用户名: 密码: 验证码:
循环荷载作用下岩石疲劳特性的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程中的岩体不仅仅承受着静态荷载的作用,还经受着爆炸、冲击、地震等动态荷载的影响。因此,研究循环荷载作用下岩石的疲劳特性,提出稳定性分析方法和控制手段是工程中迫切需要解决的问题。特别是近年来,由于大规模水利工程的建设,城市地下交通的普及,大跨度超长隧道的开挖,以及深部矿藏的开采,许多前所未有的动力学难题摆在了我们的面前。如何优化隧道、巷道、边坡、水坝、基岩等结构的抗震性能,保障工程安全以及人类的生命安全,这些都是科研工作者的历史使命,也是我们抓住机遇,施展才能的大好平台。
     本文围绕着结构疲劳分析的基本框架,着重从理论研究和实验分析两大方面进行了一系列开创性的研究,同时给出了工程应用的框架雏形,具体包括以下几个方面的内容:
     (1)针对于三峰谷雨流计数模型的不足之处,提出了改进方案。改进后的三峰谷计数模型融等值点压缩、峰谷检测以及循环计数为一体,极大地简化了计数过程。运用改进三峰谷计数模型,对现场采集的爆破振动应力谱进行了循环计数,统计结果表明,单次爆破中小幅疲劳循环占绝大部分,而且拉压循环所占的比例比较大。
     (2)根据岩石损伤演化具有三阶段发展规律的这一特点,提出了倒S非线性疲劳累积损伤模型。探讨了倒S模型中参数的物理含义以及对倒S曲线的影响,给出了参数的建议取值范围。运用倒S模型,演示了岩石三级加载时累积损伤的计算,首次提出了疲劳路径的概念,从理论上解释了“锻炼”效应产生的根本原因。由于倒S模型考虑了疲劳初始损伤,考虑了加载次序对累积损伤的影响以及荷载间的相互作用,因此具有较高的精度。而且,利用疲劳路径的概念,倒S模型可以直接用于随机疲劳加载时的损伤计算和寿命估算。
     (3)针对倒S模型参数估计问题,提出了以有限组合法计算初始值,再应用Levenberg-Marquardt法进行倒S曲线拟合的解决方案。计算结果表明,此方案拟合得到的倒S曲线与实验数据均为高度相关,既说明了拟合算法的高效性,也说明了倒S模型的正确性。
     (4)分析了加载条件对岩石全应力应变曲线的影响,给出了静载强度确定的原则。从试验的角度,讨论了应力上限、应力幅值、加载波形以及加载频率对岩石疲劳强度的影响。试验结果表明,上限应力越高,应力幅值越大,加载频率越高,岩石的疲劳寿命就越短。对于加载波形的影响,试验结果表明,正弦波加载的疲劳寿命大于三角波加载的而小于矩形波加载的。
     (5)研究了岩石疲劳变形的特性,验证了疲劳破坏的极限变形规律。分析了轴向变形、横向变形和体积变形在疲劳加载过程中的演化规律。首次得出了以下结论:三种变形都具有三阶段演化规律,三阶段的划分基本一致,横向变形和体积变形的增量比轴向变形的大得多。
     (6)依据试验结果,对比了各种损伤变量定义法的合理性,指出残余应变法由于物理意义明确,考虑了初始损伤,是一种相对比较理想的定义方法。岩石的损伤演化具有三阶段规律,而影响损伤发展的主要因素有应力水平以及初始损伤等。分析结果表明,上限应力、幅值及初始损伤越高,损伤演化曲线的第三阶段占疲劳寿命的比例越大,第二阶段所占比例相应减小,岩石的疲劳寿命也就越短。
     (7)将名义应力法中材料疲劳性能描述的S—N曲线以及作者提出的倒S模型,融入到局部应力应变法中,形成了一种适用于岩石材料的修正局部应力应变法。以倒S模型为基础,演示了变幅加载条件下残余寿命及总寿命的估算步骤。根据修正局部应力应变法的原理,简要介绍了随机疲劳加载条件下疲劳寿命估算的一般步骤。
     (8)根据疲劳分析的特点以及疲劳软件开发的需求,提出以插件式软件体系结构构建开放式疲劳分析环境的新思路。针对于插件系统运行效率的问题,提出了建立插件映射表,利用动态加载技术节省系统运行开销的解决方案。同时,为了解决插件标识中的重名现象,提出了由宿主程序动态分配ID的方案,杜绝了重名的风险,降低了系统与插件间的耦合度。
Rock mass in engineering is not only subjected to static load but also affected by dynamic load such as blasting, impact and earthquake etc. Thus, it is a crucial problem to solve in engineering that taking research on the fatigue behavior of rock subjected to cyclic loading and putting forward analyzing and controlling methods for stability. Especially in the last years, with the development of large-scale hydraulic engineering, urban underground transportation engineering, large-span and large-distance tunnels engineering and deep mining engineering, there are many dynamic problems for us.
     A series of innovative investigations are carried out in theory、experiment and engineering in this paper based on the frame of fatigue analysis of structure. The main contents include:
     (1) An improved scheme is proposed to overcome the defects of three-points rain flow counting model. The improved model simplified the process of counting by integrating equivalent points compression, peak-valley points detection into cycle counting. Then, the distribution of frequency is obtained by using the improved model to analyze the stress spectrum of vibration. The statistical result indicates that most of fatigue cycles are low amplitude cycles and the proportion of tensile and compressive cycles is very high.
