FWV-6A立式加工中心动静态特性分析及优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数控机床和加工中心广泛应用于国防、航空航天和国民经济各部门,是自动化加工最基本的装备,关系到国家的安全和工业生产能否健康地增长。我国数控机床的结构动态设计水平比较落后,基本上还是基于经验、类比、静态的传统设计方法,无法快速响应市场,难以满足高速、高效、高精度加工要求。因此,为了能够快速开发出结构合理、加工精度高、低振动、低成本的机床新产品,来满足市场需求,采用先进的CAD/CAE技术、动态参数优化技术进行产品设计,显得尤为重要。
     本文针对结构设计动态参数优化展开研究,以佛山中南机械有限公司的FWV-6A立式加工中心为研究对象,进行了整机动静态特性分析及优化设计研究。主要研究工作包括:整机参数化CAD/CAE建模、整机模态分析和模态测试、整机静力学分析、整机响应面模型建立,整机动静态多目标优化。首先,根据加工中心结构确定影响整机质量、动静态特性主要结构尺寸参数。在SolidWorks 2009建立整机的参数化CAD模型,基于ANSYS Workbench仿真模块转化为参数化有限元模型,并对整机进行动静态特性分析。其次,采用与有限元法相结合的模态试验分析方法,对整机动态特性进行了研究。模态测试时,利用单点(多激振点)激励多点响应模态试验分析方法来获取完整模态参数,引入相关函数分析测试信号的可靠性。通过模态试验结果和有限元计算结果对比分析,可知有限元模型建模比较合理,为加工中心的动态优化设计提供可靠的基础。然后,基于前面建立的整机参数化有限元模型,将试验设计、响应面法、抽样技术、多目标遗传算法和灵敏度分析法相结合,对加工中心以高动静刚度和轻量化为目标进行整机尺度参数动态优化,得到了在保证整机动静态性能不变的情况下,减重达6.5%的优化结果。
     最后,为了本文研究的有限元建模方法、响应面法、多目标遗传算法等的系统优化分析方法能被企业快速掌握,提高产品的开发效率,对SolidWorks和ANSYS软件进行了二次开发,把具体产品建模、设计分析、结构参数动态优化设计方法固化到软件中,开发出可靠、自动化程度高、友好图形用户界面的数字优化设计系统—AutoDAO 1.0,适合企业产品开发需要。
As elementary device in the automatic manufacture, NC machine tool and machining center are generally applied in defense and aerospace fields, and other economy fields, which have essential effect on safety of state and development of industries. To our country, the dynamic structural design method of NC machine tools is lagging, basically based on experience, analogy, the static approach of traditional design. NC machine tools having the properties of high manufacturing speed, high rigidness and high accuracy, can’t be in time designed in response to market requirement. Therefore, In order to meet rapid market demand with reasonable structure、high precision、low vibration、low-cost machining tools, the applications of advanced CAD / CAE technology and dynamic optimization technology for product design have become more and more important than ever before.
     Dynamic parameter optimization of structural design is focused on in this study. Considered the FWV-6A vertical machining center of Foshan Zhongnan Machinery Co. Ltd as the research object, research on analysis of holistic dynamic and static characteristics and optimal design of the machining center has been carried on, including building the parametric CAD/CAE model, analysis and test of the modal, static analysis, building response surface (RS) model, dynamic & static multi-Objective optimization. Firstly, according to the structure of machining center, finding out the dimension parameters which influence the mass and dynamic & static characteristics of the machining center. Building the model in SolidWorks 2009 and translating it into finite element model by ANSYS Workbench 11.0, then analyzing the dynamic & static performance of it. Secondly, its dynamic performance is analyzed by the model test method which is combined with finite element analysis. During the model test, integrity modal parameters are obtained via the single-input multi-output analysis method. The reliability of tests signals is also evaluated by the coherence function. According to the analysis of modal test and calculation result of finite element, the finite model is reasonable. It provides a reliable foundation for the dynamic optimal design of machining centre. Then, without changing the dynamic & static performance of the machine centre, aim to light weight and enhance the dynamic & static stiffness, the dimension parameters has been optimized, based on the finite element model built before, by the combined method of experimental design, response surface method, sampling technique, multi-objective genetic algorithm and sensitivity analysis. And the result is 6.5% of mass has been decreased.
