用户名: 密码: 验证码:
北京—河北北部中低温温泉的特征和流量、温度变化的模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中低温温泉由地下水深循环中地热增温加热。为了可持续开发利用地热资源,需要了解掌握地热流体形成和循环等方面的信息。定性分析中低温温泉的特征,定量讨论流量和温度的变化规律,有助于地下水深循环的机理和热水分布及开发利用的研究。本文以北京-河北北部分布的14个中低温温泉为主要研究对象,阐明研究区温泉出露的地热地质背景,分析和总结地下热水水化学特征和同位素特征,估算地下热水的补给来源、补给高程、热水年龄、循环深度、热储温度等,建立描述流量和温度变化的数学模型。
     在开展研究区温泉野外调查的基础上,收集研究区中低温温泉前人研究成果并进行分析总结。研究区位于燕山山区西南部山间盆地和东南部丘陵地区,多数温泉出露于山前地带及盆地边缘,附近地层岩性为第四系松散沉积物、灰岩、花岗岩、片麻岩等,受断裂或基岩裂隙影响。热水温度为37~85℃,流量为0.11~13.9 L/s。热水水化学特征分析表明,研究区地下热水中主要阳离子为Na+、K+、Ca2+、Mg2+,主要阴离子为HCO3-、Cl-、SO42-,次要离子有NH4+、CO32-、NO3-,水化学类型以SO4·HCO3- Na型为主。热水矿化度为0.189-1.3 g/L,pH值为7.73-9.35,H2SiO3为26.1-96.3 mg/L,F-为1.6-1.7 mg/L。同位素特征分析表明,研究区地下热水都来源于大气降水,估算地下热水的补给高程为140-1850 m或200-1530 m,补给区温度为4.5~11.6℃或-1~8.7℃,多数温泉地下热水年龄为12-68 a。研究区地下热储温度为62~121℃,热水循环深度为1700-3700 m或2100-5300 m。怀来和崔庄温泉冷水混合比例分别为0.7和0.82。应用Log (Q/K)图解法分析热储平衡情况,几乎所有水样中的特征矿物(萤石、石英、无水石膏、温石棉、玉髓、无定形硅、滑石)都没有很好地在某一特定温度下同时接近平衡。
     利用达西定律和热传导理论可以建立描述温泉流量和温度变化的数学模型。本文在前人圆弧形管道模型和槽型管道模型的基础上建立了单U型管道模型和双U型管道模型,分别用4种数学模型对研究区温泉的实测流量和温度进行验证,并讨论了影响温泉流量和温度变化的因素。结果表明,温泉温度随流量增加先上升后下降,多数温泉流量和温度的关系与数学模型的结果总体上相符合,说明满足断裂-深循环模式的中低温温泉的流量和温度可以由数学模型近似模拟。
Thermal springs with low-to-moderate temperature are raised by heating of geothermal gradient during the cycle process of ground water. In order to utilize the geothermal resources sustainably, knowledge of geothermal fluid and water circulation should be known well. Analyzing the characteristic of the low-to-moderate thermal spring qualitatively and discussing the variation laws of spring discharge and temperature quantitatively may contribute to the study of the formation mechanism, distribution rules as well as development and utilization of water deep cycling. The author elaborates the geological background of the spring occurrence, analyzes and summarizes hydrogeochemical and isotopic characteristics of geothermal water, calculates the water resource, recharge elevation, age, depth and temperature of the geothermal water, builds effective mathematical models of spring discharge and temperature based on the study of 14 low-to-moderate thermal springs distributed in Hebei province and Beijing.
     Based on field investigation of the study area, the research results of these hot springs are collected, which are proved by the predecessor and a summary is also made. The study area is located in the intermountain basin southwest of the Yanshan Mountain the northwestern hills area. The springs emanate from piedmont, basin border, the lithology of the strata in the vicinity of the springs are unconsolidated sediments, limestone, granite and gneiss, etc, which were influenced by faults and bed rock. The temperature of hot springs ranges from 37 to 85℃, the spring discharge ranges from 0.11 to 13.9 L/s. The result of the hydrogeochemical study show that the major ions of the hot water are Na+, K+, Ca2+, Mg2+, the major anion are HCO3-, Cl-, SO42-, minor ions are NH4+, CO32-, NO3-, hydrochemical type is mainly of SO4·HCO3-Na type. The TDS range from 0.189 to 1.3 g/L, pH from 7.73 to 9.35,H2SiO3 from 26.1 to 96.3 mg/L,F- from 1.6 to 1.7 mg/L. The isotopic compositions indicate that the thermal water comes from the rainfall. The evaluated recharge elevation is about 140-1850 m or 200-1530 m, temperature of the recharge area is about 4.5-11.6℃or -1-8.7℃, ages of most of the springs range from 12 to 68 a. Temperature range of geothermal reservoir is from 62 to 121℃, circulation depth of the spring ranges from 1700 to 3700 m or from 2100 to 5300 m. Mixing ratio of the Huailai spring and Cuizhuang spring are 0.7 and 0.82 respectively. By analyzing the thermal balance with the (Q/K) approach, there is nearly no minerals (fluorite, quartz, anhydrite, chrysotile, chalcedony, amorphous silicon, talc) reaching the thermal balance under any certain temperature.
