用户名: 密码: 验证码:
废电路板热解特性及其热解油的资源化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
废电路板是电子垃圾中最复杂、最难以处理的重要组成部件。以破碎和分选过程相结合的机械物理方法是其资源化回收处理的主流技术。由于废电路板强度高、硬度大、金属与非金属间结合紧密,机械破碎过程存在二次污染、效率低、能耗高和过粉碎等问题。就如何提高破碎效率和降低过程能耗己成为机械物理技术发展面临的难题。
     废电路板是由铜箔、树脂和增强材料层压而成的复合材料。热解作为一种较新的废电路板处理技术,可使废电路板中的树脂粘结层发生分解,削弱金属与非金属层间的结合力,从而实现金属和非金属层的高效解离;此外,热解过程中产生的热解气和热解油可作为燃气或化工原料回用。根据废电路板热解处理的优点,本论文提出废电路板热解后再进行金属和非金属分离回收的“前置热解法”处理废电路板,通过热解对废电路板进行加热改性处理,以提高废电路板中金属与非金属的破碎解离效率,降低过程能耗。本论文开展的主要研究工作和结论如下:
     (1)研究了废电路板的机械解离特性。利用两级破碎方式对废电路板进行机械破碎,了解不同粒径下金属和非金属的解离情况,并对其破碎产物的微观形貌、粒径分布等特性进行研究。研究结果表明,废电路板粉碎过程可分为金属解离和粒径调整两个阶段,机械解离的适宜破碎粒度应控制在0.59-0.15mm之间。废电路板粉碎料经筛分后,金属铜在0.25-0.42mm粒径范围内的含量最高,达32.32%。除C,H,O元素外,废电路板中还主要含有Si,Ca,Cu,Br等元素。不同粒径的废电路板热值在8.07-11.69MJ/kg之间,灰分在53.87-80.45%之间。
     (2)开展了大物料量热重实验研究。在自行设计的实验室规模的热重分析装置上进行了较大物料量的热重实验,研究了废电路板、键盘和电线三种典型电子垃圾组分的热解行为和特性,并与常规热重分析仪(微热重)上所得的实验结果进行比较,分析了微热重和大物料量热重两种不同模式下电子垃圾的热解机制,得到了相关的热解动力学参数。研究结果表明,大物料量热重相对于微热重存在热滞后效应,具有较低反应活化能值;分布活化能模型分析结果表明,热解过程中活化能随失重率变化,而不是单一数值。在相同热解条件下,实验所用三种物料的热稳定性顺序为:电线<废电路板<键盘,与其活化能值顺序一致。升温速率和颗粒粒径是影响废电路板热解过程的重要参数。随升温速率的增大,废电路板热解的TG和DTG曲线均向高温区移动;物料粒径的增大会抑制颗粒内部热解反应的进行。
     (3)借助TG-FTIR和Py-GC/MS联用技术手段,研究了废电路板热解产物的析出过程以及热解产物类型,并探讨了一些代表性产物的形成机理。研究结果表明,废电路板热解过程中气体产物的形成和释放主要集中在270-400℃,和废电路板样品的热失重温度区间一致。废电路板热解时主要经历三个阶段:①第一阶段,<293℃,主要是小分子气体产物H20, CH4, HBr, CO2, CH3COCH3的析出;②第二阶段,293-400℃树脂的主键大规模降解,释放出大量的大分子量有机物质,如酚类、醛类、酮类等;③第三阶段,>400℃,主要发生焦炭的碳化重整。在热解过程中,废电路板环氧树脂中的OH-C, O-CH2, C-C(phenyl), CH2-O-phenyl, C(phenyl)-Br等键发生了断裂,其中O-CH2的断键反应占主导地位。废电路板热解过程中约产生27种有机物,其中苯酚、异丙烯基苯酚和双酚A是主要的降解产物。
     (4)在自行设计的管式炉热解实验台上开展了废电路板批量热解实验,考查了热解终温和加热方式对废电路板热解后得到的残渣、热解液和热解气三种状态产物产率和产物性质的影响,利用氧弹热量计,FTIR,1H-NMR, GC-MS等多种测试手段实现了三种产物的定性分析。分析结果表明,当热解终温为600℃时,可得到76.13%的固体产物,14%的液体产物和9.86%的气体产物。当温度在600℃以上时,固体残渣的产率随温度变化不大,升高温度只是改变油气比。快加热方式下的焦油产率要比慢加热方式下的高。废电路板热解后分层效果明显,经加热改性处理后实现了非金属与金属在大粒径范围下的充分解离。解离后的玻璃纤维呈片状,避免了“过粉碎”,使回收获得的玻璃纤维再利用的可行性大增而使得加工容易。此外,热解过程中产生的热解气体中含有H2,CO, CH4等可燃组分,气体热值在11.24-15.21MJ/Nm3,可作为燃气为热解过程提供能量;热解油中含有大量的酚类化合物,如苯酚、异丙基苯酚等,热值在24.5-27.5MJ/kg之间,可作为燃料油回用,也可从中分离提取高附加值化工单体。
     (5)开展了废电路板热解油再资源化利用的研究。根据废电路板热解油富含酚类化合物的特点,提出了以热解油代替苯酚制备酚醛树脂的资源化利用方案,接着以制得的酚醛树脂为前躯体,通过与二茂铁进行催化共热解制备了CNTs,利用KOH(?)活化法制备了多孔炭。运用FTIR,1H-NMR, XRD, SEM, TEM, N2-等温吸附等技术手段对所制备产物的性能进行了分析表征。研究结果表明,废电路板热解油与甲醛在氨催化作用下可聚合成热解油酚醛树脂,聚合后,热解油中的芳环质子通过亚甲基键(-CH2-)或醚键(-CH2-O-CH2-)连接。制得的CNTs的产率为56.82%,具有中空结构,外径~338nm,壁厚~86nm,长度达几微米;制得的多孔炭产率为38.05%,表面存在大量的孔隙结构,孔边缘清晰,对氮气的吸附等温线属于典型的I型吸附等温线,以微孔为主,比表面积达1214m2/g,总孔容积为0.64cm3/g。
Printed circuit board (PCB) waste is a major constituent in electronic waste, which is very difficult to treat compared with other components. Mechanical treatment which employs crushing and separation processes for PCB recovery is becoming more popular and widely used in industrial practice. However, the characteristics of PCB with high hardness and tenacity, compact cohesion between metal and non-metal, could lead to secondary pollution, low efficiency, high-energy consumption and over-pulverization during mechanical crushing process.
