用户名: 密码: 验证码:
基于衍生化的生物分子选择性检测方法探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物样品组成的复杂多样性、极宽的动态丰度等使得对其的分析难度增加,通常要求所采用的分析方法不仅要具有足够的灵敏度,同时还要具备良好的选择性。对目标分析物进行衍生化不仅可以改善检测灵敏度,也可以改变分析的选择性,因此在生物样品分析检测中得到广泛应用。新型衍生化试剂的设计、合成,衍生化方法的发展一直是生命科学、分析化学等领域的研究热点。
     本文以衍生化技术为手段,选用两种不同的衍生化试剂对硫醇、蛋白质、多肽等生物分子的衍生化方法开展研究。以4-硝基-1,8-萘酐(NNA)作为探针,对硫醇类物质进行光谱检测。在实验条件下,NNA与半胱氨酸(Cys)反应所得4-巯基取代产物可以通过分子内亲核取代过程进一步转化为4-氨基取代产物,由于Cys的巯基与羧基之间可以通过六元环形成分子内氢键作用从而加速了巯基的离去,促进了巯基取代产物的转化,溶液最大吸收和最大发射波长分别位于435nm和530nm,在荧光灯照射下发射出明亮的黄绿色荧光;而其他小分子硫醇与NNA反应所得巯基取代产物不发生分子内亲核取代反应或转化为氨基取代产物的速率较慢,溶液的最大吸收和最大发射波长分别位于390nm和490nm,在荧光灯的照射下发射出蓝色荧光。所发展的方法可用于对Cys进行选择性荧光、比色和裸眼识别。
     以4-氟-7-硝基-2,1,3-苯并氧杂恶二唑(NBD-F)作为探针,研究其在不同反应介质中对巯基和氨基化合物的光谱响应。在酸性、中性及添加阴离子或阳离子表面活性剂的中性水溶液中,巯基均表现出了良好的反应活性,其中,NBD-F与Cys、高半胱氨酸(Hcy)及巯基乙胺(MEA)反应所得巯基取代产物会通过分子内亲核取代反应过程进一步转变为对应的氨基取代产物,而且转化速率以及产物的稳定性也会因反应介质的不同发生改变;在特定的反应介质中(如在添加阳离子表面活性剂CTAB的中性水溶液中),NBD-F与巯基丙酸(MPA)和N-乙酰半胱氨酸(NAC)反应所得巯基取代产物会进一步转变为吸收波长更长的非荧光产物。利用这种光谱响应特性建立了在水溶液中对包括Cys、Hcy、MEA等在内7种小分子硫醇进行差异化识别的方法。
     研究NBD-F与牛血清白蛋白(BSA)和卵清蛋白(OVA)反应的光谱特征。在酸性、中性水溶液中,由于BSA和OVA结构差异,致使两者与NBD-F的反应活性存在明显不同;向反应溶液中添加阴离子或阳离子表面活性剂可以改变蛋白质与NBD-F的反应性能。进一步以NBD-F作为衍生化试剂,在不同pH值条件下对鼠肝肿瘤组织蛋白提取液及其酶解产物进行柱前衍生,并通过HPLC-LIF进行分离分析,实验结果表明调整反应介质的pH值可以改变NBD-F与样品各组分之间的反应活性,从而起到改变检测选择性的作用。
     为了实现生物样品的色谱分离-在线衍生-荧光检测,设计了一种基于中空纤维膜、可用于毛细管电泳-激光诱导荧光检测(CE-LIF)平台的蛋白质在线衍生反应器。小分子荧光衍生化试剂可以通过自由扩散进入反应器中,与分子量大于纤维膜截留分子量的样品发生反应,衍生化产物迁移至检测窗口处被检测。所构建的装置具有接口死体积小、制作和使用成本低廉等优点,适用于生物大分子的在线荧光衍生。
The components in biological samples are complicated and their dynamic abundances are extremely broad. It requires more sensitively and selectively analytic methods to determine the components in real samples. Derivatization is such a method that can not only enhance the sensitivity but also improve the selectivity of detection. It has aroused much attention in the design and synthesis of new derivatization reagents and the development of derivatization technique in the areas of life science, analytical chemistry and some other research areas.
     We have studied the derivatization methods for biomolecules (including thiols, protiens, peptides and etc.) by using two different derivatization reagents. Firstly, we employed4-nitro-1,8-naphthalic anhydride (NNA) as a fluorescent probe for thiols. When reacted with Cys, the4-nitro in NNA was first replaced by mercapto group followed by the displacement of mercapto group with amino group to form4-amino substitute via intramolecular nucleophilic aromatic substitution. The hydrogen bond between the sulfur atom and the carboxylic acid group in Cys could help the leaving of alkylthio group, which therfore promoted the formation of4-amino substitute. The absorption and emission maxima of the4-amino substitute were at435nm and530nm, respectively, and the solution exhibited bright green-yellow fluorescence when irradiated with UV lamp. However, since the4-alkylthio substitutes of the other thiols reaced with NNA can not transfer to the4-amino substitutes during the experimental period, the reaction solutions had absorption and emission maxima at390nm and490nm, respectively, and presented blue fluorescence when irradiated with UV lamp. Thus Cys could be recognized selectively by fluorescent and UV methods and even by naked-eye.
     Secondly, we used4-fluoro-7-nitrobenzo-2-oxa-l,3-diazole (NBD-F) as a probe to study its spectral responses towards thiol-containing and amino-containing compounds in different reaction meadia. Thiol group exhibited quite good reactivity in all the experimental conditions (in acidic, neutral and CTAB or SDS solutions). The thiol-substituent products of NBD-F reacted with Cys, Hcy and MEA would transfer to the corresponding amino-substituent products via intramolecular nucleophilic aromatic substitution. In addition, the rate of transfer and the stability of the products changed with the components of the media. In some specific media (such as in CTAB solution), the thiol-substituent products of NBD-F reacted with MPA and NAC would transfer to some long-wavelength but non-fluorescent products. Based on the individual sensing behavior of NBD-F towards different low-molecular-weight thiols, we could recognize these thiols (Cys, Hcy, MEA and etc.) to some extent.
     Thirdly, we studied the time-dependent absorption and emission spectra of NBD-F reacted with bovine serum albumin (BSA) and ovalbumin (OVA). Due to the difference in structure of these two proteins, they presented quite different reactivities with NBD-F in acidic and neutral media. The addition of anionic or cationic surfactants would change the reactivities of the protiens with NBD-F. Real biological samples such as proteins extracted from rat liver tumor tissues and their enzymic hydrolysates were analyzed via high-performance liquid chromatography coupled with laser-induced fluorescence detector (HPLC-LIF) after been labeled with NBD-F. The results indicated that the selectivity of the detection would change with the reactivities of NBD-F and proteins which were definitely influenced by the pH value of the reaction media.
     Finally, we designed a CE-LIF on-line protein derivatization reactor based on a hollow fiber membrane. Derivatization reagent with low molecular weight could permeate into the hollow fiber membrane to react with the active components whose molecular weights were larger than the molecular weight cutoffs (MWCO) of the membrane. The derivative products could be detected at the detection window. This device, with its merits such as small death volume of the interface, low cost and etc., has potential application in the analysis of biomacromolecules.
引文
1. 王红,张华山.分离检测生物活性物质的荧光标记试剂与分子探针及其应用[J].化学进展,2007,19(5):633-642.
    2. A. Masuda, N. Dohmae. Amino acid analysis of sub-picomolar amounts of proteins by precolumn fluorescence derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate[J]. Bioscience Trends,2011,5(6):231-238.
    3. G. Gooijer, A. J. G. Mank. Laser spectroscopy in analytical chemistry:light on the next millennium[J].Analytica Chimica Acta,1999,400:281-295.
    4. T.-C. Chiu, W.-C. Tu, H.-T. Chang. Stacking and separation of protein derivatives of naphthalene-2 3-dicarbox aldehyde by CE with light-emitting diode induced fluorescence detection[J]. ELECTROPHORESIS,2008,29(2):433-440.
