, and laid a good foundation for the weak signal detection processing.
     The receiver is another important part for amplifying the signals received by arrayantennas, to complete frequency conversion, analog-to-digital converting,etc., and gethigh SNR of the data for next stage. Research on the basis of radar receiver sourcerelated technical theory. According to the software defined radio theory, the FPGAfrom Altera Company was used to design and realize GSM passive digital receiver.The system scheme was implemented and the2order PLL (Phase Locked Loop) wasdesigned to improve the stability of PLL and error in the loop was evaluated andanalyzed under extreme conditions such as a step signal was input. Simulation andindoors test were made for the receiver. Test results show that the input and outputsignal waveform has good consistency, the input signal dynamic range of thereceiver was60dB, sensitivity for-120dBm, Automatic Frequency Control (AFC)capture range for±250KHz. And all of these validate the system function andperformance had satisfied the design requirements.
     Data processing plays an important role for target detection. Firstly, studied themathematical model of GSM signals, analyzed its ambiguity and characteristics, andevaluated the feasibility of thumbtack structure of GMSK modulation signal forpassive detection. In order to improve the signal-to-noise ratio and the weak signalprocessing efficiency, the combining method of higher order fuzzy function and twothreshold detection was used. First, proposed a high order fuzzy function algorithm.The GSM polynomial phase echo signal parameters were estimated, and withMonte-Caro algorithm testing results are compared. It was verified that the high orderfuzzy function can effectively estimate the parameters of GSM polynomial phase of the echo signal, and with small burden, simple and high efficiency. Second, for thereason that the high order fuzzy function algorithm requires higher SNR, so designeda two thresholds detection method to eliminate noise interference and improvesignal-to-noise ratio: most of the noise in each frame was eliminated in thepretreatment by time domain method, and the remained noise was eliminated as frameaccumulation. After two thresholds processing a weak signal was processed moreeffectively, meanwhile reduced the computational complexity and storage capacity,and improved the real-time signal processing.
     Using the grey theory to improve the Extended Kalman method, and solved thedivergence problem of the EKF when tracking a maneuvering target. With the greyKalman algorithm, the simulation and experimental validation of targets was done toverify its feasibility.
     At last, the field test was made for the designed passive detection system. Thefield was selected near Wuhan Tianhe Airport, measure the Doppler frequency of theplane in taking off stage, one of the most is390Hz, calculated out the speed wasabout220kilometers per hour, and approximate to the actual take-off stage speed. Thebiggest detection distance for a civil aviation plane was about3.0km, test wasbasically successful.
     The passive detection system based on the non cooperation radiation source ofGSM signal, can be used as effectively complement to city air defense radar network,to detect goals breakthrough other air defense network, such as the helicopter, airship,cruise missiles, etc. In addition, a single GSM passive detection system may be usedas a node and many node may be connected with communication links to construct adistributed GSM passive detection system network, so can build a greater range ofpassive detection network, so it 's to have the important meaning as to improve theurban air defense ability. And this system may also be used for detecting vehicles onthe road or river.