     PCB waste mainly contains organic materials, metals and glass fiber. Pyrolysis is considered as a promising technique to recycle PCB waste. In pyrolysis process, the organic resin in PCB was decomposed into gas and liquid, thus weakening the binding force between the metal and non-metal layer and achieving efficient dissociation of metal and non-metal. Addtionally, the liquid and gas produced during pyrolysis could be reused as chemical feedstock or fuel. Based on the advantages of PCB pyrolysis listed above, a new process for recycling PCB waste defined as'pre-pyrolysis method'was proposed in this study, that is PCB waste was pyrolyzed, and then the metal separation occurred, with the aim to improve the liberation efficiency of metal and non-metal and reduce the energy consumption. The following works are carried out and the main conclusions are as follows in this dissertation:
     (1) The mechanical liberation characteristics of PCB waste were studied. A two-step crushing process which combined with a coarse-crushing step and a fine-pulverizing step was adopted. The liberation situation of the crushed products was observed. Properties of the crushed products, such as morphology, particle size distribution were determined. The results indicated that the crushing process of PCB could be divided into two stages, including metal dissociation and particle size adjustment. The suitable particle size for mechanical dissociation of PCB should be controlled in the range of0.59-0.15mm. The major elements in PCB include Si, Ca, Cu, Br except C, H, O. Copper was the most dominating metal in PCB and reached its maximum content in0.42-0.25mm particle size, about32.32%. The calorific values of PCB in different size changed in the range of8.07-11.69MJ/kg. The ash content was between53.87%and80.45%.
     (2) Thermogravimetric analysis on a self-designed laboratory scale thermo-balance (called Macro-TG) with more sample loading was carried out. The pyrolysis characteristics of typical components of e-waste, wire, keyboard and PCB waste, were investigated. The results were compared with those obtained in common thermo-gravimetric measurements (called common TG). The kinetic mechanism function of samples both in Macro-TG and common TG was determined. Additionally, the corresponding kinetic parameters of each sample were also obtained. The results indicated that large particles existed a pyrolysis reaction retardarce compared to fine one. And smaller activation energy were found in pyrolysis reaction occurred in Macro-TG. Distributed activation energy model analysis revealed that activation energy did not show a constant value during the pyrolysis process, and it changed with the rate of weight loss. Due to the composition difference, pyrolysis behaviors of wire, keyboard and PCB waste were different. In the same pyrolysis conditions, the sequence of thermal stability for the three studied species is described as:wire     (3) A combination of thermogravimetry-fourier transform infrared spectrum (TG-FTIR) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) techniques was employed to investigate the pyrolysis characteristics and gas product properties of PCB waste. The obtained information is used to explain the possible mechanism of PCB pyrolysis. The results indicated that gaseous products from PCB waste pyrolysis mainly evolved at270-400℃, which is in agreement with the observation obtained from the thermoanalysis. PCB waste degradation could be separated into three stages. The main products in the first stage (<293℃) are H2O, CH4, HBr, CO2, CH3COCH3. High-molecular-weight organic species, including phenolic compounds, aldehyde, ketone, etc., mainly evolved in the second stage. In the last stage, at temperatures above400℃, carbonization and char formation occured. The cleavage of OH-C, O-CH2, C-C(phenyl), CH2-O-phenyl and C(phenyl)-Br bonds occurs in the pyrolysis process of PCB, and the cleavage of the O-CH2bonds was a prevailing cracking reaction. About27kinds of organic matters were produced during PCB pyrolysis. Phenol, p-isopropenyl phenol and bisphenol A are the most prominent products.
     (4) Batch pyrolysis of PCB waste was conducted on a laboratory scale tubular furnace reactor, the influences of final pyrolysis temperature (FPT) and heating ways on the product yields and product property were investigated. The qualitative analysis of the pyrolysis products were carried out using GC, oxygen bomb calorimeter, FTIR,1H-NMR, and GC-MS. The results indicated that about76.13%solid product,14%pyrolysis liquid and9.86%pyrolysis gas were obtained at600℃. When the FPT above600℃, the char yields reach a constant value. The rise of FPT lead to the change of the ratio of the oil to gas. The yield of pyrolysis liquid obtained at fast pyrolysis was higher than that in slow pyrolysis. The decomposition of the resin binder weaken the binding force between the metal and nonmetal layer, and the metal and nonmetal in PCB achieve100%dissociation at coarse particle size after pyrolysis. The liberated glass fiber was in the form of flaky rather than pulverous. Additionally, the gas products contained combustible components like H2, CO, CH4, heating values of the gases were in the range of11.24-15.21MJ/Nm3. The pyrolysis liquids contained high proportion of phenolic compounds like phenol, isopropylphenol whose heating values were in the range of24.5-27.5MJ/kg.