    5.许旭,高红军,林炳承.用于毛细管电泳或微芯片电泳的半导体激光诱导荧光检测方法[J].分析测试学报,2005,24(5):122-129.
    6. 尤进茂.高灵敏度荧光标记试剂的研制及在高效液相色谱中的应用[D],中国科学院大连化学物理研究所,2002.
    7. 刘清浩.罗丹明、荧光素、尼罗红及尼罗兰衍生物的合成及应用[D],天津大学,2009.
    8. R. Cecil, J. McPhee. The sulfur chemistry of proteins [J]. Advances in Protein Chemistry, 1959,14:255-389.
    9. N. M. Giles, A. B. Watts, G. I. Giles, F. H. Fry, J. A. Littlechild, C. Jacob. Metal and Redox Modulation of Cysteine Protein Function[J]. Chemistry and Biology,2003,10(8): 677-693.
    10. Z. A. Wood, E. Schroder, J. Robin Harris, L. B. Poole. Structure, mechanism and regulation of peroxiredoxins[J]. Trends in Biochemical Sciences,2003,28(1):32-40.
    11. S. A. Lipton, Y.-B. Choi, H. Takahashi, D. Zhang, W. Li, A. Godzik, L. A. Bankston. Cysteine regulation of protein function - as exemplified by NMDA-receptor modulation[J]. Trends in Neurosciences,2002,25(9):474-480.
    12.黄文明.新型巯基化合物分析试剂的设计、合成和分析方法的初步建立[M],西南大学,2010.
    13. M. E. McMenamin, J. Himmelfarb, T. D. Nolin. Simultaneous analysis of multiple aminothiols in human plasma by high performance liquid chromatography with fluorescence detection[J]. Journal of Chromatography B,2009,877(28):3274-3281.
    14. X. Chen, Y. Zhou, X. Peng, J. Yoon. Fluorescent and colorimetric probes for detection of thiols[J]. Chemical Society Reviews,2010,39(6):2120-2135.
    15. S. Shahrokhian. Lead Phthalocyanine as a Selective Carrier for Preparation of a Cysteine-Selective Electrode[J]. Analytical Chemistry,2001,73(24):5972-5978.
    16. W. A. Kleinman, J. P. Richie Jr. Status of glutathione and other thiols and disulfides in human plasma[J]. Biochemical Pharmacology,2000,60(1):19-29.
    17. D. M. Townsend, K. D. Tew, H. Tapiero. The importance of glutathione in human disease[J]. Biomedicine and Pharmacotherapy,2003,57(3-4):145-155.
    18. S. Zhang, C.-N. Ong, H.-M. Shen. Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells[J]. Cancer Letters,2004, 208(2):143-153.
    19. J. B. Schulz, J. Lindenau, J. Seyfried, J. Dichgans. Glutathione, oxidative stress and neurodegeneration[J]. European Journal of Biochemistry,2000,267(16):4904-4911.
    20. E. Camera, M. Picardo. Analytical methods to investigate glutathione and related compounds in biological and pathological processes[J]. Journal of Chromatography B, 2002,781(1-2):181-206.
    21. L. A. Herzenberg, S. C. De Rosa, J. G. Dubs, M. Roederer, M. T. Anderson, S. W. Ela, S. C. Deresinski, L. A. Herzenberg. Glutathione deficiency is associated with impaired survival in HIV disease[J]. Proceedings of the National Academy of Sciences,1997,94(5): 1967-1972.
    22. J. Selhub. Homocysteine Metabolism [J]. Annual Review of Nutrition,1999,19(1): 217.
    23. H. Refsum, P. M. Ueland, O. Nygard, S. E. Vollset. Homocysteine and cardiovascular dissease[J]. Annual Review of Medicine,1998,49(1):31.
    24. W. G. Christen, U. A. Ajani, R. J. Glynn, C. H. Hennekens. Blood Levels of Homocysteine and Increased Risks of Cardiovascular Disease:Causal or Casual?[J]. Archives of Internal Medicine,2000,160(4):422-434.
    25. R. Obeid, W. Herrmann. Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia[J]. FEBS letters,2006, 580(13):2994-3005.
    26. S. Seshadri, A. Beiser, J. Selhub, P. F. Jacques, I. H. Rosenberg, R. B. D'Agostino, P. W. F. Wilson, P. A. Wolf. Plasma Homocysteine as a Risk Factor for Dementia and Alzheimer's Disease[J]. New England Journal of Medicine,2002,346(7):476-483.
    27. J. B. J. van Meurs, R. A. M. Dhonukshe-Rutten, S. M. F. Pluijm, M. van der Klift, R. de Jonge, J. Lindemans, L. C. P. G. M. de Groot, A. Hofman, J. C. M. Witteman, J. P. T. M. van Leeuwen, M. M. B. Breteler, P. Lips, H. A. P. Pols, A. G. Uitterlinden. Homocysteine Levels and the Risk of Osteoporotic Fracture[J]. New England Journal of Medicine,2004, 350(20):2033-2041.
    28. J. G. Ray, C. A. Laskin. Folic Acid and Homocyst(e)ine Metabolic Defects and the Risk of Placental Abruption, Pre-eclampsia and Spontaneous Pregnancy Loss:A Systematic Review[J]. Placenta,1999,20(7):519-529.
    29. 尹伶灵,陈蓁蓁,佟丽丽,徐克花,唐波.硫醇类荧光探针研究进展[J].分析化学,2009,37(7):1073-1081.
    30. Y. Zhou, J. Yoon. Recent progress in fluorescent and colorimetric chemosensors for detection of amino acids[J]. Chemical Society Reviews,2012,41(1):52-67'.
    31. T. O. Sippel. New fluorochromes for thiols:maleimide and iodoacetamide derivatives of a 3-phenylcoumarin fluorophore[J]. Journal of Histochemistry and Cytochemistry,1981, 29(2):314-6.
    32. M. E. Langmuir, J. R. Yang, A. M. Moussa, R. Laura, K. A. Lecompte. New naphthopyranone based fluorescent thiol probes[J]. Tetrahedron Letters,1995,36(23): 3989-3992.
    33. A. I. Haj-Yehia, L. Z. Benet.2-(4-N-Maleimidophenyl)-6-methoxybenzofuran:a superior derivatizing agent for fluorimetric determination of aliphatic thiols by high-performance liquid chromatography[J]. Journal of Chromatography B:Biomedical Sciences and Applications,1995,666(1):45-53.
    34. Timothy P. Dalton, H. G. Shertzer, A. Puga. Regulation of gene expression by reactive oxygen[J]. Annual Review of Pharmacology and Toxicology,1999,39:67-101.
    35. J. Ogony, S. Mare, W. Wu, N. Ercal. High performance liquid chromatography analysis of 2-mercaptoethylamine (cysteamine) in biological samples by derivatization with N-(1-pyrenyl) maleimide (NPM) using fluorescence detection[J]. Journal of Chromatography B,2006,843(1):57-62.
    36. B. Ates, B. C. Ercal, K. Manda, L. Abraham, N. Ercal. Determination of glutathione disulfide levels in biological samples using thiol-disulfide exchanging agent, dithiothreitol[J]. Biomedical Chromatography,2009,23(2):119-123.
    37. B. Benkova, V. Lozanov, I. P. Ivanov, A. Todorova, I. Milanov, V. Mitev. Determination of plasma aminothiols by high performance liquid chromatography after precolumn derivatization with N-(2-acridonyl)maleimide[J]. Journal of Chromatography B, 2008,870(1):103-108.
    38. X. Wang, S. Wang, H. Ma. Characterization of local polarity and structure of Cysl21 domain in [small beta]-lactoglobulin with a new thiol-specific fluorescent probe[J]. Analyst, 2008,133(4):478-484.