引文
[1] Howland,P.E. Target tracking using television-based bistatic radar. Radar,Sonar and Navigation, USA: IEEE,1999,146(3):166-174
    [2]斯科尼克(Merrill L. S.).雷达系统导论(第3版).王德纯,方能航,左群声译.北京:电子工业出版社,2010.372-483
    [3] Griffths H.D., Long, N.R.W.. Television based bistatic radar, IEEE Proc. F,Commun. Radar Signal Process.USA: IEEE,1986,133(7):649-657
    [4]罗巧云,高勇强.无源雷达技术的发展.现代军事,2006,(04):58-60
    [5]赵勇.外辐射源雷达测向技术及准实时系统实现:[硕士论文].西安:西安电子科技大学,2011
    [6] J.D.Sahr, F.D.Lind.The Manastash Ridge: A passive bistatic radar for upperatmospheric radio science.Radio Sci.1997,32:2345-2358
    [7]李海.微弱信号长时间积累检测研究:[博士论文].北京:北京理工大学,2002
    [8] Howland, P.E.,Maksimiuk, D.,Reitsma, G.. FM radio based bistatic radar.Radar, Sonar and Navigation. USA:IEEE,2005,152(3):107-115
    [9]朱滢.基于数字电视的无源定位系统研究:[硕士论文].南京:南京理工大学,2004
    [10]鞠晓燕,陶然,单涛.基于数字电视的无源雷达信号建模与分析.无线电通信技术,2003,(03):36-37.61
    [11] Griffiths H.D., Baker, C.J., Baubert, J, Kitchen, N.,Treagust, M.. Bistatic radarusing satellite-borne illuminators. RADAR2002. London: IEEE savoy place,2002:1-5
    [12] He Z. W.. Niu J. M. Performance of Passive Detection Based on CDMAMobile Communication Signal.Acta Armamentari2008,(03):296-299
    [13] Wan L. L, Zuo W. H. Research on interference mitigation of GPS-basedpassive radar. Electronic Design Engineering,2011,19(08):103-106
    [14] Liu H. R. Tao R. Z.. A Study on Passive Bistatic (Multistatic) Radar UsingGSM. Modern Radar,2003,25(5):19-21
    [15] Wang H. H. A passive radar system using GSM signal as the illuminator.Information Technology,2009,(3):1-3
    [16]王乙惠,王俊.利用GSM为信号源的探测系统.中国电子科学研究院学报,2007,(5):464-471
    [17] D.K.P. Tan, H. Sun, Y. Lu, M. Lesturgie and H. L. Chan. Passive radar usingGlobal System for Mobile communication signal: theory, implementation andmeasurements. Radar, Sonar and Navigation. USA: IEEE,2005,152(3):116-123
    [18] Danny K.P. Tan. Sea and Air Moving Target Measurements Using a GSMBased Passive Radar. IEEE International Radar Conference. USA: IEEE,2005.783-786
    [19] Sun H. B., Danny K.P.Tan, Yilong Lu. Aircraft Target Measurements Using AGSM-Based Passive Radar. IEEE Radar Conference, USA:IEEE,2008.1-6
    [20] U.M.D. Mendi, B. K. Sarkar. Passive Radar using Multiple GSM TransmittingStations. International Radar Symposium. USA: IEEE,2006.1-4
    [21] Antonio D. M.. Measurement and Analysis of Clutter Signal from GSM/DCS-based Passive Radar. IEEE Radar Conference. USA: IEEE,2008.111-116
    [22] Sun H. B.. Design and Implementation of an experimental GSM Based PassiveRadar. IEEE Radar Conference. USA: IEEE,2003.418-422
    [23] Lu Y. L., Tan D.K.P.. Sun, H.B. Air target detection and tracking using amulti-channel GSM based passive radar. Waveform Diversity and DesignInternational Conference. USA: IEEE,2007.122-126
    [24]李万春.外辐射源定位跟踪技术的研究:[博士论文].成都:电子科技大学,2009
    [25]刘宁.基于GSM信号的无源雷达技术研究:[硕士论文].成都:电子科技大学,2011
    [26] Griffiths H. D.,Baker C.J.. Passive coherent location radar systems Part1:Performance prediction. IEE Pro.-Radar,Sonar Navig.. USA: IEEE,2005,152(3)
    [27]杨进佩.基于GPS的无源雷达技术研究:[博士论文].南京:南京理工大学,2006
    [28]黄雅琳.基于GSM信号的非合作式双基地雷达系统可行性研究:[硕士论文].北京:北京理工大学,2002
    [29] Lockheed Martin Mission Systems, Silent Sentry,1999.38-47
    [30] Sahr, J.D., and Lind, F.D. Passive radio remote sensing of the atmosphere usingtransmitters of opportunity. Radio Sci.,1998,(284):4-7
    [31] Fan M. M. Ding X. X. Liao D. P. et.al.. Recent Researches on Passive RadarBased on Opportunity Illuminator. Electronics Optics&Control,2011,19(8):103-107
    [32] Danny K.P.T., Sun H. B.,Yilong Lu. Feasibility analysis of GSM.IEEE Radarconference. USA: IEEE,2003.425-430
    [33] U.M.D. Mendi, B.K. Sarkar. Passive Radar using Multiple GSM TransmittingStations. Radar Symposium. USA: IEEE,2006.189-193
    [34] Francesco B., Antonio D. M., A. S. Greco, et.al.. Adaptive Radar Detection ofDistributed Targets in Homogeneous and Partially Homogeneous Noise PlusSubspace Interference. IEEE Transactions on Signal Processing,2007:1223-1237.