     (5) The reutilization methods of the PCB pyrolysis oil were discussed. As the pyrolysis oil contained high concentration of phenol and phenol derivatives, pyrolysis oil was substituted for phenol as the raw material for preparing pyrolysis oil-based resin, which was then used as a precursor to prepare carbon nanotubes (CNTs) and porous carbon. The CNTs was prepared by catalytic pyrolysis of the oil-based resin with ferrocene at900℃. The porous carbon was prepared from carbonization of KOH-treated resin at700℃. Morphologies and structures of the resulting products were characterized by FTIR,1H-NMR, TG, XRD, SEM, TEM, N2-adsorption isotherm techniques. The results indicated that the oil could be polymerized into pyrolysis oil-based resin with formaldehyde. The aromatic nuclei in the oil were linked by-CH2-O-CH2-or-CH2-after polymerization. The yield of CNTs was56.82%. The products were hollow-centered CNTs with outer diameter of~338nm and wall thickness of-86nm. The length of the prepared tubules reached several micrometers. The prepared resin carbonized to porous carbons at yield of38.05%and its external surface covered cavities. All existing pores were predominance of microporosity. A type I isotherm was observed for the prepared porous carbon. The BET surface area, micropore volume and total pore volume of the porous carbons were1214m2/g,0.41cm3/g and0.64cm3/g, respectively.
引文
[1]Deng W J, Louie P K K, Liu W K, et al. Atmospheric levels and cytotoxicity of PAHs and heavy metals in TSP and PM2.5 at an electronic waste recycling site in southeast China. Atmospheric Environment,2006,40:6945-6955.
    [2]Qu W, Bi X, Sheng G, et al. Exposure to polybrominated diphenyl ethers among workers at an electronic waste dismantling region in Guangdong, China. Environment International,2007,33:1029-1034.
    [3]Xing G H, Chan J K Y, Leung A O W,et al. Environmental impact and human exposure to PCBs in Guiyu, an electronic waste recycling site in China. Environment International,2009,35:76-82.
    [4]Zhang X, Yang F, Luo C, et al. Bioaccumulative characteristics of hexabromocyclododecanes in freshwater species from an electronic waste recycling area in China. Chemosphere,2009,76:1572-1578.
    [5]Sepulveda A, Schluep M, Renaud F G, et al. A review of the environmental fate and effects of hazardous substances released from electrical and electronic equipments during recycling:Examples from China and India. Environmental Impact Assessment Review.2010.30:28-41.
    [6]王明兰.基于循环经济的电子垃圾治理立法思路研究:(硕士学位论文).上海:同济大学,2005.
    [7]滕吉艳,林逢春.电子废物立法及其实施效果国际比较.环境保护,2004,11:10-14.
    [8]李君,王晗.国内外逆向物流理论研究.物流科技,2009,10:1-3.
    [9]Ongondo F O, Williams I D, Cherrett T J. How are WEEE doing? A global review of the management of electrical and electronic wastes. Waste Management,2011,31: 714-730.
    [10]牛东杰,马俊伟,赵由才.电子废弃物的处理处置与资源化.北京:冶金工业出版社,2007.
    [11]钱伯章.国内外电子垃圾回收处理利用进展概述.中国环保产业,2010,8:10-23.
    [12]邹松涛,皮伟能.EPR在电子废物管理中的应用.中国环保产业,2009,9:31-35.
    [13]张科静,魏珊珊.国外电子废弃物再生资源化运作体系及对我国的启示.中国人口资源与环境,2009,19:109-115.
    [14]张龙,陈炜,钟声浩.国内外电子废物管理法规比较初探.上海环境科学,2008,28:218-221.
    [15]Nixon H, Saphores J-D M. Financing electronic waste recycling Californian households' willingness to pay advanced recycling fees. Journal of Environmental Management, 2007,84:547-559.
    [16]李金惠,程桂石.电子废物管理理论与实践.北京:中国环境科学出版社,2010.
    [17]Chung S-S, Zhang C. An evaluation of legislative measures on electrical and electronic waste in the People'Republic of China. Waste Management,2011,31:2638-2646.
    [18]李丹.电子废弃物管理立法研究.再生资源研究,2006,4:21-26.
    [19]中 国 电 子 垃 圾 之 灾 .2011 [citedhttp://news.163.com/photoview/3R710001/14672.html].
    [20]Fujimori T, Takigami H, Agusa T, et ah Impact of Metals in Surface Matrices from Formal and Informal Electronic-Waste Recycling around Metro Manila, the Philippines, and intra-Asian Comparison. Journal of Hazardous Materials,2012, doi:10.1016/j.jhazmat.2012.04.019:
    [21]Muenhor D, Harrad S, Ali N, et al. Brominated flame retardants (BFRs) in air and dust from electronic waste storage facilities in Thailand. Environment International,2010, 36:690-698.
    [22]Yamane L H, Moraes V T d, Espinosa D C R, et al. Recycling of WEEE: Characterization of spent printed circuit boards from mobile phones and computers. Waste Management,2011,31:2553-2558.
    [23]Wang H, Gu G H, Qi Y F. Crushing performance and resource characteristic of printed circuit board scrap. Journal of Central South University of Technology,2005,12: 552-555.
    [24]毛玉如.电子废弃物现状与回收处理探讨.再生资源研究,2004,2:11-14.