    39. C. Chassaing, J. Gonin, C. S. Wilcox, I. W. Wainer. Determination of reduced and oxidized homocysteine and related thiols in plasma by thiol-specific pre-column derivatization and capillary electrophoresis with laser-induced fluorescence detection[J]. Journal of Chromatography B:Biomedical Sciences and Applications,1999,735(2): 219-227.
    40. T. Matsumoto, Y. Urano, T. Shoda, H. Kojima, T. Nagano. A Thiol-Reactive Fluorescence Probe Based on Donor-Excited Photoinduced Electron Transfer:Key Role of Ortho Substitution[J]. Organic Letters,2007,9(17):3375-3377.
    41. X.-F. Guo, H. Wang, Y.-H. Guo, H.-S. Zhang. Selective spectrofluorimetric determination of glutathione in clinical and biological samples using 1,3,5,7-tetramethyl-8-phenyl-(2-maleimide)-difluoroboradiaza-s-indacene[J]. Analytica Chimica Acta,2009, 633(1):71-75.
    42.王丽萍.测定巯基类化合物的荧光探针的合成及应用研究[M],西北大学,2009.
    43. Q. P. Zuo, B. Li, Q. Pei, Z. J. Li, S. K. Liu. A Highly Selective Fluorescent Probe for Detection of Biological Samples Thiol and Its Application in Living Cells [J]. Journal of Fluorescence,2010,20(6):1307-1313.
    44. H. Kwon, K. Lee, H.-J. Kim. Coumarin-malonitrile conjugate as a fluorescence turn-on probe for biothiols and its cellular expression[J]. Chemical Communications,2011, 47(6):1773-1775.
    45. X. Chen, S.-K. Ko, M. J. Kim, I. Shin, J. Yoon. A thiol-specific fluorescent probe and its application for bioimaging[J]. Chemical Communications,2010,46(16):2751-2753.
    46. S. Sreejith, K. P. Divya, A. Ajayaghosh. A Near-Infrared Squaraine Dye as a Latent Ratiometric Fluorophore for the Detection of Aminothiol Content in Blood Plasma[J]. Angewandte Chemie International Edition,2008,47(41):7883-7887.
    47. J. V. Ros-Lis, B. Garcia, D. Jimenez, R. Martinez-Manez, F. Sancenon, J. Soto, F. Gonzalvo, M. C. Valldecabres. Squaraines as Fluoro-Chromogenic Probes for Thiol-Containing Compounds and Their Application to the Detection of Biorelevant Thiols[J]. Journal of the American Chemical Society,2004,126(13):4064-4065.
    48. Y. Zeng, G. Zhang, D. Zhang. A selective colorimetric chemosensor for thiols based on intramolecular charge transfer mechanism[J]. Analytica Chimica Acta,2008,627(2): 254-257.
    49. Y. Zeng, G. Zhang, D. Zhang, D. Zhu. A dual-function colorimetric chemosensor for thiols and transition metal ions based on ICT mechanism[J]. Tetrahedron Letters,2008, 49(52):7391-7394.
    50. W. Lin, L. Yuan, Z. Cao, Y. Feng, L. Long. A Sensitive and Selective Fluorescent Thiol Probe in Water Based on the Conjugate 1,4-Addition of Thiols to a,β-Unsaturated Ketones[J]. Chemistry - A European Journal,2009,15(20):5096-5103.
    51. Y.-Q. Sun, M. Chen, J. Liu, X. Lv, J.-f. Li, W. Guo. Nitroolefin-based coumarin as a colorimetric and fluorescent dual probe for biothiols[J]. Chemical Communications,2011, 47(39):11029-11031.
    52. H. S. Jung, K. C. Ko, G. H. Kim, A. R. Lee, Y. C. Na, C. Kang, J. Y. Lee, J. S. Kim. Coumarin-Based Thiol Chemosensor:Synthesis, Turn-On Mechanism, and Its Biological Application[J]. Organic Letters,2011,13(6):1498-1501.
    53. M. Zhang, M. Yu, F. Li, M. Zhu, M. Li, Y. Gao, L. Li, Z. Liu, J. Zhang, D. Zhang, T. Yi, C. Huang. A Highly Selective Fluorescence Turn-on Sensor for Cysteine/Homocysteine and Its Application in Bioimaging[J]. Journal of the American Chemical Society,2007, 129(34):10322-10323.
    54. T. D. Nolin, M. E. McMenamin, J. Himmelfarb. Simultaneous determination of total homocysteine, cysteine, cysteinylglycine, and glutathione in human plasma by high-performance liquid chromatography:Application to studies of oxidative stress[J]. Journal of Chromatography B,2007,852(1-2):554-561.
    55. T. Revermann, S. Gotz, U. Karst. Quantitative analysis of thiols in consumer products on a microfluidic CE chip with fluorescence detection[J]. Electrophoresis,2007,28(7): 1154-1160.
    56. K. S. Kuhn, A. I. Krasselt, P. Furst. Glutathione and Glutathione Metabolites in Small Tissue Samples and Mucosal Biopsies[J]. Clinical Chemistry,2000,46(7):1003-1005.
    57. T. Toyo'oka, S. Uchiyama, Y. Saito, K. Imai. Simultaneous determination of thiols and disulfides by high-performance liquid chromatography with fluorescence detection[J]. Analytica Chimica Acta,1988,205(0):29-41.
    58. S. Ho Kang, J.-W. Kim, D. S. Chung. Determination of homocysteine and other thiols in human plasma by capillary electrophoresis[J]. Journal of Pharmaceutical and Biomedical Analysis,1997,15(9-10):1435-1441.
    59. C. Chumsae, G. Gaza-Bulseco, H. Liu. Identification and Localization of Unpaired Cysteine Residues in Monoclonal Antibodies by Fluorescence Labeling and Mass Spectrometry[J]. Analytical Chemistry, 2009,81(15):6449-6457.
    60. A. Zinellu, S. Sotgia, A. M. Posadino, V. Pasciu, E. Zinellu, M. F. Usai, B. Scanu, R. Chessa, L. Gaspa, B. Tadolini, L. Deiana, C. Carru. Protein-bound glutathione measurement in cultured cells by CZE with LIF detection[J]. Electrophoresis,2007,28(18):3277-3283.
    61. A. Zinellu, A. Lepedda, S. Sotgia, E. Zinellu, G. Marongiu, M. F. Usai, L. Gaspa, P. De Muro, M. Formato, L. Deiana, C. Carru. Albumin-bound low molecular weight thiols analysis in plasma and carotid plaques by CE[J]. Journal of Separation Science,2010,33(1): 126-131.
    62. E. Causse, C. Issac, P. Malatray, C. Bayle, P. Valdiguie, R. Salvayre, F. Couderc. Assays for total homocysteine and other thiols by capillary electrophoresis-laser-induced fluorescence detection:Ⅰ. Preanalytical condition studies[J]. Journal of Chromatography A, 2000,895(1-2):173-178.
    63. X.-F. Guo, H. Wang, Y.-H. Guo, Z.-X. Zhang, H.-S. Zhang. Simultaneous analysis of plasma thiols by high-performance liquid chromatography with fluorescence detection using a new probe, 1,3,5,7-tetramethyl-8-phenyl-(4-iodoacetamido)difluoroboradiaza-s-indacene[J]. Journal of Chromatography A,2009,1216(18):3874-3880.
    64. H. Wang, S.-C. Liang, Z.-M. Zhang, H.-S. Zhang.3-Iodoacetylaminobenzanthrone as a fluorescent derivatizing reagent for thiols in high-performance liquid chromatography[J]. Analytica Chimica Acta,2004,512(2):281-286.
    65. S.-C. Liang, H. Wang, Z.-M. Zhang, H.-S. Zhang. Determination of thiol by high-performance liquid chromatography and fluorescence detection with 5-methyl-(2-(m-iodoacetylaminophenyl)benzoxazole[J]. Analytical and Bioanalytical Chemistry,2005, 381(5):1095-1100.