     (2) A lot of experiments indicate that the axial irreversible deformation of rock subjected to cyclic loading has stable value and three-phases development law. Base on which, a new inverted-S shaped nonlinear fatigue damage cumulative model is presented in this paper. These physical meanings and ranges of all Parameters of this model are discussed. By using this model, a damage calculation process of rock under three-level cyclic loading is demonstrated and a concept of fatigue path is put forward. To our surprise, the basic reason contributing to the fatigue "training" effect can be well explained theoretically by the concept of fatigue path. In sum, this model has relatively higher accuracy by considering the initial damage of material, loads interaction effect and loading sequence effect and can be applied in damage calculation and fatigue life prediction of random or variable amplitude cyclic loading.
     (3) A Finite Combination Method is proposed in this paper to estimate initial parameters for Levenberg-Marquardt calculation. That is, initial points uniformly distributed in the feasible region of parameters are inputted for Levenberg-Marquardt calculation and those parameters with minimum residual sum of squares are taken as final initial parameters. The fitting result is highly correlated with experimental data, by which this new method is improved effective and the inverted-S model correct.
     (4) The principle determining the static strength of rock is put forward after taking an analysis about the influence of loading condition on the complete stress-strain curve. Then, the influence of maximum cycling stress, loading amplitude, waveform and frequency on fatigue strength has also been studied. The experimental results show that the rock has a shorter life when being applied higher maximum cycling stress and amplitude or higher loading frequency. Meanwhile, an obvious conclusion can be drawn that the life of rock under sine waveform is bigger than that under triangle waveform but smaller than that under rectangle waveform.
     (5) The deformation properties of rock is studied and the law of ultimate deformation is verified in this paper. The investigation on evolution law of axial, lateral and volumetric strain shows that a three-phases developing law can be found in these three kinds of strains and the developing curves can be divided into same three phases. Furthermore, an innovative conclusion can be reached that the deformation and deformation rate of lateral and volumetric strain are much larger than those of axial strain.
     (6) The experimental result of rock indicates that many methods such as elastic modulus method, ultrasonic velocity method, ultimate strain and residual strain methods are all able to represent the damage evolution law of rock. Among them, residual strain method is more suitable for its clear concept and consideration of fatigue initial damage. The damage of rock develops according to three-phases law and the main factors affecting fatigue deformation include stress level and initial damage. The result shows that the higher maximum stress, amplitude and initial damage, the shorter fatigue life for the increase of proportion of the third phase in the whole life.
     (7) A Modified Local Strain Method applicable for rock is presented by introducing S-N curve and the inverted-S model proposed by author. Then, the approach to residual life and total life estimation is illustrated based on the inverted-S model. Meanwhile, according to the principle of the Modified Local Stain Method, the general steps of estimating fatigue life of rock subjected to random loading are briefly introduced.
     (8) A new idea of using Plug-in software architecture to construct fatigue analysis system is put forward after comprehensive research on the procedure of fatigue analysis of structure and the requirement of fatigue software development. Then, a solution to saving the cost of system running is proposed by constructing a plug-ins mapping table and using dynamic loading technique. Meanwhile, a method of dynamically allocating symbol IDs for plug-ins by host program is brought forward to put an end to name repeating phenomenon. This method also reduces the coupling degree between host program and plug-ins.
引文
[1]葛修润,蒋宇,卢允德等.周期荷载作用下岩石疲劳变形特性试验研究[J].岩石力学与工程学报,2003,22(10):1581-1585.
    [2]章清叙,葛修润,黄铭等.周期荷载作用下红砂岩三轴疲劳变形特性试验研究[J].岩石力学与工程学报,2006,25(3):473-478.
    [3]蒋宇,葛修润,任建喜.岩石疲劳破坏过程中的变形规律及声发射特性[J].岩石力学与工程学报,2004,23(11):1810-1814.
    [4]葛修润,卢应发.循环荷载作用下岩石疲劳破坏和不可逆变形问题的探讨[J].岩土工程学报,1992,14(3):56-60.
    [5]任建喜,蒋宇,葛修润.单轴压缩岩石疲劳寿命影响因素试验分析[J].岩土工程学报,2005,27(11):1282-1285.
    [6]M N Bagde,V Petrol.Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading[J].International Journal of Rock Mechanics and Mining Sciences,2005,42(2):237-250.
    [7]许江,杨秀贵,王鸿等.周期性载荷作用下岩石滞回曲线的演化规律[J].西南交通大学学报,2005,40(6):754-758.
    [8]许江,鲜学福,王鸿等.循环加、卸载条件下岩石类材料变形特性的实验研究[J].岩石力学与工程学报,2006,25(Supp.1):3040-3045.
    [9]席道瑛,陈运平,陶月赞等.岩石的非线性弹性滞后特征[J].岩石力学与工程学报,2006,25(6):1086-1093.
    [10]陈运平,王思敬,王恩志.岩石应力-应变滞后现象的定量研究[J].岩石力学与工程学报,2007,27(Supp.2):4066-4073.
    [11]席道瑛,刘小燕,张程远.由宏观滞回曲线分析岩石的微细观损伤[J].岩石力学与工程学报,2003,22(2):182-187.
    [12]陈运平,席道瑛,薛彦伟.循环荷载下饱和岩石的滞后和衰减[J].地球物理学报,2004,47(4):672-679.