    [25]何亚群,段晨龙,王海峰,等.电子废弃物资源化处理.北京:化学工业出版社,2006.
    [26]Guo C, Wang H, Liang W, et al. Liberation characteristic and physical separation of printed circuit board. Waste Management,2011,31:2161-2166.
    [27]Li J, Lu H, Guo J, et al. Recycle technology for recovering resources and products from waste printed circuit boards. Environmental Science and Technology 2007,41: 1995-2000.
    [28]Ogunniyi I O, Vermaak M K G. Investigation of froth flotation for beneficiation of printed circuit board comminution fines. Minerals Engineering,2009,22:378-385.
    [29]Eswaraiah C, Kavitha T, Vidyasagar S, et al. Classification of metals and plastics from printed circuit boards (PCB) using air classifier. Chemical Engineering and Processing, 2008,47:565-576.
    [30]Zhang S, Forssberg E. Intelligent Liberation and classification of electronic scrap. Powder Technology,1999,105:295-301.
    [31]Yoo J-M, Jeong J, Yoo K, et al. Enrichment of the metallic components from waste printed circuit boards by a mechanical separation process using a stamp mill. Waste Management 2009,29:1132-1137.
    [32]沈志刚,麻树林,连祺祥,等,废印刷电路板的粉碎分离回收工艺及其所用设备.1999:中国专利.
    [33]张洪建,赵跃民,张华.变径液固两相流分选床回收废弃线路板中金属的研究.中国矿业大学学报,2007,36:65-68.
    [34]王全强,段晨龙,赵跃民.涡电流操作参数对铝分选影响的研究.中国资源综合利用,2005,12:22-25.
    [35]周翠红,路迈西.空气摇床分选废旧电路板.辽宁工程技术大学学报,2006,25:471-474.
    [36]温雪峰,范英宏,赵跃民等.用静电选的方法从废弃电路板中回收金属富集体的研究.环境工程,2004,22:77-80.
    [37]段晨龙,何亚群,王海峰等.阻尼式脉动气流分选装置分选机理的研究.中国矿业大学学报,2003,32:725-728.
    [38]王常省.离心复合力场回收废弃电路板中金属的基础研究:(博士学位论文).北京:中国矿业大学,2007.
    [39]Wu J, Li J, Xu Z-m. A new two-roll electrostatic separator for recycling of metals and nonmetals from waste printed circuit board. Journal of Hazardous Materials,2009, 161:257-262.
    [40]路洪洲.破碎废弃印刷电路板的高压静电分选:(硕士学位论文).上海:上海交通大学,2007.
    [41]Li J, Xu Z M. Environmental Friendly Automatic Line for Recovering Metal from Waste Printed Circuit Boards. Environmental Science and Technology 2010,44:1418-1423.
    [42]周翠红,潘永泰.ZKB剪切破碎机及其性能分析.选煤技术,2004,6:21-23.
    [43]Mou P, Wa L, Xiang D, et al. A physical process for recycling and reusing waste printed circuit boards. International Symposium on Electronics and the Environment,2004.
    [44]Duana C, Wen X, Shi C, et al. Recovery of metals from waste printed circuit boards by a mechanical method using a water medium. Journal of Hazardous Materials,2009,166: 478-482.
    [45]邹亮,白庆中,李金惠,等.废弃线路板的低温粉碎试验研究.中国矿业大学学报,2006.35:220-224.
    [46]Zhou C-h, Lu M-x, Pan Y-t, et al. Low-temperature Modification of Discarded Printed Circuit Board. Acta Scientiarum Naturalium Universitatis Sunyatseni,2007,46: 151-153.
    [47]陈茂和,路迈西,周翠红,等.废旧印刷线路板的低温细碎研究.第八届全国颗粒制备与处理学术和应用研讨会,2007.
    [48]韩增玉.废电路板中金属铁、铜、金的回收试验研究:(硕士学位论文).昆明:昆明理工大学,2010.
    [49]Yang H, Liu J, Yang J. Leaching copper from shredded particles of waste printed circuit boards. Journal of Hazardous Materials,2011,187:393-400.
    [50]盛广能.废弃电脑印刷线路板中铜回收的实验研究:(硕士学位论文).青岛:青岛科技大学,2008.
    [51]Kim E-y, Kim M-s, Lee J-c, et al. Selective recovery of gold from waste mobile phone PCBs by hydrometallurgical process. Journal of Hazardous Materials,2011,198: 206-215.
    [52]Park Y J, Fray D J. Recovery of high purity precious metals from printed circuit boards. Journal of Hazardous Materials,2009,164:1152-1158.
    [53]Veit H M, Bernardes A M, Ferreira J Z, et al. Recovery of copper from printed circuit boards scraps by mechanical processing and electrometallurgy. Journal of Hazardous Materials,2006, B137:1704-1709.
    [54]Colmer A R, Hinkel M E. The role of mieroogrnaisms in acid mining draingae:a preliminary report. Seience,1947,106:253-256.
    [55]童雄.微生物浸矿的理论与实践.北京:冶金工业出版社,1997.
    [56]李利德,贺文智,李光明,等.微生物浸出印刷线路板中金属的研究进展.环境污染与防治,2011,33:83-86.
    [57]Choi N S, Cho K S, Kim D S, et al. Microbial recovery of copper from printed circuit boards of waste computer by Acidithiobacillus ferrooxidans. Journal of Environmental Science Health A 2004,39:2973-2982.