    66. H. Maeda, H. Matsuno, M. Ushida, K. Katayama, K. Saeki, N. Itoh. 2,4-Dinitrobenzenesulfonyl Fluoresceins as Fluorescent Alternatives to Ellman's Reagent in Thiol-Quantification Enzyme Assays[J]. Angewandte Chemie International Edition,2005, 44(19):2922-2925.
    67. J. Bouffard, Y. Kim, T. M. Swager, R. Weissleder, S. A. Hilderbrand. A Highly Selective Fluorescent Probe for Thiol Bioimaging[J]. Organic Letters,2008,10(1):37-40.
    68. A. Shibata, K. Furukawa, H. Abe, S. Tsuneda, Y. Ito. Rhodamine-based fluorogenic probe for imaging biological thiol[J]. Bioorganic and Medicinal Chemistry Letters,2008, 18(7):2246-2249.
    69. J. X. Lu, C. D. Sun, W. Chen, H. M. Ma, W. Shi, X. H. Li. Determination of non-protein cysteine in human serum by a designed BODIPY-based fluorescent probe[J]. Talanta,2011,83(3):1050-1056.
    70. J. Y. Shao, H. M. Guo, S. M. Ji, J. Z. Zhao. Styryl-BODIPY based red-emitting fluorescent OFF-ON molecular probe for specific detection of cysteine [J]. Biosensors and Bioelectronics,2011,26(6):3012-3017.
    71. 李静.合成新型荧光探针用于活细胞内双(多)巯基蛋白的检测及成像分析[M],山东师范大学,2012.
    72. B. Tang, Y. Xing, P. Li, N. Zhang, F. Yu, G. Yang. A Rhodamine-Based Fluorescent Probe Containing a Se-N Bond for Detecting Thiols and Its Application in Living Cells[J]. Journal of the American Chemical Society,2007,129(38):11666-11667.
    73. B. Tang, L. Yin, X. Wang, Z. Chen, L. Tong, K. Xu. A fast-response, highly sensitive and specific organoselenium fluorescent probe for thiols and its application in bioimaging[J]. Chemical Communications,2009, (35):5293-5295.
    74. B. Zhu, X. Zhang, Y. Li, P. Wang, H. Zhang, X. Zhuang. A colorimetric and ratiometric fluorescent probe for thiols and its bioimaging applications[J]. Chemical Communications,2010,46(31):5710-5712.
    75. M. M. Pires, J. Chmielewski. Fluorescence Imaging of Cellular Glutathione Using a Latent Rhodamine[J]. Organic Letters,2008,10(5):837-840.
    76. J. H. Lee, C. S. Lim, Y. S. Tian, J. H. Han, B. R. Cho. A Two-Photon Fluorescent Probe for Thiols in Live Cells and Tissues[J]. Journal of the American Chemical Society, 2010,132(4):1216-1217.
    77. C. S. Lim, G. Masanta, H. J. Kim, J. H. Han, H. M. Kim, B. R. Cho. Ratiometric Detection of Mitochondrial Thiols with a Two-photon Fluorescent Probe[J]. Journal of the American Chemical Society,2011,133:111132-11135.
    78. K. E. Oldenburg, X. Y. Xi, J. V. Sweedler. Simple sheath flow reactor for post-column fluorescence derivatization in capillary electrophoresis[J]. Analyst,1997,122(12): 1581-1585.
    79. M. Roth. Fluorescence reaction for amino acids[J]. Analytical Chemistry,1971,43(7): 880-882.
    80. H. Jakubowski. New method for the determination of protein N-linked homocysteine[J]. Analytical Biochemistry,2008,380(2):257-261.
    81. L. A. Denzoin, R. J. Franci, M. O. Tapia, A. L. Soraci. Quantification of plasma reduced glutathione, oxidized glutathione and plasma total glutathione in healthy cats[J]. Journal of Feline Medicine and Surgery,2008,10(3):230-234.
    82. K. Lewicki, S. Marchand, L. Matoub, J. Lulek, J. Coulon, P. Leroy. Development of a fluorescence-based microtiter plate method for the measurement of glutathione in yeast[J]. Talanta,2006,70(4):876-882.
    83. W. Lin, L. Long, L. Yuan, Z. Cao, B. Chen, W. Tan. A Ratiometric Fluorescent Probe for Cysteine and Homocysteine Displaying a Large Emission Shift[J]. Organic Letters, 2008,10(24):5577-5580.
    84. M. Hu, J. Fan, H. Li, K. Song, S. Wang, G. Cheng, X. Peng. Fluorescent chemodosimeter for Cys/Hcy with a large absorption shift and imaging in living cells[J]. Organic and Biomolecular Chemistry,2011,9(4):980-983.
    85. T.-K. Kim, D.-N. Lee, H.-J. Kim. Highly selective fluorescent sensor for homocysteine and cysteine[J]. Tetrahedron Letters,2008,49(33):4879-4881.
    86. K.-S. Lee, T.-K. Kim, J. H. Lee, H.-J. Kim, J.-I. Hong. Fluorescence turn-on probe for homocysteine and cysteine in water[J]. Chemical Communications,2008, (46):6173-6175.
    87. Z. Yang, N. Zhao, Y. Sun, F. Miao, Y. Liu, X. Liu, Y. Zhang, W. Ai, G. Song, X. Shen, X. Yu, J. Sun, W.-Y. Wong. Highly selective red- and green-emitting two-photon fluorescent probes for cysteine detection and their bio-imaging in living cells[J]. Chemical Communications,2012,48(28):3442-3444.
    88. J. Mei, J. Tong, J. Wang, A. Qin, J. Z. Sun, B. Z. Tang. Discriminative fluorescence detection of cysteine, homocysteine and glutathione via reaction-dependent aggregation of fluorophore-analyte adducts[J]. Journal of Materials Chemistry,2012,22(33): 17063-17070.
    89. S.-T. Huang, K.-N. Ting, K.-L. Wang. Development of a long-wavelength fluorescent probe based on quinone-methide-type reaction to detect physiologically significant thiols[J]. Analytica Chimica Acta,2008,620(1-2):120-126.
    90. M. S. Han, D. H. Kim. Rationally designed chromgenic chemosensor that detects cysteine in aqueous solution with remarkable selectivity [J]. Tetrahedron,2004,60(49): 11251-11257.
    91. N. Shao, J. Y. Jin, S. M. Cheung, R. H. Yang, W. H. Chan, T. Mo. A Spiropyran-Based Ensemble for Visual Recognition and Quantification of Cysteine and Homocysteine at Physiological Levels[J]. Angewandte Chemie International Edition,2006,45(30): 4944-4948.
    92. Y.-K. Yang, S. Shim, J. Tae. Rhodamine-sugar based turn-on fluorescent probe for the detection of cysteine and homocysteine in water [J]. Chemical Communications,2010, 46(41):7766-7768.
    93. P. K. Sudeep, S. T. S. Joseph, K. G. Thomas. Selective Detection of Cysteine and Glutathione Using Gold Nanorods[J]. Journal of the American Chemical Society,2005, 127(18):6516-6517.
    94. K. Xu, H. Chen, H. Wang, J. Tian, J. Li, Q. Li, N. Li, B. Tang. A nanoprobe for nonprotein thiols based on assembling of QDs and 4-amino-2,2,6,6-tetramethylpiperidine oxide[J]. Biosensors and Bioelectronics,2011,26(11):4632-4636.
    95. R. Zhou, K.-Y. Wei, J.-S. Zhao, Y.-B. Jiang. Alternative chiral thiols for preparation of chiral CdS quantum dots covered immediately by achiral thiols[J]. Chemical Communications,2011,47(22):6362-6364.
    96. G. L. Wang, Y. M. Dong, H. X. Yang, Z. J. Li. Ultrasensitive cysteine sensing using citrate-capped CdS quantum dots[J]. Talanta,2011,83(3):943-947.