     Finally, in order to make all the technology quickly be mastered and applied in product development, such as the finite element modeling, response surface method, multi-objective genetic algorithm optimization of systems analysis, etc, AutoDAO 1.0, which is a parametric optimal design system with a reliable, fully automatic, friendly graphical user interface, is developed based on the second development of SolidWorks/ANSYS Workbench, and it integrates the product modeling, design analysis, dynamic optimization of structural parameters.
引文
[1]林宋,田建君.现代数控机床[M].化学工业出版社, 2004.3
    [2]胡占齐,杨莉.机床数控技术[M].机械工业出版社, 2002.6
    [3] http://www.jd37.com/tech/20081/37892.html
    [4] http://www.skxox.com/jc1/jc13/cpinfo_wnsk_24280.html
    [5]富大伟.数控系统[M].化学工业出版社, 2005.9
    [6]夏田.数控加工中心设计[M].化学工业出版社, 2006.6
    [7]刘又午,王树新,吴建华,等.振兴机床工业的技术策略[J].中国机械工程, 1998, 9(10): 1-4
    [8]黎华,苏铁明,杨鑫华,等.基于约束的机械产品零件参数化特征建模技术的研究及实现[J].组合机床与自动化加工技术. 2001( 4): 13-16
    [9] S Motavalli. Feature-Based Modeling: An oriented approach[J]. Computer Industrial Engineers.1997(33): 1-2
    [10]杨肃,唐恒龄,廖伯瑜.机床动力学(I)[M].北京:机械工业出版社, 1983
    [11]杨肃,唐恒龄,廖伯瑜.机床动力学(II)[M].北京:机械工业出版社, 1983
    [12] S.A.托斯.机床振动学[M].北京:机械工业出版社, 1977
    [13]郭宏伟. BW60HS型卧式高速加工中心数字化设计技术研究[D].长春:吉林大学, 2006.
    [14]宋健伟.机械结构动力修改方法及实验模态分析的研究[D].天津:天津大学,1989
    [15]曹定胜,王学林,张宏志.高速加工中心有限元计算模型与实验验证[J].振动与冲击, 2006, 25(3): 190-192
    [16]王立华,罗建平,刘泓滨,等.铣床关键结合面动态特性研究[J].振动与冲击, 2008, 27 (8): 125-129
    [17] Huo D., Cheng K., Wardle F. A holistic integrated dynamic design and modeling approach applied to the development of ultra-precision micro-milling machines[J]. International Journal of Machine Tools & Manufacture, 2010, 50(4): 335–343
    [18]张广鹏,史文浩,黄玉美.机床导轨结合部的动态特性解析方法及其应用[J].机械工程学报, 2002, 38(10): 114-117
    [19]王世军,黄玉美,赵金娟,等.机床导轨结合部的有限元模型[J].中国机械工程, 2004, 15(18): 1634-1636
    [20]廖伯瑜,周新民,尹志宏.现代机械动力学及其工程应用——建模、分析、仿真、修改、控制、优化[M ].北京:机械工业出版社, 2004
    [21] Hermans L., Van Der Auweraer H. Modal testing and analysis of structure under operational conditions:Industrial Applications[J].Mechanical Systems and Signal Processing, 1999, 13(2): 193-216