     Mathematical models of spring discharge and temperature are built based on the Darcy’s law and heat transport theory. Single U-like pipes aquifer model and double U-like pipes aquifer model are established based on the study results of circular arc-like pipes aquifer model and four kinds of mathematical model are used to check the measured spring discharge and temperature data and discuss their affecting factors are discussed. The results indicate that temperature raises first and then descends. Temperature of most spring is fit well with the results of the mathematical models. Thus, spring discharge and temperature of low-to-moderate thermal springs with fault-depth cycling mode can be estimated by using these mathematical models.
引文
Fournier, R. O., Chemical geothermometers and mixing models for geothermal systems. Geothermics, 1997, 5: 41~50.
    Fournier R.O., Rowe J.J. Estimation of underground temperatures from the silica content of water from hot spring and wet-steam wells. American journal of Science, 1966, (264): 685-697.
    Giggenbach, W. F. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim. Cosmochim, Acta. 1988, 52: 2749~2765.
    Hochstein, M. P., Yang Zhongke, Ehara, S. The Fuzhou geothermal system ( People’s Republic of China): modelling study of a low temperature fracture-zone system. Geothermics. 1990, 19(1): 43-60.
    McCaig, A. M. Deep fluid circulation in fault zones. Geology. 1988, 16: 867-870.
    Reed, M. J., Assessment of low- temperature geothermal resources of the United States-1982. Geological Survey Circular 892, 1983.
    Rybach, L., Muffler, L. J. P..(北京大学地质学系地热研究室译)地热系统——原理和典型地热系统分析.北京:地质出版社,1986,79-104.
    Sanchez Navarro, J. A., Coloma Lopez, P., Perez-Garcia, A., Evaluation of geothermal flow at the springs in Aragon (Spain), and its relation to geologic structure. Hydrogeology Journal, 2004, 12: 601~609.
    Truesdell, A. H., Hulston, J. R., 1980, Isotopic evidence of environments of geothermal systems, Chapter 5. In: P. Fritz and J.-Ch. Fontes (Eds), Handbook of Environmental Isotope Geochemistry, Vol. 1, The Terrestrial Environment, A. Elsevier, Amsterdam, 195~207.
    Turcotte, D. L., Schubert, G. Geodynamics applications of continuum physics to geological problems. New York: John Wiley&Sons Inc, 1982: 134-422.
    Zhou Xun, Zhou Haiyan, Fang Bin, Li Juan, Wang Ying, Hydrochemistry and formation of the Huailai hot spring in Hebei, China. In: Bullen TD, Wang Y. (eds), Water-Rock Interaction, Proceedings of the 12th International Symposium on Water-Rock Interaction, WRI12, Kunming, China. Taylor & Francis, New York, 2007, 267-270.
    北京大学地质地理系地热组怀来地热发电组.地热.北京:科学出版社,1972,1-49.
    北京大学地质学系地热研究室.地热资源勘探.北京:地质出版社,1980,87-119.
    陈崇成,黄振光.地热系统温标的建立与应用.福州大学学报(自然科学版).1997,25(4):122-126.
    陈墨香,汪集旸,邓孝.中国地热资源——形成特点和潜力评估.北京:科学出版社,1994,1-39.
    李娟.地下热水中D、18O、34S、和13C稳定同位素特征研究:[中国地质大学(北京)硕士学位论文].北京:中国地质大学,2008.
    李娟,周训,方斌等.河北秦皇岛市温泉堡温泉的形成与开发利用建议.地质通报.2007,26(3): 344-349.
    李学礼.江西温泉成因与铀矿化关系研究.华东地质学院学报.1992,15(3):201-214.
    李学伦,孙效功,王永红.山东半岛温泉的分布规律与成因.青岛大学学报,1997,27(3):389-396.
    廖志杰.中国的火山、温泉和地热资源.北京:科学普及出版社,1990.
    柳春晖.白庙温泉、赤城温泉及塘子庙温泉的水化学及同位素研究:[中国地质大学(北京)硕士学位论文].北京:中国地质大学,2006.
    潘小平,王治.小汤山地热田热水地球化学特征.北京地质,1999,4:7~15.
    上官志冠.腾冲热海地热田热储结构与岩浆热源的温度.岩石学报.2000,16(1):83-90.