    [35]阙俊才,王俊.基于GSM信号的无源雷达直达波方向估计.火控雷达技术,2010,(04):27-30
    [36]王蕾,王俊,李涛.基于CDMA通信信号的无源雷达定位系统.火控雷达技术,2009,(02):4-9
    [37]张珂,张剑云.无源单通道阵列快速DOA估计算法.电子信息对抗技术,2011,(05):5-9
    [38] Si X. C, Zhang L.. Research of Passive Location Algorithm to ManeuveringTarget Using TDOA and DOA of Dual Stations. Ship Engineering,2001,(5):44-49
    [39]许聪.无源探测中弱信号检测及跟踪滤波方法的研究:[博士论文].哈尔滨:哈尔滨工程大学,2010
    [40] Liu H. R., Tao R., Zhou Y. S.. Research of GSM passive dual(multi-) baseradar. MODERN RADAR,2003,(05):123-127
    [41]郭强.一种新的双基地探测系统数学模型及模糊函数的建立方法.兵工学报,2009,(11):1457-1463
    [42] Yang J. P., Liu Z., Zhu X. H.. GPS Satellite signal features analysis for passiveradar.Trans.of electronics&Information,2007,29(5):1083-1087
    [43]杨进佩,刘中,朱晓华.用于无源雷达的商业无线电信号模糊函数分析.火力与指挥控制,2007,(09):43-46
    [44] Shan Y. H., Sun Zhong K., Huang F. K. Review on passive location andtracking methods for single station. Aerospace Electronic Warfare,2001,(6):4-8
    [45]龚享铱.利用频率变化率和波达角变化率单站无源定位与跟踪的关键技术研究:[博士论文].长沙:国防科技大学,2004
    [46] Chan Y T, Plews J W, Ho K C. Symbol rate estimation by the wavelettransform. ISCAS’97, Hong Kong: IEEE,1997.177-180
    [47] Giles C L, Omlin C W, Thomber K K. Equivalence in knowledgerepresentation: Automata, Recurrent Neural Networks, and Dynamical FuzzySystems. USA: IEEE,1999,87(9):1623-1639
    [48] Ding L. F., Geng F. L.. Radar Principles. XI’AN: Xi’an Electr. SCI.&Tec.Univ.Pub. House,2002.281-289
    [49]林昌禄.天线工程手册.北京:电子工业出版社,2002.312-323
    [50] Wu J. H., Zhou W.. An Improved MUSIC Algorithm for DOA Estimation.Wireless Communication Technology,2008,34(1):39-43
    [51]苏保伟.阵列数字波束形成技术研究:[博士论文].长沙:国防科学技术大学,2006
    [52]苏保伟,王永良,周良柱.基于LCMV线性约束的自适应方向图控制.电子与信息学报,2008,02(15):282-285
    [53] Yang H. W., Huang J. G.. A Modified Diagonal Loading Adaptive Beanforming Method. Systems Engineering and Electronics.2007,29(3):449-455
    [54] Zwick T., Liu D.X., Gaucher B.P., Broadband Planar Superstrate Antenna forIntegrated Millimeterwave Transceivers. IEEE Transaction on Antennas andPropagation,2006,54(10):2790-2796
    [55]杨水旺.数字中频接收机关键技术研究:[博士论文].哈尔滨:哈尔滨工业大学,2007
    [56] Dutta A., Saha, D., Grunwald, D. Sicker D.. An architecture for SoftwareDefined Cognitive Radio. IEEE Symposium on Architectures for Networkingand Communications Systems. USA: IEEE,2010.1-12
    [57] Los A.. Architectures and Circuits for Ultra Wideband RF Wireless Receivers:[Dissertation]. CALIFORNIA: UNIVERSITY OF CALIFORNIA,2006
    [58] Cao Z. G., Qian Y. S.. Modern communication principle. Beijing: TsinghuaUniversity Publishing House,1992.222-243
    [59] Tatu S.O., Moldovan E., Brehm G.. Ka-Band Direct Digital Receiver. IEEETransactions on microwave theory and techniques,2002,50(11):2436-2442
    [60] Dharmendra L.. Software Radio: RF Engineeting’s New Era. IEEE Software,2003,(7):8-11