    [22] Zaghbani I., Songmene V. Estimation of machine-tool dynamic parameters during machining operation through operational modal analysis[J]. International Journal of Machine Tools and Manufacture, 2009, 49(12) : 947–957
    [23]张义民,张守元,李鹤,等.运行模态分析中谐波模态识别方法研究及应用[J].振动、测试与诊断, 2008, 28(3): 197-200
    [24]刘军,高建立,穆桂脂,等.改进锤击法试验模态分析技术的研究[J].振动与冲击, 2009, 28(3): 174-177
    [25] Kang Y., Chang Y. P., Tsai J. W., et. Al. Integrated“CAE”strategies for the design of machine tool spindle- bearing systems[J]. Finite Elements in Analysis and Design, 2001(37): 485-511
    [26] Altintas Y., Brecher C., Weck C., et Al. Virtual machine tool[J]. Annals - Manufacturing Technology, 2005, 54(2): 115-138
    [27]高尚晗,孟光.机床主轴系统动力学特性研究进展[J].振动与冲击, 2007, 26(6): 103-109
    [28]牟周令.关于数控机床主轴支承结构的探讨[J].组合机床与自动化加工技术,1999(5): 34-35
    [29]李晓华.加工中心高速精密数控铣床的主轴设计[J].机械制造, 2003, 41(461): 20-21
    [30]吴化勇,唐委校,徐秀花.高速加工中心主轴系统动力学建模及优化设计[J].机床与液压, 2003(12): 38-39
    [31]何晓亮,熊万里,黄红武.高速精密主轴轴承热特性的计算及分析[J].机械, 2003, 30(6): 14-16
    [32] Lin C., Tu J., Kamman J. An Integrated Thermo-mechanical-dynamic Model to Characterize Motorized Machine Tool Spindles during Very High Speed Rotation[J]. Int. J. of Machine Tools & Manufacture, 2003, 43: 1035-1050
    [33] Altintas Y., Cao Y. Virtual Design and Optimization of Machine Tool Spindles[J]. CIRP Annals. Manufacturing Technology, 2005, 54: 379-382
    [34] Kim S. Spindle Housing Design Parameter Optimization Considering Thermo-elastic Behavior[J]. Int. J. of Advanced Manufacturing Technology, 2005, 25: 1061-1070
    [35] Montusiewicz J. Computer Aided Optimum Design of Machine Tool Spindle Systems with Hydrostatic Bearings[J]. Proceedings of The Institution of Mechanical Engineers, 1997, 211: 43-51.
    [36]张学玲,徐燕申,钟伟泓.基于有限元分析的数控机床床身结构动态优化设计方法研究[J].机械强度, 2005, 27(3): 353-357
    [37]徐燕申,张兴朝,牛占文,等.基于元结构和框架优选的数控机床床身结构动态设计研究[J].机械强度, 2001, 23(1): 001-003
    [38]伍建国,陈新,毛海军,等.内圆磨床床身设计参数的灵敏度分析及动态设计[J].南京航空航天大学学报, 2002, 34(6): 544-547
    [39]汤文成,易红,幸研.加工中心床身结构分析[J].机械强度, 1998, 20(1): 11-18
    [40]刘汉昕,朱壮瑞,卢熹,等. XH7650立式加工中心模态测试与优化设计[J].机床与液压, 2008, 36(4): 318-320
    [41]吴长智,郑兆瑞,沈明,等. MG1432B整机薄弱环节分析[J].机械强度, 1992, 14(4): 51-56
    [42]彭文.基于灵敏度分析的机床立柱结构动态优化设计[J].组合机床与自动化加工技术, 2006,(3): 29-31
    [43]赵岭,陈五一,马建峰.基于结构仿生的高速机床工作台轻量化设计[J].组合机床与自动化加工技术, 2008, (1): 1-4.