    邵显珉,李艳秋.内蒙古宁城热水热田形成条件及远景区预测.内蒙古地质.2002,2:19-23.
    沈照理,朱宛华,钟佐燊.水文地球化学基础.北京:地质出版社,1993.
    孙春晖.中低温对流型地热系统及其研究方法简介.世界地质.1999,18(1):89-91.
    孙占学,李学礼,史维浚.江西中低温热水的同位素水文地球化学.华东地质学院学报.1992,15(3):243-248.
    孙占学,吴红梅.地热系统中矿物—流体化学平衡的判断及热储温度的估算.地球学报.1999,20(增刊):595-598.
    唐辉明,潘别桐.河南下汤地区温泉形成机制及其与车村—鲁山断裂的关系.地球科学—中国地质大学学报.1989,14(2):173-180.
    王恒纯.同位素水文地质概论.北京:地质出版社,1991.
    汪集旸,孙占学.神奇的地热.北京:清华大学出版社,2000.
    汪集旸,庞忠和,熊亮萍等.漳州盆地水热系统的成因分析.第三次全国地热学术会议论文选集.北京:北京科学技术出版社.1991,116-122.
    汪集旸,熊亮萍,庞忠和.中低温对流型地热系统.北京:科学出版社,1993,67-82.
    魏洪章.张家口地下热水资源成因探讨.中国煤田地质.2006,18(4):38-41.
    肖建伟,肖建新,张桂坪等.两河口温泉水文地质条件.资源环境与工程.2007,21(3):269-271.
    谢超凡,安可士,唐炽昌.河北东部的矿水.水文地质工程地质文集.北京:地质出版社,1959,133-171.
    杨现国.河南汝州、鲁山地下热水形成条件分析.中国煤田地质.1999,11(2):47-49.
    于湲.北京城区地热田地下热水的水化学及同位素研究:[中国地质大学(北京)硕士学位论文].北京:中国地质大学,2006.
    张洪平,刘恩凯,王东升,等.中国大气降水稳定同位素组成及影响因素.中国地质科学院水文地质工程地质研究所所刊,1991:101~110.
    张珂,马浩明,蔡剑波.华南沿海温泉成因探讨.中山大学学报(自然科学版).2002,41(1):82-86.
    郑西来,刘鸿俊.地热温标中的水—岩平衡状态研究.西安地质学院学报.1996,18(1):74-79.
    周海燕,周训,方斌等.北京及其西北邻区温泉.城市地质.2006,1(1):9-15.
    朱炳球,朱立新,史长义等.地热田地球化学勘查.北京:地质出版社,1991.
    祖金华,吴乾蕃,连雨方.延庆-怀来盆地及其临区地热研究.地震学报,1997,19(4):442-444.
    船越素一,热河省丰宁县红汤寺温泉调查报文,1945.
    地矿部河北水文工程地质勘察院,中华人民共和国区域水文地质普查报告(冀西北地区),1994.
    河北省地矿局第八地质大队,遵化汤泉地热简介,1985.
    河北省地矿局区域地质调查大队,区域地质调查报告1:5万(丰宁幅),1994.
    河北省地质局第三地质大队二分队,河北省赤城县塘子庙、汤泉氦气普查报告,1973.
    赫金笏,河北省唐山专区卢龙县农田供水水文地质普查报告,1966.
    怀来地区地热调研组地质普查勘探组.怀来地区一九七一年地热普查勘探总结,1972.
    梁湛等,河北省张家口市沙城供水水文地质勘探报告,1995.
    刘国链、石开祜,大同至秦皇岛线【河北省阳原县东部与宣化县西南】大团尖隧道工程地质说明书,1988.
    毛廷科,庞家堡幅K-50-123-B新堡安幅(北部)K-50-123-D杏林堡幅K-50-124-A怀来县幅K-50-124-C 1/5万区域地质调查报告(地质部分),1985.
    彭汉兴,丰宁幅K-50-27 1/20万综合地质-水文地质测绘图幅说明书,1960.
    孙亚军、李广普、杨春芳等,河北省张家口地区阳原县阳原--化稍营电法勘探普查报告, 1982.
    吴永祥,郭金城,李广栋等,卢龙县幅J50E001020 1/5万地质图说明书,1996.
    许宝国、吴国良、梁湛等,河北省怀来县后郝窑热田地下热水普查勘探报告,1979.
    许宝喜、刘思福,河北省蔚县、阳原县农田灌溉水源勘探报告,1962.
    张双增等,肖营子幅K50E023020 1/5万地质图说明书,2000.
    赵明坤、付谦、张建成等,区域水文地质普查报告1/20万:冀东地区,1991.
    中华人民共和国水文地质工程地质局九零一队,北京西山地区矿泉概查报告,1956.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700