    [13]席道瑛,王春雷,田象燕.滞回曲线对应力振幅和频率的响应[J].物探化探计算技术,2001,23(2):121-124.
    [14]席道瑛,王少刚,刘小燕等.岩石的非线性弹塑性响应[J].岩石力学与工程学报,2002,21(6):772-777.
    [15]李炼,徐钺,李启光等.花岗岩板渐进破坏过程的微观研究[J].岩石力学与工程学报,2001,21(7):940-947.
    [16]葛修润,任建喜,蒲毅彬等.岩石疲劳损伤扩展规律CT细观分析初探[J].岩土工程学报,2001,23(2):191-195.
    [17]许江,大久保诚介,鲜学福.循环载荷对三城目安山岩变形特性的影响[J].重庆大学学报 (自然科学版),2000,23(6):38-41.
    [18]席道瑛,刘云平,刘小燕等.疲劳载荷对岩石物理力学性质的影响[J].岩土工程学报,2001,23(3):292-295.
    [19]席道瑛,薛彦伟,宛新林.循环载荷下饱和砂岩的疲劳损伤[J].物探化探计算技术,2004,26(3):193-198.
    [20]樊秀峰,简文彬.砂岩疲劳特性的超声波速法试验研究[J].岩石力学与工程学报,2008,27(3):557-563.
    [21]M J Heap,D R Faulkner.Quantifying the evolution of static elastic properties as crystalline rock approaches failure[J].International Journal of Rock Mechanics and Mining Sciences,2008,45(4):564-573.
    [22]G.Li,K H R Moelle,J A Lewis.Fatigue crack growth in brittle sandstones[J].International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1992,29(5):469-477.
    [23]葛修润.周期荷载作用下岩石疲劳破坏及变形发展规律研究[A].第八次全国岩石力学与工程学术大会论文集[C].23-31.
    [24]葛修润.岩石疲劳破坏的变形控制律、岩土力学试验的实时X射线CT扫描和边坡坝基抗滑稳定分析的新方法[J].岩土工程学报,2008,30(1):1-20.
    [25]王德玲,沈疆海,葛修润.岩石疲劳扰动模型的研究[J].水利与建筑工程学报,2006,4(2):32-33.
    [26]宋喜艳,罗仁安,单一峰等.岩石疲劳强度试验和弹性理论分析初步研究[J].岩土力学,2003,24.(Supp.):171-174.
    [27]吴献强,丁德馨.周期荷载作用下岩石疲劳损伤性能的分析研究[J].国外建材科技,2006,27(2):42-47.
    [28]席道瑛,刘斌,田象燕.饱和岩石的各向异性及非线性黏弹性响应[J].地球物理学报,2002,45(1):109-118.
    [29]李廷,杜赟,宛新林等.饱和岩石对平均应力和动载应力振幅的响应[J].岩石力学与工程学报,2008,27(1):161-168
    [30]席道瑛,田象燕,高尔根.低频衰减特性及理论模型的发展[J].岩石力学与工程学报,2004,2(5):851-856
    [31]刘小燕,席道瑛,张程远.低围压和疲劳载荷下砂岩的波速、模量及疲劳损伤(Ⅰ):岩石的声学特性[J].岩石力学与工程学报,2004,23(13):2164-2167.
    [32]刘小燕,席道瑛,张程远.低围压和疲劳载荷下砂岩的波速、模量及疲劳损伤(Ⅱ):岩石的力学特性[J].岩石力学与工程学报,2004,23(13):2168-2171.
    [33]席道瑛,王鑫,陈运平.描写岩石非线性弹性滞后和记忆的宏观模型[J].岩石力学与工程学报,2005,24(13):2212-2219.
    [34]刘云平,席道瑛,张程远等.循环应力作用下大理岩砂岩的动态响应[J].岩石力学与工程学报,2001,20(2):216-219.
    [35]陈运平,席道瑛,薛彦伟.循环载荷下饱和岩石的应力一应变动态响应[J].石油地球物理 勘探,2003,38(4):409-413
    [36]席道瑛,唐杰,陶月赞等.岩石的微细缺陷对外载响应概率的实验与模拟[J].中国科学技术大学学报,2007,37(8):904-910.
    [37]席道瑛,刘小燕,张程远.应力控制疲劳载荷作用下循环硬化的应变响应[J].岩石力学与工程学报,2003,22(11):1807-1810.
    [38]张立强,许江,蒋长宝.不同饱和度时砂岩材料循环载荷特性曲线实验[J].矿业安全与环保,2007,34(1):20-24.
    [39]王鸿,许江,李树春等.不同水饱和度下岩石滞回曲线演化的实验研究[J].矿业研究与开发,2007,27(3):18-21.
    [40]许江,尹光志,王鸿等.不同应力水平时砂岩滞回曲线演化的实验研究[J].重庆建筑大学学报,2006,28(2):40-42.
    [41]许江涛,鲜学福等.低应力水平下循环载荷对岩石杨氏模量影响的研究[J].湘潭矿业学院学报,2001,16(1):14-16.
    [42]张立强,许江,蒋长宝等.砂岩在循环载荷下不同饱和度时的变形特征[J].中国矿业,2006,15(10):109-112.
    [43]许江,王维忠,杨秀贵等.细粒砂岩在循环加、卸载条件下变形实验[J].重庆大学学报(自然科学版),2004,27(12):60-62.