    [44]张向宇,熊计,郝锌,等.基于ANSYS的加工中心滑座的拓扑优化设计[J].现代制造工程, 2008(2): 131-133
    [45]秦宝荣.机床结合面动态特性研究[J].制造技术与机床, 1996, 8: 35-37
    [46]刘阳,李景奎,朱春霞,等.直线滚动导轨结合面参数对数控机床动态特性的影响[J].东北大学学报(自然科学版), 2006, 27(12): 1369-1372
    [47]王世军,张广鹏,黄玉美.机床导轨结合部动态特性的有限元分析方法[J].制造技术与机床, 2004, 5: 50-52
    [48]张广鹏,史文浩,黄玉美.机床导轨结合部的动态特性解析方法及其应用[J].机械工程学报, 2002, 38(10): 114-117
    [49]张学良,黄玉美,韩颖.基于接触分形理论的机械结合面法向接触刚度模型[J].中国机械工程, 2000, 7: 727-729
    [50] Wang J., et al. Experimental Identification of Mechanical Joint Parameters[J]. Trans. AMSE, Vol.113, Jan. 1991
    [51] Huckeibridge A., et al. Identification of Structural Interface Characteristics Using Component Mode Synthesis[J]. Trans. ASME, Vol.111, No.2, 1989
    [52]山田昭夫,角张毅.关于具有结合部的结构动态特性研究[J].日本机械学会论文集,1983, 49(438): 182-190
    [53] Majumdar A., Bhushan B. Fractal Model of Elastic-plastic Contact between Rough Surfaces[J]. J. Tribol ASME, 1991, 113(1): 1-11
    [54] Connolly R., Thornley R.H. The Significance of Joint on the Overall Deflection of Machine Tool Structures[A]. 6th MTDR Conference, 1965
    [55] Beads C.F. Damping in Structural Joints[J], The Shock and Vibration Digest, No.6, 1982
    [56]黄玉美,佟浚贤,秦世良.机床结构设计效果预断中结合条件的处理[J].制造技术与机床, 1990, 6: 8-12
    [57] Wang J.H., Liou C.M., Experimental Identification of Mechanical Joint Parameters[J], Trans. AMSE, 1991, 113
    [58] Wang J.H., C.M.Liou. Experimental Substructures Synthesis with Special Consideration of Joints Effects[J]. The International Journal of Analytical and Experimental Modal Analysis, No.1, Jan. 1990
    [59] Huckeibridge A.A., Lawrence C. Identification of Structural Interface Characteristics Using component Mode Synthesis[J]. Trans. ASME, Vol.111.No.2, Apr.1989
    [60]陈卫福,林耀民,杨家华,等.预测机械产品结合面特性的优化识别方法[J].制造技术与机床,1998. 9: 5-7
    [61]刘晓平.摇臂钻床结构系统动力学建模方法的研究[D].天津:天津大学, 1991
    [62]黄旭东,费仁元,杨家华.主轴部件动态特性的实验研究[J].北京工业大学学报, 1994, 10: 109~112
    [63]童忠钫,张杰.加工中心立柱床具结合面动态特性研究及参数识别[J].振动与冲击, 1992, 3: 33~35
    [64]金永辉.机床固定结合部动态特性的研究[D].浙江:浙江大学, 1988
    [65] Yuan J.X., Tang X.J., Wu S.M. An Application of D.D.S.Combined with FEM Using Condensation Technique for Machine Tool Design[J]. ASME Winter Annual Meeting,Boston, 1983
    [66]杨肃,唐恒龄,廖伯瑜.机床动力学(I、II)[M].北京:机械工业出版社, 1983. 177~178
    [67]张杰,童忠舫.机床固定结合面动力学建模问题[J].振动与冲击, 1994, 17: 15~22
    [68] Huang D.T.Y., Lee J.H. On obtaining machine tool stiffness by CAE technique[J]. Inter.J. of Mach.Tools&Manufacture, 2001, 41: 1149-1163
    [69]覃文洁,左正兴,刘玉桐,等.机床整机的动态特性分析[J].机械设计, 2000, 10: 24~26
    [70]李磊,洪荣晶,张建润,等. XH715立式加工中心整机优化设计方案比较[J].机械制造, 2006, 44(506): 27-29
    [71]林有希,高诚辉,高济众.大型机床动态特性的整机有限元分析[J].福州大学学报(自然科学版), 2003, 31(1): 69-72
    [72]倪向阳,张建润,彭文.高架桥式五坐标龙门加工中心整机动特性分析[J].精密制造与自动化, 2005, 1: 24-27
    [73]胡如夫,孙庆鸿,陈南.高精度内圆磨床整机集成优化设计研究[J].兵工学报, 2003, 4(2): 230-232
    [74]苏春.数字化设计与制造[M].机械工业出版社, 2006
    [75] Kang Y, Chang Y.P., Tsai J.W., et Al. Integrated“CAE”strategies for the design of machine tool spindle- bearing systems[J]. Finite Elements in Analysis and Design, 2001(37): 485-511