    [58]Ilyas S, Anwar M A, Niazi S B, et al. Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria. Hydrometallurgy,2007,88:180-188.
    [59]Chien Y-C, Wang H P, Lin K-S, et al. Fate of bromine in pyrolysis of printed circuit board wastes. Chemosphere,2000,40:383-387.
    [60]潘君齐.基于超临界流体技术的印刷线路板再资源化工艺与方法研究:(博士学位论文).合肥:合肥工业大学,2006.
    [61]孔祥明.超临界法回收印刷线路板影响因素及尾气处理研究:(硕士学位论文).合肥:合肥工业大学,2008.
    [62]Xiu F-R, Zhang F-S. Materials recovery from waste printed circuit boards by supercritical methanol. Journal of Hazardous Materials,2010,178:628-634.
    [63]郝娟,王海锋,宋树磊,等.废线路板热解处理研究现状.中国资源综合利用,2008,26:30-33.
    [64]尚海利,王平,栾晓彦,等.废弃印刷线路板资源化处理的研究进展.化工环保,2008.28:133-136.
    [65]Andersson M, Wedel M K, Forsgren C, et al. Microwave assisted pyrolysis of residual fractions of waste electrical and electronics equipment. Minerals Engineering,2012, 29:105-111.
    [66]Dominguez A, Menendez J A, Fernandez Y, et al. Conventional and microwave induced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas Journal of Analytical and Applied Pyrolysis,2007,79:128-135.
    [67]李红军,孙水裕,邓丰,等.热解处理废旧线路板方法的研究进展.中国资源综合利用,2009,27:15-18.
    [68]Hall W J, Williams P T. Separation and recovery of materials from scrap printed circuit boards. Resources. Conservation and Recycling,2007,51:691-709.
    [69]Hall W J. Williams P T. Processing waste printed circuit boards for material recovery. Circuit World,2007,4:43-50.
    [70]Marco I D, Caballero B M, Chomon M J, et al. Pyrolysis of electrical and electronic wastes. Journal of Analytical and Applied Pyrolysis,2008,82:179-183.
    [71]Molto J, Egea S, Conesa J A, et al. Thermal decomposition of electronic wastes:Mobile phone case and other parts. Waste Management,2011,31:2546-2552.
    [72]Molto J, Font R, Galvez A, et al. Pyrolysis and combustion of electronic wastes. Journal of Analytical and Applied Pyrolysis,2009,84:68-78.
    [73]Barontini F, Marsanich K, Petarea L, et al. Thermal degradation and decomposition products of electronic boards containing BFRs. Industrial Engineering Chemistry Research,2005,12:4186-4199.
    [74]Lopez F A, Martin M I. Alguacil F J, et al. Thermolysis of fibreglass polyester composite and reutilisation of the glass fibre residue to obtain a glass-ceramic material. Journal of Analytical and Applied Pyrolysis,2012,93:104-112.
    [75]彭绍洪,陈烈强,甘舸,等.废旧电路板真空热解.化工学报,2006,57:2720-2726.
    [76]孙路石.废弃印刷线路板的热解机理及产物回收利用的试验研究:(博士学位论文).武汉:华中科技大学,2004.
    [77]郭晓娟.热解技术处理废弃印刷电路板的实验研究:(博士学位论文).天津:天津大学,2008.
    [78]Guan J, Li Y-S, Lu M-X. Product characterization of waste printed circuit board by pyrolysis. Journal of Analytical and Applied Pyrolysis,2008,83:185-189.
    [79]全翠,李爱民,栾敬德,等.电路板热解特性及动力学分析.安全与环境学报,2008,28:55-58.
    [80]Quan C, Li A, Gao N, et al. Characterization of products recycling from PCB waste pyrolysis. Journal of Analytical and Applied Pyrolysis,2010,89:102-106.
    [81]Antonetti P, Flitris Y, Flamant G, et al. Degradation products of the process of thermal recovery of copper from lamina scraps in lab-scale fluidizedbed reactor.2004,108: 199-206.
    [82]Guo Q, Yue X, Wang M, et al. Pyrolysis of Scrap Printed Circuit Board Plastic Particles in a Fluidized Bed. Powder Technology,2010,198:422-428.
    [83]Zheng Y, Shen Z, Ma S, et al. A novel approach to recycling of glass fibers from nonmetal materials of waste printed circuit boards. Journal of Hazardous Materials, 2009,170:978-982.
    [84]李沐.连续回转式热解处理废旧印刷电路版的实验及机理研究:(硕士学位论文).北京:清华大学,2006.
    [85]佟志芳,毕诗文,杨毅宏.微波加热在冶金领域中应用研究现状.材料与冶金学报,2004,3:117-120.
    [86]谭瑞淀.微波处理废印刷电路板的基础研究:(硕士学位论文).大连:大连理工大学,2007.
    [87]王磊.微波热解废电路板成分分析与表征:(硕士学位论文).昆明:昆明理工大学,2009.
    [88]李飞,吴逸民,赵增立,等.熔融盐对印刷线路板热解影响实验研究.燃料化学学报,2007,35:548-552.
    [89]李飞,赵增立,李海滨,等.废弃印刷线路板熔融盐气化特性研究.环境科学学报,2007.27:1851-1857.
    [90]Flandinet L, Tedjar F, Ghetta V, et al. Metals recovering from waste printed circuit boards (WPCBs) using molten salts. Journal of Hazardous Materials,2012,213-214: 485-490.
    [91]Long L, Sun S, Zhong S, et al. Using vacuum pyrolysis and mechanical processing for recycling waste printed circuit boards. Journal of Hazardous Materials,2010,177: 626-632.