    97. W. Wang, O. Rusin, X. Xu, K. K. Kim, J. O. Escobedo, S. O. Fakayode, K. A. Fletcher, M. Lowry, C. M. Schowalter, C. M. Lawrence, F. R. Fronczek, I. M. Warner, R. M. Strongin. Detection of Homocysteine and Cysteine[J]. Journal of the American Chemical Society, 2005,127(45):15949-15958.
    98. H. Li, J. Fan, J. Wang, M. Tian, J. Du, S. Sun, P. Sun, X. Peng. A fluorescent chemodosimeter specific for cysteine:effective discrimination of cysteine from homocysteine [J]. Chemical Communications,2009,45(39):5904-5906.
    99. L. Yuan, W. Lin, Y. Yang. A ratiometric fluorescent probe for specific detection of cysteine over homocysteine and glutathione based on the drastic distinction in the kinetic profiles[J]. Chemical Communications,2011,47(22):6275-6277.
    100. X. Yang, Y. Guo, R. M. Strongin. Conjugate Addition/Cyclization Sequence Enables Selective and Simultaneous Fluorescence Detection of Cysteine and Homocysteine[J]. Angewandte Chemie International Edition,2011,50(45):10690-10693.
    101. X. Yang, Y. Guo, R. M. Strongin. A seminaphthofluorescein-based fluorescent chemodosimeter for the highly selective detection of cysteine [J]. Organic and Biomolecular Chemistry,2012,10(14):2739-2741.
    102. H. Wang, G. Zhou, H. Gai, X. Chen. A fluorescein-based probe with high selectivity to cysteine over homocysteine and glutathione [J]. Chemical Communications,2012,48(67): 8341-8343.
    103. H.-P. Wu, C.-C. Huang, T.-L. Cheng, W.-L. Tseng. Sodium hydroxide as pretreatment and fluorosurfactant-capped gold nanoparticles as sensor for the highly selective detection of cysteine [J]. Talanta,2008,76(2):347-352.
    104. W. Wang, J. O. Escobedo, C. M. Lawrence, R. M. Strongin. Direct Detection of Homocysteine[J]. Journal of the American Chemical Society,2004,126(11):3400-3401.
    105. H. Chen, Q. Zhao, Y. Wu, F. Li, H. Yang, T. Yi, C. Huang. Selective Phosphorescence Chemosensor for Homocysteine Based on an Iridium(III) Complex[J]. Inorganic Chemistry, 2007,46(26):11075-11081.
    106. J.-H. Lin, C.-W. Chang, W.-L. Tseng. Fluorescent sensing of homocysteine in urine: Using fluorosurfactant-capped gold nanoparticles and o-Phthaldialdehyde[J]. Analyst,2010, 135(1):104-110.
    107. Y. Guo, X. Yang, L. Hakuna, A. Barve, J. O. Escobedo, M. Lowry, R. M. Strongin. A Fast Response Highly Selective Probe for the Detection of Glutathione in Human Blood Plasma[J]. Sensors,2012,12(5):5940-5950.
    108. N. Shao, J. Jin, H. Wang, J. Zheng, R. Yang, W. Chan, Z. Abliz. Design of Bis-spiropyran Ligands as Dipolar Molecule Receptors and Application to in Vivo Glutathione Fluorescent Probes[J]. Journal of the American Chemical Society,2009,132(2): 725-736.
    109. L.-Y. Niu, Y.-S. Guan, Y.-Z. Chen, L.-Z. Wu, C.-H. Tung, Q.-Z. Yang. BODIPY-Based Ratiometric Fluorescent Sensor for Highly Selective Detection of Glutathione over Cysteine and Homocysteine[J]. Journal of the American Chemical Society, 2012,134(46):18928-18931.
    110.王延华,邢如新,游潮.蛋白质理论与技术.科学出版社:2009,34-35.
    111.王克夷.蛋白质导论.北京:科学出版社:2007,520-524.
    112. 刘开坤.早期肝癌诊断标志物的筛选与初步鉴定[M],南京医科大学,2008.
    113. M. Gao, C. Deng, W. Yu, Y. Zhang, P. Yang, X. Zhang. Large scale depletion of the high-abundance proteins and analysis of middle-and low-abundance proteins in human liver proteome by multidimensional liquid chromatography[J]. Proteomics,2008,8(5):939-947.
    114. M. Gao, J. Zhang, C. Deng, P. Yang, X. Zhang. Novel Strategy of High-Abundance Protein Depletion Using Multidimensional Liquid Chromatography[J]. Journal of Proteome Research,2006,5(10):2853-2860.
    115. S. Hu, Z. R. Zhang, L. M. Cook, E. J. Carpenter, N. J. Dovichi. Separation of proteins by sodium dodecylsulfate capillary electrophoresis in hydroxypropylcellulose sieving matrix with laser-induced fluorescence detection[J]. Journal of Chromatography A, 2000,894(1-2):291-296.
    116. E. M. Souza-Fagundes, A. O. Frank, M. D. Feldkamp, D. C. Dorset, W. J. Chazin, O. W. Rossanese, E. T. Olejniczak, S. W. Fesik. A high-throughput fluorescence polarization anisotropy assay for the 70N domain of replication protein A[J]. Analytical Biochemistry, 2012,421(2):742-749.
    117. J. Jacksen, K. Dahl, A. T. Karlberg, T. Redeby, A. Emmer. Capillary electrophoresis separation and matrix-assisted laser desorption/ionization mass spectrometry characterization of bovine serum albumin fluorescein isothiocyanate conjugates[J]. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences,2010, 878(15-16):1125-1134.
    118. L. Yi, H. Li, L. Sun, L. Liu, C. Zhang, Z. Xi. A Highly Sensitive Fluorescence Probe for Fast Thiol-Quantification Assay of Glutathione Reductase[J]. Angewandte Chemie International Edition,2009,48(22):4034-4037.
    119. D. Zhang, N. O. Devarie-Baez, Q. Li, J. R. Lancaster, M. Xian. Methylsulfonyl Benzothiazole (MSBT):A Selective Protein Thiol Blocking Reagent[J]. Organic Letters, 2012,14(13):3396-3399.
    120. I. Le Potier, G. Franck, C. Smadja, S. Varlet, M. Taverna. In-capillary derivatization approach applied to the analysis of insulin by capillary electrophoresis with laser-induced fluorescence detection[J]. Journal of Chromatography A,2004,1046(1-2):271-276.
    121. S. A. Cohen, K. M. De Antonis. Applications of amino acid derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate:Analysis of feed grains, intravenous solutions and glycoproteins[J]. Journal of Chromatography A,1994,661(1-2):25-34.
    122. R. Ullmer, A. Plematl, A. Rizzi. Derivatization by 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate for enhancing the ionization yield of small peptides and glycopeptides in matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry [J]. Rapid Communications in Mass Spectrometry,2006,20(9): 1469-1479.
    123. S. Stein, P. Bohlen, J. Stone, W. Dairman, S. Udenfriend. Amino acid analysis with fluorescamine at the picomole level[J]. Archives of Biochemistry and Biophysics,1973, 155(1):203-212.
    124. N. Dhaunta, U. Fatima, P. Guptasarma. N-Terminal sequencing by mass spectrometry through specific fluorescamine labeling of a-amino groups before tryptic digestion[J]. Analytical Biochemistry,2011,408(2):263-268.
    125. M. C. Miedel, J. D. Hulmes, Y.-C. E. Pan. The use of fluorescamine as a detection reagent in protein microcharacterization[J]. Journal of Biochemical and Biophysical Methods,1989,18(1):37-52.
    126. S. M. Z. Al-Kindy, S. A. El-Sherbini, M. H. Abdel-Kader. UV-visile absorption and fluorescence characteristics of the luminescent label coumarin-6-sulphonyl chloride in homogeneous and micellar solutions[J]. Analytica Chimica Acta,1994,285(3):329-333.