    [61] Humer G., Kloibhofer R., Pfeiffer G.. Hardware platform for software enabledradio and smart antennas.2003IEEE Colloquium on DSP enabled Radio. USA:IEEE,2003.1-6
    [62] Yang Y., Lü Y. X. Design and implement of multichannel digital receiverbased on FPGA. Aerospace Electronic Warfare,2011,(5):32-35
    [63]董晖,姜秋喜,毕大平.数字接收机中基于TMS320C6416的数字下变频技术.电子技术应用,2003,(3):49-51
    [64]陈芬芬.基于FPGA的GPS接收机基带处理器的研究与设计:[硕士论文].太原:中北大学,2009
    [65] He Y., Xiu J. J.. Radar Data Processing With Applications (2nded.). Beijing:ELECTRONICS INDUSTRY PUBLISHING HOUSE,2009.314-365
    [66] Tonnere D, Muller C. Comaprative statistical analysis between theoreticalmodel and recorded data for sea radar return. Pro. of IEEE Radar97. USA:IEEE,1997.204-206
    [67] Schuhmann T., Hofmann W., Werner, R., Improving Operational Performanceof Active Magnetic Bearings Using Kalman Filter and State Feedback Control.IEEE Transactions on Industrial Electronics,2011,59(2):821-829
    [68] Mohinder S. Grewal, Angus P. Andrews. Kalman Filtering Theory and PracticeUsing MATLAB (Third Edition). A JOHN WILEY&SONS, INC.,PUBLICATION,2008.121-138
    [69]熊伟,张晶炜,何友.基于多维分配和灰色理论的航迹关联算法.电子与信息学报,2010,(04):899-903
    [70]邓聚龙. S-灰色系统理论与应用.北京:高立出版社,2008.139-146
    [71] Ying H.. Research of project evaluation and decision method based on graytheory. Computer-Aided Industrial Design and Conceptual Design. USA: IEEE,2006.1-5
    [72] Zhou J. G., Li L. L, Li Z. G, et. al..Small Sample Failure Distribution ResearchBased on Grey Theory. Information Engineering and Computer Science. USA:IEEE,2009.1-4
    [73] Feng D. Z., Wang X., Liu Y. H.. An edge detection method for infrared imagebased on grey relational analysis.2nd International Symposium on Systems andControl in Aerospace and Astronautics. USA: IEEE,2008.51-56
    [74] Chen Y. G., Ke H. F., Liu Y.. Grey Distance Information Approach forParameter Estimation of Small Samples. IEEE Transactions on Instrumentationand Measurement,2008,57(6):1281-1286
    [75] Xie N. M., Liu S. F.. Discrete grey forcasting model and its optimization.Applied Matematical Modeling,2009,33(1):1173-1186
    [76] Thananchai L. Grey prediction on indoor comfort temperature HVAC systems.Expert systems with Applications,2008,34(4):2284-2289
    [77]刘思峰,党耀国.灰色系统理论及其应用.北京:科学出版社,2010.101-123
    [78]方大纲.天线理论与微带天线.北京:科学出版社,2005.232-247
    [79] Frank G.. Smart antennas for wireless communications. Beijing: PublishingHouse of Electronics Industry,2009.209-235
    [80] Kin L. W., Compact and Broadband Microstrip Antennas. Finance: John Wiley&Sons, INC,2002.186-214
    [81] Zhang Z. J. Radar Antenna Technology. Beijing: Publishing House ofElectronics Industry,2007.443-468
    [82]王波.宽频带微带贴片天线及其阵列研究:[硕士论文].南京:南京理工大学,2008
    [83] Hasan S. Mir, John D. Sahr, Gary F. Hatke, et. al.. Passive Source LocalizationUsing an Airborne Sensor Array in the Presence of Manifold Perturbations.IEEE TRANSACTIONS ON SIGNAL PROCESSING,2007,55(6):2486-2496