    [76] Altintas Y.,Brecher C.,Weck C.,et al. Virtual machine tool[J]. Annals - Manufacturing Technology, 2005, 54(2): 115-138
    [77]孙光永,李光耀,钟志华,等.基于序列响应面法的汽车结构耐撞性多目标粒子群优化设计[J].机械工程学报, 2009, 45(2): 224-230
    [78]熊俊涛,乔志德,韩忠华.基于响应面法的跨声速机翼气动优化设计[J].航空学报, 2006, 27(3): 399-402
    [79] Koch P.N., Yang R.J., Gu L. Design for six sigma through robust optimization[J]. Struct.Multidisc.Optim, 2004, 26: 235-248
    [80] Koyamada K., Sakai K., Itoh T. Parameter Optimization Technique Using The Response Surface Methodology[C]//Proc.of the 26th Annual International Conference of the IEEE EMBS San Francisco, CA, USA, 2004
    [81]李烁,徐元铭,张俊,复合材料加筋结构的神经网络响应面优化设计[J].机械工程学报, 2006, 42(11): 115-119
    [82] Clough R.W. The Finite Element Method in Plans Stess Analysis[A], Proceedings of the Second Conference on Electronic Computation, American Society of Civil Englineers[C]. New York, 1960
    [83] Akin J.K. Application and Implementation of Finite Element Methods[M]. American Press,1982
    [84]王光复.机械结构实验模态分析方法[D].天津:天津大学, 1985
    [85]李洪.实用机床设计手册[M].辽宁科学技术出社. 1999:496-497
    [86]黄红武,赵小青,宓海青,等.基于有限元的超高速平面磨床整机动力学建模及模态分析[J].湖南大学学报(自然科学版), 2005, 32(4): 39-42
    [87]刘中生,于民,王大钧,等.模态参数识别中的激振点和测量点的布局I理论分析[J].宇航学报, 1994, 16(2): 26-32
    [88]张建润,卢熹,孙庆鸿,等.五坐标数控龙门加工中心动态优化设计[J].中国机械工程, 2005, 16(21): 1949-1953
    [89]李艳聪,张连洪,刘占稳,等.刚度和质量驱动的预紧组合框架式液压机多目标优化设计[J].机械工程学报, 2010, 46(1): 140-146
    [90] Box G.E.P., Draper N.R. Experimental Model Building and Response Surfaces[M]. John Wiley & Son, 1987
    [91]张志红,何桢,郭伟.在响应曲面方法中三类中心复合设计的比较研究[J].沈阳航空工业学院学报, 2007, 24(1): 87-91
    [92]石磊,王学仁,孙文爽.试验设计基础[M].重庆大学出版社. 1997: 146-150
    [93] Reh S., Beley J.D., Mukherjee S., et al. Probabilistic finite element analysis using ANSYS [J]. Structural Safety, 2006, 28: 17-43
    [94]王凌.智能优化算法及其应用[M].北京:清华大学出版社, 2001: 36-59
    [95]黄平,孟永钢.最优化理论与方法[M].北京:清华大学出版社, 2009: 189-201
    [96] Deb K.,Partap A.,Agarwals S., et al. A fast and elitist multi-objective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197
    [97]张维刚,廖兴涛,钟志华.基于逐步回归模型的汽车碰撞安全性多目标优化[J].机械工程学报, 2007, 43(8): 142-147
    [98] Poles S., Fu Y., Rigoni E. The effect of initial population sampling on the convergence of multi-objective genetic algorithms[J]. Multi-objective Programming and GoalProgramming: Theoretical Results and Practical Applications, 2009, 618: 123-133
    [99] Fu Y., Diwekar U.M. An efficient sampling approach to multi-objective optimization[J]. Annals of Operations Research, 2004, 132: 109–134
    [100] Diwekar U.M., Kalagnanam J.R. Robust design using an efficient sampling technique[J]. Computers and Chemical Engineering, 1996, 20: 389-394
    [101] Wozniakowski H. Average case complexity of multivariate integration[J]. Bulletin of the American Mathematical Society, 1991, 24(1): 185-194
    [102]解艳彩.基于响应面法的机械结构可靠性灵敏度分析[D].长春:吉林大学, 2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700