    [44]王鸿,许江,杨秀贵.循环载荷条件下岩石塑性滞回环的演化规律[J].重庆大学学报(自然科学版),2006,29(4):80-82.
    [45]许江,唐晓军,李树春等.循环载荷作用下岩石声发射时空演化规律[J].重庆大学学报,2008,31(6):672-676.
    [46]许江,鲜学福,王鸿.循环载荷作用下周期充水岩石变形规律的研究[J].地下空间与工程学报,2006,2(4):556-560.
    [47]胡盛斌,邓建,彭建华.充填物对岩石疲劳裂纹萌生及扩展的影响研究[J].地下空间与工程学报,2005,1(6):918-919.
    [48]郑孝军,胡志军,刘倡清.裂隙岩石疲劳损伤变形规律CT试验初探[J].西安科技大学学报,2005,25(4):469-472.
    [49]马建军.软岩巷道在周边爆破反复作用下的损伤疲劳破坏[J].中国矿业,2005,14(11):67-69.
    [50]周尚志,党发宁,陈厚群等.岩石类材料疲劳破坏裂纹扩展分析的数值方法[J].岩土力学,2008,29(3):769-774.
    [51]樊秀峰,简文彬.岩体疲劳损伤声波特性的试验与数据分析研究进展[A].第九次全国岩石力学与工程学术大会论文集[C].273-277.
    [52]肖建清,陈枫,徐纪成.RFPA 2D软件的数据结构优化以及存储组织[J].矿业研究与开发,2004,24(6):54-56.
    [53]王红卫,肖建清.Visual C++中MATLAB数学函数库的封装[J].南华大学学报(自然科学版),2006,20(2):76-78.
    [54]徐根,陈枫,肖建清.载荷接触条件对岩石抗拉强度的影响[J].岩石力学与工程学 报,2006,25(1):168-173.
    [55]肖建清,徐根,蒋复量.混凝土损伤模型的分类研究[J].矿业研究与开发,2007,27(1):82-86.
    [56]戴诗亮.随机振动实验技术[M].北京:清华大学出版社,1984
    [57]杨年华,林世雄.爆破振动测试技术探讨[J].爆破,2000,17(3):90-92.
    [58]唐信来.厦门机场高速路隧道爆破振动效应及其控制[D硕士学位论文].长沙:中南大学,2007
    [59]高镇同,熊峻江.疲劳可靠性[M].北京:北京航空航天大学出版社,2000:333-339
    [60]梁庆国,韩文峰,谌文武等.岩体地震动力破坏问题研究[J].岩石力学与工程学报,2003,22(Supp.2):2783-2788.
    [61]廖振鹏.波动理论基础知识及其在地震工程中的初步应用(续)[J].华南地震,1992,12(4):77-84.
    [62]董乐义,罗俊,程礼.雨流计数法及其在程序中的具体实现[J].计算机技术与应用,2004,24(3):38-40.
    [63]何秀然,谢寿生,孙冬.航空发动机载荷谱雨流计数的一种改进算法[J].燃气涡轮试验与研究,2005,18(2):27-30.
    [64]过玉卿,龙靖宇.改进雨流计数法及其统计处理程序[J].武汉科技大学学报(自然科学版),1987,30(1):22-28.
    [65]S.D.Downing,D.F.Socie.Simple rainflow counting algorithms[J].International Journal of Fatigue,1982,4(1):31-40.
    [66]金德新.改进的雨流计数法应用于随机载荷下的寿命预测[J].鞍钢技术,2000,(5):55-57.
    [67]阎楚良,卓宁生,高镇同.雨流法实时计数模型[J].北京航空航天大学学报,1998,24(5):623-624.
    [68]易长平.爆破振动对地下洞室的影响研究[D博士学位论文].武汉:武汉大学,2005.
    [69]SONG Yu-pu,LI Chao-yang,WANG Li-cheng.Rain-flow and reverse rain-flow counting method for the compilation of fatigue load spectrum[J].China Ocean Engineering,2001,15(3):429-435
    [70]张保法,周岳泉,傅祥炯等.编制飞-续-飞谱的倒雨流计数技术[J].航空学报,1997,18(5):555-558.
    [71]应怀樵.随机波形读数和频度计算法及雨流法与常规方法的比较[J].宇航计测技术,1983,(02):16-26.
    [72]李怀林.用雨流法计算核电站部件材料在随机载荷下的疲劳损伤[D硕士学位论文].北京:中国原子能科学研究院,2001.
    [73]毕继红,钟建辉.邻近隧道爆破震动对既有隧道影响的研究[J].工程爆破,2004,10(4):69-73.
    [74]徐灏.疲劳强度[M].北京:高等教育出版社,1988.
    [75]杨晓华,姚卫星,段成美.确定性疲劳累积损伤理论进展[J].中国工程科学,2003,5(4):81-86.
    [76]王时越,张立翔,徐人平等.混凝土疲劳刚度衰减规律试验研究[J].力学与实践,2003, 25(5):55-57.
    [77]欧进萍,林燕清.混凝土疲劳损伤的强度和刚度衰减试验研究[J].哈尔滨建筑大学学报,1998,31(4):1-7.
    [78]孟宪宏.混凝土疲劳剩余强度试验及理论研究[D博士学位论文].大连:大连理工大学,2006.