    [84]吴大俊.毫米波圆柱共形微带天线的设计研究:[硕士论文].南京:南京理工大学,2007
    [85] Gomez T., Ji. L.. Analysis and Design of Conformal Tapered Leaky-WaveAntennas. IEEE Antennas and Wireless Propagation Letters,2011,10:1068-1071
    [86] Rowen. S. T.. Edge-fed patch antennas with reduced spurious radiation. IEEETrans. Antennas Propag.,2005,53:1785-1789
    [87] Lin Y. D, Sheen J., Tzuang C K C. Analysis and design of feeding structuresfor microstrip leaky wave antenna. IEEE Trans. On Microwave Theory andTechniques,1996,44(9):1540-1547
    [88]李元新,龙云亮.双端口馈电微带漏波天线的仿真研究.中山大学学报(自然科学版),2003,42(5):122-124
    [89] Deslandes D., Wu K.. Substrate integrated waveguide leaky-wave antenna:Concept and design considerations. In Proc.Asia-Pacific Microw. Conf., USA:IEEE,2005.378-383
    [90] Corwin M., Kempel, L., Griffith, H. Driving Point Impedance for a LinearArray of Half-width Leaky-wave Antennas. Antennas and Propagation SocietyInternational Symposium. USA: IEEE,2006.4251-4254
    [91] Michalski K A. On the leaky modes of open microstrip lines.Microw. Opt.Tech.Lett.,1989,2(1):6-8
    [92] Wang C. J., Chin Y. C., Jou C. F.. Beam-switchable Scanning leaky-waveantenna. Electronic Letters,2000,36(7):596-597
    [93]张小飞,徐大专.基于频域LMS的自适应波束形成算法.中国空间科学技术,2005,(2):41-47
    [94]陈超贤.稳健自适应波束形成的数值算法及其相关理论研究:[博士论文].青岛:中国海洋大学,2008
    [95]冯国丽.一种智能天线降维频域波束形成算法的研究.中国新通信,2009,(3):56-58
    [96] Zhang X. F., Xu D. Z.. A new adaptive beamforming algorithm of frequencydomain. Journal of China Ordnance,2006,(3):428-431
    [97]武思军.稳健的自适应波束形成算法研究:[博士论文].哈尔滨:哈尔滨工程大学,2005
    [98] Pozar D.. Microstrip antennas. Proc. of the IEEE radar. USA: IEEE,1992,8(1):79-91
    [99]王岩. DBF阵列天线以及微带漏波扫描天线研究:[硕士论文].南京:南京理工大学,2010
    [100] Wu J.. Multi-channel receiver amplitude and phase calibration test systemdesign. Modern Radar,2005,27(8):65-69
    [101] Van D. A.J.. GPS Receivers.American institute of Aeronautics andAstronautics, USA: IEEE,1996.322-329
    [102]王华奎,张立毅,李鸿燕.移动通信原理与技术.北京:清华大学出版社,2009.106-124
    [103] Yang S. J..Smart receiver using baseband digital signal processing:[Dissertation]. Carleton: Carleton University Canada,1999
    [104] Skolnik. Introduction to radar(2nd.ed), Beijing: Publishing House ofElectronics,2007.212-235
    [105]祖秉法.北斗二号民用软件接收机关键技术研究:[博士论文].哈尔滨:哈尔滨工程大学,2010
    [106] Cao P., Fei Y. C.. Design of a Large Dynamic Range and Broad Band Digital IF AGCSystem. Journal of Beijing Institute of Technology,2003,23(5):613-616
    [107] Hu Y. H.. Optimization Design and Application of Digital Phase Locked Loop.Computer Measurement&Control,2006,14(8):1085-1087
    [108] Wu T.. Design of broad-band reconnoitering and receiving digital receiver.Aerospace Electronic Warfare,2009,(6):43-47
    [109]祁玉生,邵世样.现代移动通信系统.北京:人民邮电出版社,1999.210-243