    127. J. P. Zanetta, G. Vincendon, P. Mandel, G. Combos. The utilisation of i-dimethylaminonaphthalene-5-sulphonyl chloride for quantitative determination of free amino acids and partial analysis of primary structure of proteins[J]. Journal of Chromatography A,1970,51(0):441-458.
    128. S. N. Smith, R. P. Steer. The photophysics of Lissamine rhodamine-B sulphonyl chloride in aqueous solution:implications for fluorescent protein-dye conjugates [J]. Journal of Photochemistry and Photobiology A:Chemistry,2001,139(2-3):151-156.
    129. C. Dall'Asta, G. Galaverna, A. Biancardi, M. Gasparini, S. Sforza, A. Dossena, R. Marchelli. Simultaneous liquid chromatography - fluorescence analysis of type A and type B trichothecenes as fluorescent derivatives via reaction with coumarin-3-carbonyl chloride[J]. Journal of Chromatography A,2004,1047(2):241-247.
    130. M. Jimenez, J. J. Mateo, R. Mateo. Determination of type A trichothecenes by high-performance liquid chromatography with coumarin-3-carbonyl chloride derivatisation and fluorescence detection[J]. Journal of Chromatography A,2000,870(1-2):473-481.
    131. O. Vandenabeele-Trambouze, L. Mion, L. Garrelly, A. Commeyras. Reactivity of organic isocyanates with nucleophilic compounds:amines; alcohols; thiols; oximes; and phenols in dilute organic solutions[J]. Advances in Environmental Research,2001,6(1): 45-55.
    132. N. Tamura, K. Aoki, M.-S. Lee. Selective reactivities of isocyanates towards DNA bases and genotoxicity of methylcarbamoylation of DNA[J]. Mutation Research Letters, 1992,283(2):97-106.
    133. Y. Watanabe, K. Imai. Pre-column labelling for high-performance liquid chromatography of amino acids with 7-fluoro-4-nitrobenzo-2-oxa-1,3-diazole and its application to protein hydrolysates[J]. Journal of Chromatography A,1982,239(0): 723-732.
    134. E. T. Wise, N. Singh, B. L. Hogan. Argon-laser-induced fluorescence detection in sodium dodecyl sulfate-capillary gel electrophoretic separations of proteins[J]. Journal of Chromatography A,1996,746(1):109-121.
    135. J. Luo, E. Fukuda, H. Takase, S. Fushinobu, H. Shoun, T. Wakagi. Identification of the lysine residue responsible for coenzyme A binding in the heterodimeric 2-oxoacid:ferredoxin oxidoreductase from Sulfolobus tokodaii, a thermoacidophilic archaeon, using 4-fluoro-7-nitrobenzofurazan as an affinity label[J]. Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics,2009,1794(2):335-340.
    136. J. Liu, Y. Z. Hsieh, D. Wiesler, M. Novotny. Design of 3-(4-carboxybenzoyl)-2-quinolinecarboxaldehyde as a reagent for ultrasensitive determination of primary amines by capillary electrophoresis using laser fluorescence detection[J]. Analytical Chemistry, 1991,63(5):408-412.
    137. J. Bergquist, M. J. Vona, C.-O. Stiller, W. T. O'Connor, T. Falkenberg, R. Ekman. Capillary electrophoresis with laser-induced fluorescence detection:a sensitive method for monitoring extracellular concentrations of amino acids in the periaqueductal grey matter[J]. Journal of Neuroscience Methods,1996,65(1):33-42.
    138. X. Liu, L.-X. Yang, Y.-T. Lu. Determination of biogenic amines by 3-(2-furoyl)quinoline-2-carboxaldehyde and capillary electrophoresis with laser-induced fluorescence detection[J]. Journal of Chromatography A,2003,998(1-2):213-219.
    139. C. Aoyama, T. Santa, M. Tsunoda, T. Fukushima, C. Kitada, K. Imai. A fully automated amino acid analyzer using NBD-F as a fluorescent derivatization reagent[J]. Biomedical Chromatography,2004,18(9):630-636.
    140. K. Imai, Y. Watanabe. Fluorimetric determination of secondary amino acids by 7-fluoro-4-nitrobenzo-2-oxa-1,3-diazole[J]. Analytica Chimica,1981,130(2):377-383.
    141. Y. Watanabe, K. Imai. High-performance liquid chromatography and sensitive detection of amino acids derivatized with 7-fluoro-4-nitrobenzo-2-oxa-1,3-diazole[J]. Analytical Biochemistry,1981,116(2):471-472.
    142. A. A. Al-Majed. Specific spectrofluorometric quantification of D-penicillamine in bulk and dosage forms after derivatization with 4-fluoro-7-nitrobenzo-2-oxa-1,3-diazole[J]. Analytica Chimica Acta,2000,408(1-2):169-175.
    143. T. Fukushima, E. Naka-aki, X. J. Guo, F. M. Li, T. Vankeirsbilck, W. R. G. Baeyens, K. Imai, T. Toyo'oka. Determination of fluoxetine and norfluoxetine in rat brain microdialysis samples following intraperitoneal fluoxetine administration[J]. Analytica Chimica Acta,2004,522(1):99-104.
    144. X. L. Zhu, P. N. Shaw, D. A. Barrett. Catecholamines derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole:characterization of chemical structure and fluorescence properties[J]. Analytica Chimica Acta,2003,478(2):259-269.
    145. L. F. Bernal-Perez, L. Prokai, Y. Ryu. Selective N-terminal fluorescent labeling of proteins using 4-chloro-7-nitrobenzofurazan:A method to distinguish protein N-terminal acetylation[J]. Analytical Biochemistry,2012,428(1):13-15.
    146. M. L. Ye, S. Hu, W. W. C. Quigley, N. J. Dovichi. Post-column fluorescence derivatization of proteins and peptides in capillary electrophoresis with a sheath flow reactor and 488 nm argon ion laser excitation[J]. Journal of Chromatography A,2004, 1022(1-2):201-206.
    147. I. H. Lee, D. Pinto, E. A. Arriaga, Z. R. Zhang, N. J. Dovichi. Picomolar analysis of proteins using electrophoretically mediated microanalysis and capillary electrophoresis with laser-induced fluorescence detection[J]. Analytical Chemistry,1998,70(21):4546-4548.
    148. I. M. Vlasova, A. A. Kuleshova, A. I. Panchishin, A. A. Vlasov. Investigation of interaction of fluorescent marker Bengal Rose with human serum albumin at various values of pH[J]. Journal of Molecular Structure,2012,1016(0):1-7.
    149. I. M. Vlasova, A. M. Saletsky. Investigation of influence of different values of pH on mechanisms of binding of human serum albumin with markers of fluorescein family [J]. Journal of Molecular Structure,2009,936(1-3):220-227.
    150. K. D. Volkova, V. B. Kovalska, M. Y. Losytskyy, L. V. Reis, P. F. Santos, P. Almeida, D. E. Lynch, S. M. Yarmoluk. Aza-substituted squaraines for the fluorescent detection of albumins[J]. Dyes and Pigments,2011,90(1):41-47.
    151. H. Ren, F. Xiao, K. Zhan, Y.-P. Kim, H. Xie, Z. Xia, J. Rao. A Biocompatible Condensation Reaction for the Labeling of Terminal Cysteine Residues on Proteins[J]. Angewandte Chemie International Edition,2009,48(51):9658-9662.
    152. S. Girouard, M.-H. Houle, A. Grandbois, J. W. Keillor, S. W. Michnick. Synthesis and Characterization of Dimaleimide Fluorogens Designed for Specific Labeling of Proteins [J]. Journal of the American Chemical Society,2005,127(2):559-566.
    153. C. Huang, Q. Yin, W. Zhu, Y. Yang, X. Wang, X. Qian, Y. Xu. Highly Selective Fluorescent Probe for Vicinal-Dithiol-Containing Proteins and In Situ Imaging in Living Cells[J]. Angewandte Chemie International Edition,2011,50(33):7551-7556.