    [79]李朝阳,宋玉普,赵国藩.混凝土疲劳残余应变性能研究[J].大连理工大学学报.2001,41(3):355-358.
    [80]鞠杨,樊承谋,潘景龙.钢纤维混凝土疲劳损伤行为研究[J].工业建筑,1997,27(3):38-62.
    [81]顾怡.FRP疲劳累积损伤理论研究进展[J].力学进展,2001,31(2):193-201.
    [82]罗昕,卫军.冻融条件下混凝土损伤演变与强度相关性研究[J].华中科技大学学报(自然科学版),2006,34(1):98-100.
    [83]朱宏平,徐文胜,陈晓强等.利用声发射信号与速率过程理论对混凝土损伤进行定量评估[J].工程力学,2008,25(1):186-191.
    [84]张明,李仲奎,杨强等.准脆性材料声发射的损伤模型及统计分析[J].岩石力学与工程学报,2006,25(12):2493-2501.
    [85]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003.
    [86]吴富民.结构疲劳强度[M].西安:西北工业大学出版社,1985.
    [87]朱劲松,肖汝诚,宋玉普.混凝土双轴抗压疲劳累积损伤规律试验研究[J].土木工程学报,2005,38(6):104-109.
    [88]段忠东,欧进萍.金属材料的非线性疲劳累积损伤模型及强度衰减分析[J].应用力学学报,1998,15(3):104-109.
    [89]李荣,邱洪兴,淳庆.疲劳累积损伤规律研究综述[J].金陵科技学院学报,2005,21(3):17-20.
    [90]匡林,杨晓华.疲劳累积损伤理论的适用性研究[J].科技信息,2007,(17):677-678.
    [91]朱晓阳.疲劳累积损伤理论的研究及其发展[J].机械工程材料,1987,(3):9-14.
    [92]鞠杨,樊承谋.疲劳累积损伤理论研究[J].哈尔滨建筑大学学报,1994,27(5):115-120.
    [93]倪侃.随机疲劳累积损伤理论研究进展[J].力学进展,1999,29(1):43-65.
    [94]W.X.Yao.A cumulative fatigue damage rule under the alternative of corrosion or cyclic loading[J].Acta Metall.Sin.(Engl.Lett.),2007,20(1):65-71.
    [95]Jayantha A.Epaarachchi,Philip D.Clausen.A new cumulative fatigue damage model for glass fibre reinforced plastic composites under step/discrete loading[J].Composites:Part A,2005,(36):1236-1245.
    [96]TIAN Zhen-hui,TAN Hui-feng,DU Xing-wen.Fatigue Damage Accumulation of Steel/rubber Composite[J].J.Mater.Sci.Technol.,2006,22(5):647-650.
    [97]Feng Xiu-feng,Song Yu-pu,Zhu Mei-chun.Fatigue Damage Modeling for Partially Prestressed Concrete Beams under Repeated Loadings with Variable Amplitude[J].Journal of Southwest Jiaotong University,2006,14(3):258-264.
    [98]GAI Bing-zheng.Macroscopic cumulative fatigue damage of material under nonsymmetrical cycle[J].Journal of Harbin Instit ute of Technology(New Series),2002,9(1):12-15.
    [99]S.Subramanian,K.L.Reifsnider,W.W.Stinchcomb.A cumulative damage model to predict the fatigue life of composite laminates including the effect of a fibre-matrix interphase[J].International Journal of Fatigue,1995,17(5):343-351.
    [100]Guangxu Cheng,Alan Plumtree(?).A fatigue damage accumulation model based on continuum damage mechanics and ductility exhaustion[J].International Journal of Fatigue,1998,20(7):495-501.
    [101]Dean Kreiser,Sheng Xiang Jia,Jian Jun Han et al.A nonlinear damage accumulation model for shakedown failure[J].International Journal of Fatigue,2007,(29):1523-1530.
    [102]De-Guang Shang,Wei-Xing Yao.A nonlinear damage cumulative model for uniaxial fatigue[J].International Journal of Fatigue,1999,(21):187-194.
    [103]A.Fatemi,L.Yangt.Cumulative fatigue damage and life prediction theories:a survey of the state of the art for homogeneous materials[J].International Journal of Fatigue,1998,20(Ⅰ):9-34.
    [104]A.Seweryn,A.Buczynski,J.Szusta.Damage accumulation model for low cycle fatigue[J].International Journal of Fatigue,2008,(30):756-765.
    [105]Abdenour Alliche.Damage model for fatigue loading of concrete[J].International Journal of Fatigue,2004,(26):915-921.
    [106]Par Johannesson,Thomas Svensson,Jacques de Mare.Fatigue life prediction based on variable amplitude tests—methodology[J].International Journal of Fatigue,2005,(27):954-965.
    [107]V.Dattoma,S.Giancane,R.Nobile,F.W.Panella.Fatigue life prediction under variable loading based on a new non-linear continuum damage mechanics model[J].International Journal of Fatigue,2006(28):89-95.
    [108]G.Socha.Prediction of the fatigue life on the basis of damage progress rate curves[J].International Journal of Fatigue,2004,(26):339-347.
    [109]高镇同.疲劳性能测试[M].北京:国防工业出版社,1980.
    [110]高镇同.疲劳应用统计学[M].北京:国防工业出版社,1986.
    [111]S.R.斯旺森.疲劳试验[M].上海:上海科学技术出版社,1982.