    [92]Zhou Y, Wu W, Qiu K. Recovery of materials from waste printed circuit boards by vacuum pyrolysis and vacuum centrifugal separation. Waste Management,2010,30: 2299-2304.
    [93]Kowalska E, Radomska J, Konarski P, et al. Thermogravimetric investigation of wastes from electrical and electronic equipment (WEEE). Journal of Thermal Analysis and Calorimetry,2006,86:137-140.
    [94]Li J, Duan H, Yu K, et al. Characteristic of low-temperature pyrolysis of printed circuit boards subjected to various atmosphere. Resources, Conservation and Recycling,2010, 54:810-815.
    [95]李飞,赵增立,李海滨,等.溴化环氧树脂印刷线路板热分解机理实验研究.燃料化学学报,2008,36:371-375.
    [96]Chiang H-L, Lin K-H, Lai M-H, et al. Pyrolysis characteristics of integrated circuit boards at various particle sizes and temperatures. Journal of Hazardous Materials, 2007,149:151-159.
    [97]Quan C, Li A, Gao N. Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes. Waste Management,2009,29:2353-2360.
    [98]Chen K S, Chen H C, Wu C H. Kinetics of thermal and oxidative decomposition of printed circuit boards. Journal of Environmental Engineering,1999,125:277-283.
    [99]甘舸.陈烈强,蔡明招,等.线路板废渣的真空热解动力学.华南理工大学学报(自然科学版),2006,34:20-22.
    [100]陈康兴.触媒对印刷电路板在裂解过程中的催化作用之研究:(硕士学位论文).台湾:台湾国立中山大学,2001.
    [101]Hall W J, Williams P T. Pyrolysis of brominated feedstock plastic in a fluidised bed reactor. Journal of Analysis and Applied Pyrolysis,2006,77:75-82.
    [102]Barontini F, Cozzani V. Formation of hydrogen bromide and organobrominated compounds in the thermal degradation of electronic boards. Journal of Analysis and Applied Pyrolysis,2006,77:41-55.
    [103]Ni M, Xiao H, Chi Y, et al. Combustion and inorganic bromine emission of waste printed circuit boards in a high temperature furnace. Waste Management,2011, doi:10.1016/j.wasman.2011.10.016:
    [104]Duan H, Li J, Liu Y, et al. Characterizing the emission of chlorinated/brominated dibenzo-p-dioxins and furans from low-temperature thermal processing of waste printed circuit board Environmental Pollution,2012,161:185-191.
    [105]Jin Y-q, Tao L, Chi Y, et al. Conversion of bromine during thermal decomposition of printed circuit boards at high temperature. Journal of Hazardous Materials,2011,186: 707-712.
    [106]陈波.废旧印刷电路板的热解脱溴实验研究:(硕士学位论文).北京:清华大学,2008.
    [107]Blazso M, Czegeny Z, Csoma C. Pyrolysis and debromination of flame retarded polymers of electronic scrap studied by analytical pyrolysis. Journal of Analytical Pyrolysis,2002,64:249-261.
    [108]Hall W J, Williams P T. Removal of organobromine compounds from the pyrolysis oils of flame retarded plastics using zeolite catalysts. Journal of Analytical and Applied Pyrolysis,2008,81:139-147.
    [109]Hornung A, Balabanovich A I, Donner S, et al. Detoxification of brominated pyrolysis oils. Journal of Analytical and Applied Pyrolysis,2003,70:723-733.
    [110]欧育湘,李建军.阻燃剂一性能、制造及应用.北京:化学工业出版社,2009.
    [111]冯涛.电路板热处置过程中嗅代二恶英生成和抑制的研究:(硕士学位论文).浙江:浙江大学,2011.
    [112]Scharnhorst W, Ludwig C, Wochele J, et al. Heavy metal partitioning from electronic scrap during thermal End-of-Life treatment. Science of the Total Environment,2007, 373:576-584.
    [113]李飞,赵增立,李海滨,等.废弃印刷线路板熔融盐气化特性:III金属分布与回收实验.环境科学学报,2008,28:1586-1592.
    [114]Zhan L, Xu Z. Application of Vacuum Metallurgy to Separate Pure Metal from Mixed Metallic Particles of Crushed Waste Printed Circuit Board Scraps. Environmental Science and Technology,2008,42:7676-7681.
    [115]Zhan L, Xu Z. Separating and Recovering Pb from Copper-Rich Particles of Crushed Waste Printed Circuit Boards by Evaporation and Condensation. Environmental Science and Technology,2011,45:5359-5365.
    [116]段华波.基于加热改性处理的废线路板资源化过程及作用机制研究:(博士学位论文).北京:清华大学,2010.
    [117]湛志华,丘克强.添加物对废弃环氧电路板真空热解产物的影响.中南大学学报(自然科学版),2011,42:2233-2238.
    [118]王清,王绪科,王伯勇,等.从电路板废料中回收苯酚及异丙基苯酚.山东科学,2000,13:57-60.
    [119]Busselle L D, Moore T A, Shoemaker J M, et al. Separation processes and economic evaluation of tertiary recycling of electronic scrap. International Symposium on Electronics and the Environment,1999.
    [120]彭绍洪.废旧电路板的热解及热解油制备酚醛树脂的工艺研究:(博士学位论文).广州:华南理工大学,2006.
    [121]Quan C, Li A, Gao N. Synthesis of carbon nanotubes and porous carbons from printed circuit board waste pyrolysis oi. Journal of Hazardous Materials,2010,179:911-917.