    [110] Bassem R. M., Atef Z E.. MATLAB Smulations for Radar Systems Design.Britain: Taylor&Francis Group, LLC.2007.462-484
    [111]贾杰.基于DSP的雷达测速监控系统的设计.电子技术应用,2010,(12):78-83
    [112]邓斌.雷达性能参数测量技术.北京:国防工业出版社,2010.176-199
    [113] Yang Y. P.. A Model of GSM Based Passive Radar Signal and AmbiguityFunction Features. ACTA ELECTRONICA SINICA.2005,33(6):1048-1052
    [114] Wing K. M., Chong Y. C.. DOA Estimation of Quasi-Stationary Signals WithLess Sensors Than Sources and Unknown Spatial Noise Covariance RaoSubspace Approach. IEEE TRANSACTIONS ON SIGNAL. PROCESSING,2010,58(4):2168-2180
    [115] Xie X. Q., Wang Q., Xie C. X, et al..DOA/TOA measurements basedobservability analysis of passive locating and tracking for single observer.ELECTRONICS OPTICS&CONTROL,2007,14(2):47-49
    [116] Richard K. B.. Theory of effectiveness measurement:[Dissertation]. USA:THE AIR FORCE AIR UNIVERSITY,2006
    [117]周祎.空间信号检测与参数估计算法研究:[博士论文].西安:西安电子科技大学,2006
    [118]张小飞.天线阵CDMA系统中的空时处理技术研究:[博士论文].南京:南京航空航天大学,2005
    [119] Feng Z. Y.. Research of maneuvering detection using higher order cumulantstarget tracking algorithm:[Dissertation]. TAIYUAN: TAIYUAN Sci.&Tech.University,2007
    [120] Pauluzzi D R, Beaulieu N C. A comparison of SNR estimation techniques forthe AWGN channel. IEEE Trans on Communications,2000,48(10):1681-1691
    [121] Lu H., Shi Q., Hu Q. W, et al.. Simulation of Impact Position Based onMonte-Carlo Method. Computer&Digital Engineering,2011,39(7):31-34
    [122] Deng X. L., Xie J. Y.. Nonlinear target tracking based on particle filter.Intelligence Control and Automation,2004,(8):1618-1620.
    [123] Dai W., Wang Y. Z, Wang.. Joint Power Estimation and ModulationClassification Using Second-and Higher Statistics. IEEE WirelessCommunications and Networking. USA: IEEE,2002.155-158
    [124] Grewal M. S., Andrews A. P.. Kalman Filtering Theory and Practice. USA:New Jersey Prentice Hall,1993.121-130
    [125] Ehrman L.M., Lanterman, A.D. Extended Kalman filter for estimating aircraftorientation from velocity measurements Radar. Sonar&Navigation,2008,2(1):12-16
    [126]范文兵,刘春风.一种强跟踪扩展卡尔曼滤波器的改进算法.控制与决策,2006,21(1):73-76
    [127] Wang X. D., Li Q.. Filtering the acceleration signal in different algorithm forcomparison and analysis. International Conference on Computational ProblemSolving. USA: IEEE,2011.171-173
    [128] William S..The effect of sampling noise in ensemble-based Kalman:[Dissertation]. Canada: McGill University,2009
    [129] Ristic B., Sanjeav M.. Tracking a maneuvering target using angle-onlymeasurements: algorithms and performance. Signal processing,2003,83:1223-1239
    [130] Yamaguchi D., Guo D. Li N. G.. GDAT-A collection of software tools ongrey-based approaches supported by MATLAB. International Conference onIntelligent and Advanced Systems, USA: IEEE,2007.290-295

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700