    [112]王仁智,吴培远.疲劳失效分析[M].北京:机械工业出版社,1987.
    [113]S.Suresh.材料的疲劳[M].北京:国防工业出版社,1993.
    [114]孙文瑜,徐成贤,朱德通.最优化方法[M].北京:高等教育出版社,2004:151-168.
    [115]袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社,1997:393-403.
    [116]粟塔山.最优化计算原理和算法程序设计[M].长沙:国防科技大学出版社,2001:60-70.
    [117]刘保国.岩体等效变形参数及侧压系数的非线性最小二乘法估计[J].岩石力学与工程学报,1996,15(3):263-268.
    [118]霍贵成.用改进的高斯-牛顿最小二乘法估测非线性生长曲线的参数[J].生物数学学报,2001,16(1):122-127.
    [119]朱铭扬.非线性生长曲线参数估计的一种精确方法[J].常州工学院学报,2004,17(6):7-11.
    [120]肖爱玲.非线性最小二乘法的算法[J].数学理论与应用,2004,24(2):86-90.
    [121]钮群.解非线性的最小二乘法拟合曲线的数值延拓法[J].河海大学学报(自然科学版),2003,31(5):597-600.
    [122]王福林,王吉权.生长曲线参数估计的一种新方法一优化回归组合法[J].生物数学学报,2007,22(3):533-538.
    [123]龚力强,徐圣兵.生长曲线模型中参数的检验问题[J].广州大学学报(自然科学版),2006,5(1):1-7.
    [124]赵大蕻,段清堂.生长曲线模型中回归参数矩阵的GSLS估计[J].河南大学学报(自然科学版),1999,29(2):25-28.
    [125]王莽莽,李典谟.用麦夸方法最优拟合逻辑斯谛曲线[J].生态学报,1986,6(2):142-147.
    [126]许凤华.偏最小二乘回归分析中若干问题的研究[D硕士学位论文].青岛:山东科技大学,2006.
    [127]邹红伟.求解非线性最小二乘问题的一种新方法[D硕士学位论文].南京:南京理工大学,2006.
    [128]国际岩石力学学会实验室和现场试验标准化委员会.岩石力学试验建议方法[M],北京:煤炭工业出版社,1982.2-5.
    [129]葛修润,周百海.岩石力学室内试验装置的新进展—RMT-64岩石力学试验系统[J],岩土力学,1994,15(1):50-56.
    [130]肖建清,陈枫,徐根.加载速率与加载波形对混凝土抗拉强度的影响[J].土工基础,2005,19(4):70-72.
    [131]Xiao JQ,Ding DX,Xu G et al.Waveform effect on quasi-dynamic loading condition and the mechanical properties of brittle materials[J].International Journal of Rock Mechanics and Mining Sciences,2008,45(4):621-626.
    [132]徐根,陈枫,肖建清.中应变率下岩石抗拉强度试验研究[J].土工基础,2005,19(4):51-53.
    [133]蒋宇.周期荷载作用下岩石疲劳破坏及变形发展规律[D硕士学位论文].上海:上海交通大学.2003
    [134]章清叙.周期荷载作用下岩石三轴疲劳特性实验研究[D硕士学位论文].上海:上海交通大学.2005
    [135]吴德伦,黄质宏,赵明阶.岩石力学[M].重庆:重庆大学出版社,2002.
    [136]林燕清,欧进萍.混凝土疲劳损伤试验中试件初始极限强度的推测方法.哈尔滨建筑大学学报[J],1997,30(6):9-20.
    [137]欧进萍,林燕清.混凝土高周疲劳损伤的性能劣化试验研究[J].土木工程学报,1999,32(5):15-22.
    [138]M.K.Lee,B.I.G.Barr.An overview of the fatigue behaviour of plain and fibre reinforced concrete[J].Cement & Concrete Composites 26(2004)299-305.
    [139]陶振宇,潘别桐.岩石力学原理与方法[M].武汉:中国地质大学出版社,1991:87-89.
    [140]肖建清.混凝土准动态力学性能的实验研究与数值模拟[D硕士学位论文].长沙:中南 大学,2005:50-53.
    [141]骆行文.循环荷载作用下再生混凝土力学特性试验研究[D硕士学位论文].武汉:武汉理工大学,2006.
    [142]葛修润,任建喜,蒲毅彬等.岩土损伤力学宏细观试验研究[M].北京:科学出版社,2004.
    [143]李朝阳,宁玉普,赵国藩.混凝土疲劳残余应变性能研究[J].大连理工大学学报,2001,41(3):355-358.
    [144]王瑞敏.混凝土结构疲劳性能研究[D博士学位论文],大连:大连理工大学,1989.
    [145]谢济洲.低循环疲劳[M].北京:能源出版社,1990.
    [146]孙昌爱,金茂忠,刘超.软件体系结构研究综述[J].软件学报,2002,13(7):1228-1237.
    [147]徐宏兴.插件体系结构软件开发方法研究[D硕士学位论文].四川大学,2005.
    [148]李俊娥,周洞汝.“平台/插件”软件体系结构风格[J].小型微型计算机系统,2007,28(5):876-881.
    [149]祖兆研.基于插件技术的软件架构设计及应用[D硕士学位论文].河海大学,2007.
    [150]彭永康,章义来.插件及其接口的研究与应用[J].计算机应用,2003,23(6):122-123.