    154. W. L. Zahler, W. W. Cleland. A Specific and Sensitive Assay for Disulfides[J]. Journal of Biological Chemistry 1968,243(4):716-719.
    155. W. Kim, Y. Kim, J. Min, D. J. Kim, Y.-T. Chang, M. H. Hecht. A High-Throughput Screen for Compounds That Inhibit Aggregation of the Alzheimer's Peptide[J]. ACS Chemical Biology,2006,1(7):461-469.
    156. A. Rutkowska, C. H. Haering, C. Schultz. A FlAsH-Based Cross-Linker to Study Protein Interactions in Living Cells[J]. Angewandte Chemie International Edition,2011, 50(52):12655-12658.
    157. A. N. Kapanidis, Y. W. Ebright, R. H. Ebright. Site-specific incorporation of fluorescent probes into protein:hexahistidine-tag-mediated fluorescent labeling with (Ni2+:nitrilotriacetic Acid)n-fluorochrome conjugates [J]. Journal of the American Chemical Society,2001,123(48):12123-12125.
    158. A. Ojida, K. Honda, D. Shinmi, S. Kiyonaka, Y. Mori, I. Hamachi. Oligo-Asp Tag/Zn(II) Complex Probe as a New Pair for Labeling and Fluorescence Imaging of Proteins[J]. Journal of the American Chemical Society,2006,128(32):10452-10459.
    159. L. W. Miller, J. Sable, P. Goelet, M. P. Sheetz, V. W. Cornish. Methotrexate Conjugates:A Molecular In Vivo Protein Tag[J]. Angewandte Chemie,2004,116(13): 1704-1707.
    160. R. Damoiseaux, A. Keppler, K. Johnsson. Synthesis and Applications of Chemical Probes for Human O6-Alkylguanine-DNA Alkyltransferase[J]. ChemBioChem,2001,2(4): 285-287.
    161. C. W. Lin, A. Y. Ting. Transglutaminase-catalyzed site-specific conjugation of small-molecule probes to proteins in vitro and on the surface of living cells[J]. Journal of the American Chemical Society,2006,128(14):4542-4543.
    162. M. W. Rose, N. D. Rose, J. Boggs, S. Lenevich, J. Xu, G. Barany, M. D. Distefano. Evaluation of geranylazide and farnesylazide diphosphate for incorporation of prenylazides into a CAAX box-containing peptide using protein farnesyltransferase[J]. The Journal of Peptide Research,2005,65(6):529-537.
    163. I. Chen, M. Howarth, W. Lin, A. Y. Ting. Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase[J]. Nat Meth,2005,2(2):99-104.
    164. G. Loving, B. Imperiali. Thiol-Reactive Derivatives of the Solvatochromic 4-N,N-Dimethylamino-1,8-naphthalimide Fluorophore:A Highly Sensitive Toolset for the Detection of Biomolecular Interactions [J]. Bioconjugate Chemistry,2009,20(11): 2133-2141.
    165. V. B. Bojinov, I. P. Panova. Synthesis and absorption properties of new yellow-green emitting benzo[de]isoquinoline-1.3-diones containing hindered amine and 2-hydroxyphenyl-benzotriazole fragments[J]. Dyes and Pigments,2007,74(3):551-560.
    166. J. Wang, Y. Xiao, Z. Zhang, X. Qian, Y. Yang, Q. Xu. A pH-resistant Zn(II) sensor derived from 4-aminonaphthalimide:design, synthesis and intracellular applications [J]. Journal of Materials Chemistry,2005,15(27-28):2836-2839.
    167. E. B. Veale, T. Gunnlaugsson. Bidirectional Photoinduced Electron-Transfer Quenching Is Observed in 4-Amino-1,8-naphthalimide-Based Fluorescent Anion Sensors[J]. The Journal of Organic Chemistry,2008,73(20):8073-8076.
    168. L. Duan, Y. Xu, X. Qian. Highly sensitive and selective Pd2+ sensor of naphthalimide derivative based on complexation with alkynes and thio-heterocycle[J]. Chemical Communications,2008, (47):6339-6341.
    169. A. Wu, Y. Xu, X. Qian. Novel naphthalimide-amino acid conjugates with flexible leucine moiety as side chain:Design, synthesis and potential antitumor activity[J]. Bioorganic and Medicinal Chemistry,2009,17(2):592-599.
    170. H. Yin, Y. Xu, X. Qian, Y. Li, J. Liu. Novel N-oxide of naphthalimides as prodrug leads against hypoxic solid tumor:Synthesis and biological evaluation[J]. Bioorganic and Medicinal Chemistry Letters,2007,17:2166-2170.
    171. L. A. Jones, C. T. Joyner, H. K. Kim, R. A. Kyff. Acenaphthene I. The preparation of derivatives of 4,5-diamino naphthalic anhydride[J]. Canadian Journal of Chemistry,1970, 48(20):3132-3135.
    172. S. Y. S. Beheshtiha, R. Hekmatshoar, F. Soltani. Synthesis and absorption properties of some new 4-thio-1,8-naphthylimides and 4-(thio)-7H-benzimidazo [2,1-A] benz [D.E] isoquinolin-7-one derivatives [J]. Phosphorus Sulfur Silicon,2004,179:1723-1729.
    173. E. R. Triboni, M. J. Politi, I. M. Cuccovia, H. Chaimovich, P. Berci Filho. Rate-limiting step and micellar catalysis of the non-classical nitro group nucleophilic substitution by thiols in 4-nitro-N-n-butyl-1,8-naphthalimide[J]. Journal of Physical Organic Chemistry,2003,16(6):311-317.
    174. D. Yuan, R. G. Brown, J. D. Hepworth, M. S. Alexiou, J. H. P. Tyman. The synthesis and fluorescence of novel N-substituted-1,8-naphthylimides[J]. Journal of Heterocyclic Chemistry,2008,45(2):397-404.
    175. H. P. Burchfield. Molecular Rearrangement in the Reaction of Cysteine with 1-Fluoro-2,4-Dinitrobenzene[J]. Nature,1958,181(4601):49-50.
    176. R. Schoental, D. J. Rive. Interaction of N-alkyl-N-nitrosourethanes with thiols[J]. Biochemical Journal,1965,97(2):466-474.
    177. A. A. Elfarra, I. Y. Hwang. Effects of pH, Temperature, and Chemical Structure on the Stability of S-(Purin-6-yl)-1-cysteine:Evidence for a Novel Molecular Rearrangement Mechanism To Yield N-(Purin-6-yl)-1-cysteine[J]. Chemical Research in Toxicology,1996, 9(3):654-658.
    178. D. J. Birkett, N. C. Price, G. K. Radda, A. G. Salmon. The reactivity of SH groups with a fluorogenic reagent[J]. FEBS letters,1970,6(4):346-348.
    179. Y. Watanabe, K. Imai. Liquid chromatographic determination of amino and imino acids and thiols by postcolumn derivatization with 4-fluoro-7-nitrobenzo-2,l,3 -oxadiazole[J]. Analytical Chemistry, 1983,55(11):1786-1791.
    180. T. Toyo'oka, K. Imai. High-performance liquid chromatography and fluorometric detection of biologically important thiols, derivatized with ammonium 7-fluorobenzo-2-oxa-l,3-diazole-4-sulphonate (SBD-F)[J]. Journal of Chromatography A,1983,282(0): 495-500.
    181. T. Toyooka, K. Imai. New fluorogenic reagent having halogenobenzofurazan structure for thiols:4-(aminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole[J]. Analytical Chemistry,1984,56(13):2461-2464.
    182. G. Cevasco, A. M. Piatek, C. Scapolla, S. Thea. An improved method for simultaneous analysis of aminothiols in human plasma by high-performance liquid chromatography with fluorescence detection[J]. Journal of Chromatography A,2010, 1217(14):2158-2162.