    [122]Huang Y-T, Lin Y-W, Chen C-M. Characterization of carbon nanomaterials synthesized from thermal decomposition of paper phenolic board. Materials Chemistry and Physics,2011,127:397-404.
    [123]梁海峰.废旧印刷线路板真空热解及玻璃纤维回收利用的研究:(硕士学位论文).广东:广东工业大学,2011.
    [124]Cunliffe A M, Williams P T. Characterisation of products from the recycling of glass fibre reinforced polyester waste by pyrolysis. Fuel,2003,82:2223-2230.
    [125]Havlik T, Orac D, Petranikova M, et al. Leaching of copper and tin from used printed circuit boards after thermal treatment. Journal of Hazardous Materials,2010,183: 866-873.
    [126]张怀武,何为,林金堵,等.现代印刷电路原理与工艺.北京:机械工业出版社,2009.
    [127]孙曼灵,吴良义.环氧树脂应用原理与技术.北京:机械工业出版社,2002.
    [128]Xiang Y, Wu P, Zhua N, et al. Bioleaching of copper from waste printed circuit boards by bacterial consortium enriched from acid mine drainage. Journal of Hazardous Materials,2010,184:812-818.
    [129]殷进.废弃印刷电路板破碎解离与气流分选研究:(硕士学位论文).上海:同济大学,2006.
    [130]谢广元,张明旭,边炳鑫.选矿学.徐州:中国矿业大学出版社,2001.
    [131]吴江.破碎废旧电路板高压静电分选的理论模型与优化设计:(博士学位论文).上海:上海交通大学,2009.
    [132]Wu J, Qin Y, Zhou Q, et al. Impact of nonconductive powder on electrostatic separation for recycling crushed waste printed circuit board. Journal of Hazardous Materials, 2009,164:1352-1358.
    [133]赵跃民,段晨龙,何亚群.电子废物的物理分选理论与技术.北京:科学出版社,2009.
    [134]Grause G, Furusawa M, Okuwaki A, et al. Pyrolysis of tetrabromobisphenol-A containing paper laminated printed circuit boards. Chemosphere,2008,71:872-878.
    [135]李爱民,刘淑静,王伟云.大物料量污泥燃烧机理及表观动力学特性.燃烧科学与技术,2009,15:381-387.
    [136]高宁博.高温过热水蒸气的制备及生物质高温气化重整制氢特性研究:(博士学位论文).大连:大连理工大学,2009.
    [137]Varhegyi G, Bobaly B, Jakab E, et al. Thermogravimetric Study of Biomass Pyrolysis Kinetics. A Distributed Activation Energy Model with Prediction Tests. Energy& Fuels,2011,25:24-32.
    [138]Please C P, McGuinness M J, McElwain D L S. Approximations to the distributed activation energy model for the pyrolysis of coal. Combustion and Flame,2003,133: 107-117.
    [139]Jaber J O, Probert S D. Pyrolysis and gasification kinetics of Jordanian oil-shales. Applied Energy,1999,63:269-286.
    [140]Mermoud F, Salvador S, Steene L V d, et al. Influence of the pyrolysis heating rate on the steam gasification rate of large wood char particles. Fuel,2006,85:1473-1482.
    [141]Beaumont O, Schwob Y. Influence of physical and chemical parameters on wood pyrolysis. Industrial Engineering Chemistry Process Design and Development,1984, 23:637-641.
    [142]Encinar J M, Beltran F J, Bernalte A, et al. Pyrolysis of two agricultural residues:olive and grape bagasse. Influence of particle size and temperature. Biomass and Bioenergy, 1996,11:397-409.
    [143]Maschio G, Koufopanos C, Lucchesi A. Pyrolysis, a promising route for biomass utilization. Bioresource Technology,1992,42:219-231.
    [144]Liou T-H. Kinetics of thermal decomposition of electronic packaging material. Chemical Engineering Journal.2004,98:39-51.
    [145]Agrawal R K. Analysis of non-isothermal reaction kinetics Part 1. Simple reactions Thermochimica Acta,1992,203:93-110.
    [146]Encinar J M, Gonzalez J F, Gonzalez J. Fixed-bed pyrolysis of Cynara cardunculus L. Product yields and compositions. Fuel Processing Technology,2000,68:209-222.
    [147]Jalan R K, Srivastava V K. Studies on pyrolysis of a single biomass cylindrical pellet-kinetic and heat transfer effects. Energy Conversion & Management,1999,40: 467-494.
    [148]Katyal S, Thambimuthu K, Valix M. Carbonization of bagasse in a fixed bed reactor: influence of process variables on char yield and characteristics. Renewable Energy, 2003,28:713-725.
    [149]樊俊杰,金晶,代纪邦.超细煤粉热解特性的试验研究.中国动力工程学会第三届青年学术年会,2005.
    [150]胡荣祖,史启祯.热分析动力学.北京:科学出版社,2001.
    [151]Ferdous D, Dalai A K, Bej S K, et al. Pyrolysis of Lignins:Experimental and kinetics Studies. Energy & Fuels,2002,16:1405-1412.
    [152]朱颖,金保升,王泽明.分布活化能模型在垃圾热解/气化动力学研究中的应用.动力工程,2007,27:441-445.
    [153]Miura K. A new and simple method to estimate f(E) and ko(E) in the distributed activation energy model from three sets of experimental data. Energy & Fuels,1995,9: 302-307.
    [154]Miura K, Maki T. A simple method estimating f(E) and ko(E) in the distributed activation energy model. Energy & Fuels,1998,12:864-869.