    [151]陈方明,陈奇.基于插件思想的可重用软件设计与实现[J].计算机工程与设计,2005,26(1):172-176.
    [152]张进军,张维,薛来文.一种基于插件的软件体系结构[J].合肥工业大学学报(自然科学版),2005,28(4):398-401.
    [153]卢小兵.一种基于对象的软件插件技术[J].华东地质学院学报,2002,25(2):178-180.
    [154]肖建清,丁德馨,徐根等.试卷分析系统开发中的关键技术[J].计算机工程与设计,2008,29(7):1847-1849.
    [155]王映辉,冯德民.大规模软件构架技术[M].北京:科学出版社,2003.
    [156]王立峰,延伟东,章华.软件工程理论与实践[M].北京:清华大学出版社,2003.
    [157]周之英.现代软件工程第2册[M].北京:科学出版社,2003.
    [158]张友生.软件体系结构[M].北京:清华大学出版社,2004.
    [159]何炎祥,黄浩,石莉等.软件体系结构中五种常见风格的剖析[J].计算机工程,2000,26(10):30-32.
    [160]左泽均,杜小平.Plug_In应用软件的一种实现方法[J].2004,(7):58-60.
    [161]李延春.软件插件技术的原理与实现[J].计算机系统应用,2003,(7):24-26.
    [162]A.J.Nieto,J.M.Chicharro,P.Pintado.An approximated methodology for fatigue tests and fatigue monitoring of concrete specimens[J].International Journal of Fatigue,2006,28(8):835-842.
    [163]M.K.Lee,B.I.G.Barr.An overview of the fatigue behaviour of plain and fibre reinforce concrete[J].Cement & Concrete Composites,2006,26(4):299-305.
    [164]Abdenour Alliche.Damage model for fatigue loading of concrete[J].International Journal of Fatigue,2004,26(9):915-921.
    [165]S.P.Singh,S.K.Kaushik.Fatigue strength of steel fibre reinforced concrete in flexure[J]. Cement & Concrete Composites,2003,25(7):779-786.
    [166]B.Zhang,D.V.Phillips,K.Wu.Effects of loading frequency and stress reversal on fatigue life of plain concrete[J].Magazine of Concrete Research,1996,48(177):361-375.
    [167]M.N.Bagde,V.Petros.Waveform effect on fatigue properties of intact sandstone in uniaxial cyclical loading[J].Rock Mechanics and Rock Engineering,2005,38(3):169-196.
    [168]P(a|¨)r Johannesson,Thomas Svensson,Jacques de Mar(?).Fatigue life prediction based on variable amplitude tests—specific applications[J].International Journal of Fatigue,2005,27(8):966-973.
    [169]石小平,姚祖康,李华等.水泥混凝土的弯曲疲劳特性[J].土木工程学报,1990,23(3):11-22.
    [170]吕培印,宋玉普.基于人工神经网络的混凝土疲劳寿命估算[J].海洋工程,2001,19(3):72-76.
    [171]山下秀,杉木文男,今井忠南等.岩石蠕变及疲劳破坏过程和破坏极限研究[J].辽宁工程技术大学学报(自然科学版),1999,18(5):452-455.
    [172]N.Li,W.Chen,P.Zhang et al.The mechanical properties and a fatigue-damage model for jointed rock masses subjected to dynamic cyclical loading[J].International Journal of Rock Mechanics & Mining Sciences,2001,(38):1071-1079.
    [173]E.Z.Lajtai.Microscopic fracture processes in a granite[J].Rock Mech.Rock Engng,1998,31(4):237-250.
    [174]Miguel G(?)mez-Heras,Bernard J.Smith,Rafael Fort.Surface temperature differences between minerals in crystalline rocks:implications for granular disaggregation of granites through thermal fatigue[J].Geomorphology,2006,(78):236-249.
    [175]Thomas Svensson,Par Johannesson,Jacques de Mare.Fatigue life prediction based on variable amplitude tests—specific applications[J].International Journal of Fatigue,2005,(27):966-973.
    [176]S.RAVI,N.G.R.IYENGAR,N.N.KISHORE,A.SHUKLA.Experimental studies on damage growth in composites under dynamic loads[J].AppliedComposite Materials,2001(8):79-97.
    [177]Kolluru V.Subramaniam,Surendra P.Shah.Biaxial tension fatigue response of concrete[J].Cement & Concrete Composites,2003,(25):617-623.
    [178]S.P Singh,S.K.Kaushik.Fatigue strength of steel fibre reinforced concrete in flexure[J].Cement & Concrete Composites,2003,(25):779-786.
    [179]Paulo B.Cachim,Joaquim A.Figueiras,Paulo A.A.Pereira.Fatigue behavior of fibre-reinforced concrete in compression[J].Cement & Concrete Composites,2002,(24):211-217.
    [180]A.J.Nieto,J.M.Chicharro,P.Pintado.An approximated methodology for fatigue tests and fatigue monitoring of concrete specimens[J].International Journal of Fatigue,2006(28):835-842.
    [181]Parviz Soroushian,Mohamed Elzafraney.Damage effect on concrete performance and microstructure[J].Cement & Concrete Composites,2004,(26):853-859
    [182]Jin-Keun Kim,Yun-Yong Kim.Experimental study of the fatigue behavior of high strength concrete[J].Cement and Concrete Research,1996,26(1):1513-1523.