    183. A. F. Akinyele, J. I. Okogun, O. P. Faboya. Use of 7-Chloro-4-nitrobenzo-2-oxa-1,3-diazole for Determining Cysteine and Cystine in Cereal and Legume Seeds[J]. Journal of Agricultural and Food Chemistry,1999,47(6):2303-2307.
    184.李志明,何巧红,陈恒武.表面活性剂对NBD-Cl衍生氨基酸的荧光增敏和芯片电泳分离的影响[J].分析化学,2008,36(7):967-970.
    185. T. Toyo'oka, T. Mantani, M. Kato. Reversible Labeling of Tyrosine Residue in Peptide Using 4-Fluoro-7-nitro-2,1,3-benzoxadiazole and N-Acetyl-L-cysteine[J]. Analytical Sciences,2003,19(3):341-346.
    186. T. Toyo'oka, T. Mantani, M. Kato. Characterization of labelling and de-labelling reagents for detection and recovery of tyrosine residue in peptide [J]. Biomedical Chromatography,2003,17(2-3):133-142.
    187. T. Toyo'oka, K. Imai. Isolation and characterization of cysteine containing regions of proteins using 4-(aminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole and high-performance liquid chromatography[J]. Analytical Chemistry,1985,57(9):1931-1937.
    188. J. P. Fabisiak, A. Sedlov, V. E. Kagan. Quantification of oxidative/nitrosative modification of CYS(34) in human serum albumin using a fluorescence-based SDS-PAGE assay [J]. Antioxidants and Redox Signaling,2002,4(5):855-65.
    189. H. Zhang, I. Le Potier, C. Smadja, J. Zhang, M. Taverna. Fluorescent detection of peptides and amino acids for capillary electrophoresis via on-line derivatization with 4-fluoro-7-nitro-2,1,3-benzoxadiazole[J]. Analytical and Bioanalytical Chemistry,2006, 386(5):1387-1394.
    190. F. Robert, L. Bert, S. Parrot, L. Denoroy, L. Stoppini, B. Renaud. Coupling on-line brain microdialysis, precolumn derivatization and capillary electrophoresis for routine minute sampling of O-phosphoethanolamine and excitatory amino acids [J]. Journal of Chromatography A,1998,817(1-2):195-203.
    191. 马丽敏,蓝闽波,张维冰.蛋白质/多肽的毛细管电泳-激光诱导荧光检测分析方法发展[J].生命科学仪器,2008,6(6):3-10.
    192. A. M. Garcia-Campana, M. Taverna, H. Fabre. LIF detection of peptides and proteins in CE[J]. ELECTROPHORESIS,2007,28(1-2):208-232.
    193.杨秀晗.激光诱导荧光检测法[J].光谱仪器与分析,2006,1-3:197-200.
    194. R. Zhu, W. T. Kok. Post-column derivatization for fluorescence and chemiluminescence detection in capillary electrophoresis[J]. Journal of Pharmaceutical and Biomedical Analysis,1998,17(6-7):985-999.
    195.周雷.毛细管电泳中衍生反应的研究与应用[D],兰州大学,2008.
    196. D. J. Rose Jr, J. W. Jorgenson. Post-capillary fluorescence detection in capillary zone electrophoresis using o-phthaldialdehyde[J]. Journal of Chromatography A,1988,447(0): 117-131.
    197. L. Zhang, E. S. Yeung. Postcolumn reactor in capillary electrophoresis for laser-induced fluorescence detection[J]. Journal of Chromatography A,1996,734(2): 331-337.
    198. M. Albin, R. Weinberger, E. Sapp, S. Moring. Fluorescence detection in capillary electrophoresis:evaluation of derivatizing reagents and techniques [J]. Analytcial Chemistry, 1991,63(5):417-422.
    199. S. D. Gilman, J. J. Pietron, A. G. Ewing. Post-column derivatization in narrow-bore capillaries for the analysis of amino acids and proteins by capillary electrophoresis with fluorescence detection[J]. Journal of Microcolumn Separations,1994,6(4):373-384.
    200. K. L. Kostel, S. M. Lunte. Evaluation of capillary electrophoresis with post-column derivatization and laser-induced fluorescence detection for the determination of substance P and its metabolites [J]. Journal of Chromatography B,1997,695(1):27-38.
    201. C.-Z. Yu, Y.-Z. He, F. Han, G.-N. Fu. Post-column reactor of coaxial-gap mode for laser-induced fluorescence detection in capillary electrophoresis[J]. Journal of Chromatography A,2007,1171(1-2):133-139.
    202. R. Dadoo, A. G. Seto, L. A. Colon, R. N. Zare. End-column chemiluminescence detector for capillary electrophoresis[J]. Analytical Chemistry,1994,66(2):303-306.
    203. M. T. Bowser, R. T. Kennedy. In vivo monitoring of amine neurotransmitters using microdialysis with on-line capillary electrophoresis[J]. ELECTROPHORESIS,2001,22(17): 3668-3676.
    204. K. Sobhani, D. A. Michels, N. J. Dovichi. Sheath-flow cuvette for high-sensitivity laser-induced fluorescence detection in capillary electrophoresis[J]. Applied Spectroscopy 2007,61(7):777-779.
    205. M. Wang, N. Hershey, O. Mabrouk, R. Kennedy. Collection, storage, and electrophoretic analysis of nanoliter microdialysis samples collected from awake animals in vivo[J]. Analytical and Bioanalytical Chemistry,2011,400(7):2013-2023.
    206. M. Shou, C. R. Ferrario, K. N. Schultz, T. E. Robinson, R. T. Kennedy. Monitoring Dopamine in Vivo by Microdialysis Sampling and On-Line CE-Laser-Induced Fluorescence[J]. Analytical Chemistry,2006,78(19):6717-6725.
    207. C. C. Klinker, M. T. Bowser.4-fluoro-7-nitro-2,1,3-benzoxadiazole as a fluorogenic labeling reagent for the in vivo analysis of amino acid neurotransmitters using online microdialysis-capillary electrophoresis [J]. Analytical Chemistry 2007,79(22):8747-8754.
    208. C. M. Ciriacks, M. T. Bowser. Monitoring D-Serine Dynamics in the Rat Brain Using Online Microdialysis-Capillary Electrophoresis[J]. Analytical Chemistry,2004, 76(22):6582-6587.
    209. L. Sun, J. Ma, X. Qiao, Y. Liang, G. Zhu, Y. Shan, Z. Liang, L. Zhang, Y Zhang. Integrated Device for Online Sample Buffer Exchange, Protein Enrichment, and Digestion[J]. Analytical Chemistry 2010,82(6):2574-2579.
    210. X. Qiao, L. Sun, L. Wang, Y. Liang, L. Zhang, Y. Shan, X. Peng, Z. Liang, Y Zhang. High sensitive protein detection by hollow fiber membrane interface based protein enrichment and in situ fluorescence derivatization[J]. Journal of Chromatography B,2011, 879(17-18):1439-1443.
    211. C. Yang, H. Liu, Q. Yang, L. Zhang, W. Zhang, Y. Zhang. On-Line Hyphenation of Capillary lsoelectric Focusing and Capillary Gel Electrophoresis by a Dialysis Interface [J]. Analytical Chemistry 2003,75(2):215-218.
    212. C. Yang, L. Zhang, H. Liu, W. Zhang, Y. Zhang. Two-dimensional capillary electrophoresis involving capillary isoelectric focusing and capillary zone electrophoresis[J]. Journal of Chromatography A,2003,1018(1):97-103.
    213. H. Liu, C. Yang, Q. Yang, W. Zhang, Y. Zhang. On-line combination of capillary isoelectric focusing and capillary non-gel sieving electrophoresis using a hollow-fiber membrane interface:a novel two-dimensional separation system for proteins[J]. Journal of Chromatography B,2005,817(1):119-126.
    214. R. Zhu, W. T. Kok. Postcolumn reaction system for fluorescence detection in capillary electrophoresis[J]. Journal of Chromatography A,1995,716(1-2):123-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700