    [155]孙路石,陆继东,王世杰,等.溴化环氧树脂印刷线路板热解产物的分析.华中科技大学学报(自然科学版),2003,31:50-52.
    [156]Senneca O, Chirone R, Salatino P. A Thermogravimetric Study of Nonfossil Solid Fuels. 2.Oxidative Pyrolysis and Char Combustion. Energy & Fuels,2002,16:661-668.
    [157]陈亮.有氧条件下生物质热解特性的实验研究:(硕士学位论文).上海:上海交通大学,2011.
    [158]Kandare E, Kandola B K, Price D, et al. Study of the thermal decomposition of flame-retarded unsaturated polyester resins by thermogravimetric analysis and Py-GC/MS. Polymer Degradation and Stability,2008,93:1996-2006.
    [159]Boateng A A, Mullen C A, McMahan C M, et al. Guayule (Parthenium argentatum) pyrolysis and analysis by PY-GC/MS. Journal of Analytical and Applied Pyrolysis, 2010,87:14-23.
    [160]Mocanu A M, Odochian L, Apostolescu N, et al. TG-FTIR study on thermal degradation in air of some new diazoaminoderivatives. Journal of Thermal Analysis and Calorimetry,2010.100:615-622.
    [161]Cai G M, Yu W D. Study on the thermal degradation of high performance fibers by TG/FTIR and Py-GC/MS. Journal of Thermal Analysis and Calorimetry,2011,104: 757-763.
    [162]Balabanovich A I, Hornung A, Merz D, et al. The effect of a curing agent on the thermal degradation of fire retardant brominated epoxy resins. Polymer Degradation and Stability,2004,85:713-723.
    [163]Marongiu A, Bozzano G, Dente M, et al. Detailed kinetic modeling of pyrolysis of tetrabromobisphenol A. Journal of Analytical and Applied Pyrolysis,2007,80: 325-345.
    [164]Luda M P, Balabanovich A 1, Camino G. Thermal decomposition of fire retardant brominated epoxy resins. Journal of Analytical and Applied Pyrolysis,2002,65: 25-40.
    [165]Luda M P, Balabanovich A I, Zanetti M, et al. Thermal decomposition of fire retardant brominated epoxy resins cured with different nitrogen containing hardeners. Polymer Degradation and Stability,2007,92:1088-1100.
    [166]李爱民,高宁博,李凤彬,等.有害固体废物热解焦油特性研究.重庆环境科学,2003,25:20-23.
    [167]Lee Y-S, Tong L-I. Forecasting energy consumption using a grey model improved by incorporating genetic programming. Energy Conversion and Management,2011,52: 147-152.
    [168]高宁博,李爱民.有机废物气化-焚烧处理尾气排放灰色预测模型研究.大连理工大学学报,2008,48:33-38.
    [169]刘思峰,党耀国,方志耕,等.灰色系统理论及其应用(第5版).北京:科学出版社,2010.
    [170]段晨龙,赵跃民,温雪峰,等.废弃电路板破碎中热解气体的研究.中国矿业大学学报,2005,34:730-734.
    [171]马路,赵勇,闰振,等.落叶松树皮热解油酚醛树脂胶薪剂的制备与性能表征.林产工业,2007,34:35-37.
    [172]杜淑凤.煤制酚醛树脂的结构特征.洁净煤技术,2000,6:25-27.
    [173]Prauchner M J, Pasa V M D, Otani C, et al. Eucalyptus Tar Pitch Pretreatment for Carbon Material Processing. Journal of Applied Polymer Science,2004,91: 1604-1611.
    [174]Qiao W M, Huda M, Song Y, et al. Carbon Fibers and Films Based on Biomass Resins. Energy & Fuels,2005,19:2576-2582.
    [175]李庆学.石油焦基高比表面积活性炭制备工艺研究:(硕士学位论文).大连:大连理工大学,2011.
    [176]Yang Y, Liu X, Xu B, et al. Preparation of vapor grown carbon fibers from deoiled asphalt. Carbon,2006,44:1661-1664.
    [177]Qiu J, Li Y, Wang Y, et al. Production of carbon nanotubes from coal. Fuel Processing Technology,2004,85:1663-1670.
    [178]黄发荣,陈涛,沈学宁.高分子材料的循环利用.北京:化学工业出版社,2000.
    [179]徐复铭,周伟良. Resol型酚醛树脂热解特征的TG-MS研究.宇航材料工艺,2003,1:18-23.
    [180]Stamatin Ⅰ, Morozan A, Dumitru A, et al. The synthesis of multi-walled carbon nanotubes (MWNTs) by catalytic pyrolysis of the phenol-fornaldehyde resins. Physica E,2007,37:44-48.
    [181]Yamashita Y, Ouchi K. Influence of alkali on the carbonization process:I. carbonization of 3,5-dimethylphenol-formaldehyde resin with NaOH. Carbon,1982, 20:41-45.
    [182]Gorka J, Zawislak A, Choma J, et al. KOH activation of mesoporous carbons obtained by soft-templating. Carbon,2009,46:1159-2274.
    [183]陈汉平,邵敬爱,杨海平,等.一种生物污泥热解半焦孔隙结构特性.中国电机工程学报,2008,28:82-86.
    [184]Avnir, Jaroniec M. An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials. Langmuir,1989,5:1431-1433.
    [185]鞠付栋.煤的气化反应行为及气化为基础的先进能源动力系统研究:(博士学位论文).武汉:华中科技大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700