    [183]Zongcai Deng.The fracture and fatigue performance in flexure of carbon fiber reinforced concrete[J].Cement & Concrete Composites,2005,(27):131-140.
    [184]David O.Potyondy.Simulating stress corrosion with a bonded-particle model for rock[J].International Journal of Rock Mechanics & Mining Sciences,2007,(44):677-691.
    [185]M.K.Jafari,F.Pellet,M.Boulon et al.Experimental Study of Mechanical Behaviour of Rock Joints Under Cyclic Loading[J].Rock Mechanics and Rock Engineering,2004,37(1):3-23.
    [186]Urban A kesson,Jan Hansson,Jimmy Stigh.Characterisation of microcracks in the Bohus granite,westernSweden,caused by uniaxial cyclic loading[J].Engineering Geology,2004(72):131-142.
    [187]A.Dragon,D.Halm,Th.D_esoyer.Anisotropic damage in quasi-brittle solids:modelling,computational issues and applications[J].Computer Methods in Applied Mechanics and Engineering,2000(183):331-352.
    [188]Geraldine Fabre,Frederic Pellet.Creep and time-dependent damage in argillaceous rocks[J].International Journal of Rock Mechanics & Mining Sciences,2006(43):950-960.
    [189]Naser A.A1-Shayea.Effects of testing methods and conditions on the elastic properties of limestone rock[J].Engineering Geology,2004(74):139-156.
    [190]M.K.Jafari,K.Amini Hosseini,F.Pellet et al.Evaluation of shear strength of rock joints subjected to cyclic loading[J].Soil Dynamics and Earthquake Engineering,2003(23):619-630.
    [191]Alexander Lavrov.Kaiser effect observation in brittle rock cyclically loaded with different loading rates[J].Mechanics of Materials,2001,(33):669-677.
    [192]N.Gatelier,F.Pellet,B.Loret.Mechanical damage of an anisotropic porous rock in cyclic triaxial tests[J].International Journal of Rock Mechanics & Mining Sciences,2002(39):335-354.
    [193]R.YOUSHINAKA,T.V.TRAN,M.OSADA.Non-linear,stress-and strain-dependent behavior of soft rocks under cyclic triaxial conditions[J].International Journal of Rock Mechanics & Mining Sciences,1998,35(7):941-955.
    [194]赵明阶,徐蓉.岩石损伤特性与强度的超声波速研究[J].岩土工程学报,2000,22(6):720-722.
    [195]乔宇,洪友士.短裂纹群体行为及疲劳寿命预测[J].力学进展,1997,27(4):489-503.
    [196]陈旭,高庆,孙训方等.非比例载荷下多轴低周疲劳研究最新进展[J].力学进展,1997,27(3):313-325.
    [197]蒋鸣晓,朱位秋.疲劳裂纹扩展随机模型研究近期进展[J].力学进展,1999,29(1): 34-42.
    [198]龙源,冯长根等.爆破地震波在岩石介质中传播特性与数值计算研究[J].工程爆破,2000,6(3):1-7.
    [199]彭道富,李忠献,杨年华.爆破动荷载对隧道结构稳定性的影响[J].爆破器材,2004,33(增刊):63-66.
    [200]夏祥,李俊如等.爆破荷载作用下岩体振动特征的数值模拟[J].岩土力学,2005,26(1):50-56.
    [201]鞠杨,夏昌敬等.爆炸荷载作用下煤岩巷道底板破坏的数值分析[J].岩石力学与工程学报,2004,23(21):3664-3668.
    [202]刘国华,王振宇.爆破荷载作用下隧道的动态响应与抗爆分析[J].浙江大学学报(工学版),2004,38(2):204-209.
    [203]魏晓林.爆破震动对邻近建筑物的危害影响[J].爆破,1998,15(1):48-54.
    [204]高文学,刘运通.爆炸荷载下岩石损伤机理及其力学特性研究[J].岩土力学,2003,23(supp):585-588.
    [205]黄红元,刘伟.爆炸荷载作用下岩溶区隧道围岩变形分析[J].公路交通技术,2003,(6):72-75.
    [206]王明洋,葛涛等.爆炸荷载作用下岩石的变形与破坏研究[J].防灾减灾工程学报,2003,23(2):43-54.
    [207]李海波,蒋会军等.动荷载作用下岩体工程安全的几个问题[J].岩石力学与工程学报,2003,22(11):1887-1891.
    [208]梁庆国,韩文峰等.岩体地震动力破坏问题研究[J].岩石力学与工程学报,2003,22(增2):2783-2788.
    [209]侯景鹏.混凝土材料疲劳破坏准则研究[D硕士学位论文].大连:大连理工大学,2001.
    [210]张伟.混凝土疲劳特性研究[D硕士学位论文].天津:河北工业大学,2006.
    [211]杨健辉.侧压下混凝土静态受拉与受拉疲劳性能研究[D博士学位论文].大连:大连理工大学,2003.
    [212]曹伟.定侧压下混凝土三轴疲劳性能试验与理论研究[D博士学位论文].大连:大连理工大学,2004.
    [213]赵东拂.混凝土多轴疲劳破坏准则研究[D博士学位论文].大连:大连理工大学,2002.
    [214]夏祥.爆炸荷载作用下岩体损伤特征及安全阈值研究[D博士学位论文].武汉:中国科学院武汉岩土力学研究所,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700