用户名: 密码: 验证码:
靛玉红衍生物PHII-7诱导乳腺癌耐药株MCF-7/ADR凋亡并通过转录因子AP-1逆转其多药耐药
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳腺癌是女性易患的恶性肿瘤之一,发病率居女性肿瘤第二位,且呈逐年上升趋势,严重危害广大妇女的健康。化疗是临床上常用的治疗手段,但多药耐药(Multidrug resistance, MDR)仍是导致乳腺癌化疗失败的重要原因之一。
     MDR形成机制复杂,其中P一糖蛋白(P-glycoprotein, P-gp)的过表达介导的药物外排作用是主要的耐药机制。P-gp属于ATP结合盒(ATP-binding cassette, ABC)转运蛋白超家族成员之一,由mdrl基因编码,是一种相对分子质量为170KDa的跨膜糖蛋白。P-gp的过度表达形成药物的转运泵,可与细胞内化疗药物结合并将药物泵到细胞外,以维持细胞内药物浓度在亚致死量的范围,从而产生耐药性。在大约30-40%的原发性乳腺癌和多于50%的转移性乳腺癌患者P-gp都高表达,因此研制能抑制P-gp表达及其功能的新型抗癌药是目前研究的热点。目前被证实具有逆转P-gp介导的MDR作用的药物和制剂很多,如维拉帕米(verapamil)、环胞多肽(cyclosporine)、三氟拉嗪(trifluroperazine)等,由于其有效逆转浓度往往超出临床应用的安全范围,在临床推广中存在不足。因此,寻找高效、低毒、作用靶点广、逆转作用显著的肿瘤MDR逆转剂刻不容缓。
     近期,人们发现一些传统中药在作为抗癌药同时具有逆转耐药效应,相对于西药,因其有效性和安全性而受到青睐。靛玉红是传统中药(tranditional Chinese medicine, TCM)复方“当归龙荟丸”(danggui longhui wan)的活性成分。在中国,当归龙荟丸被用于治疗慢性粒细胞性白血病(chronic myelogenous leukemia,CML)。靛玉红的确切作用机制虽尚不清楚,但其对CML的治疗取得了令人欣慰的结果,同时抗实体瘤的效应也被研究。研究表明,靛玉红衍生物对多种人类肿瘤细胞也具有抗癌作用。一些靛玉红衍生物,如indirubin-5-sulfonate和indirubin-3-monoxime I临床试验已取得可喜成绩。基于靛玉红属于氧化吲哚类这一事实,我们设计和合成了一系列的氧化吲哚类衍生物:Ⅰ,Ⅱ,Ⅲ类,并经过构效分析,最终得到了抗癌效应最强的化合物:PH Ⅱ-7。
     前期研究发现,PH Ⅱ-7可抑制多种人肿瘤细胞生长,对多药耐药肿瘤细胞同样有效,体内实验证实对多种移植瘤有效。PH Ⅱ-7的一个主要的特征就是对多药耐药的肿瘤细胞同样有效。本实验选用乳腺癌敏感株MCF-7和高表达P-gp的多药耐药细胞株MCF-7/ADR,观察PHⅡ-7的抗癌和耐药逆转作用。结果表明,耐药株MCF-7/ADR相对于敏感株MCF-7对ADR的耐药倍数将近40倍,而PH Ⅱ-7对MCF-7/ADR和MCF-7均有生长抑制作用,IC50值接近,分别为6.07μM和5.51μM。用凋亡试剂盒Annexin-V FITC-PI则试结果表明,4μM的PHⅡ-7可诱导MCF-7/ADR将近20%的凋亡率。MTT和凋亡结果表明,PHⅡ-7可以显著抑制MCF-7/ADR细胞的增殖活性,并诱导其凋亡。
     用verapamil作为阳性对照,PH Ⅱ-7的逆转活性被进一步检测。在非毒性的浓度0.5μM.1μM和2μM, PHⅡ-7明显提高MCF-7/ADR对ADR的敏感性,表现为IC50值的浓度依赖性降低。相对于verapamil的54.68的耐药逆转倍数,0.5μM、1μM和2μM PHⅡ-7分别将MCF-7/ADR的IC50值137.80μgM降至108.20μM,18.64μM和0.55μM,逆转倍数分别为1.27,7.39,250.55。PH Ⅱ-7对MCF-7/ADR的逆转机制尚不清楚,因此,接下来的实验主要检测了PH Ⅱ-7对mdrl/P-gp的表达和外排功能的影响。
     Rhodamine123作为P-gp的荧光性底物,被用于检测P-gp的外排泵功能。结果表明,同verapamil相同,(0.5μM,2μM) PHⅡ-7可明显增加MCF-7/ADR细胞内Rhodamine123的蓄积量,但对敏感株MCF-7无明显影响,提示PH Ⅱ-7可抑制P-gp的外排泵功能。进一步的研究表明,经PH Ⅱ-7作用后,MCF-7ADR细胞mdrl/P-gp表达明显降低。流式细胞仪检测对P-gp蛋白的检测结果表明,10μM verapamil导致了25.83%的P-gp表达下调,而0.5μM、IμM、2μM和PHⅡ-7对P-pg抑制率分别为1.35%、5.39%、14.72%和25.87%。4μM PHⅡ-7对P-gp的抑制率同10μM verapamil接近,但2μM PHⅡ-7的逆转效应是10μM verapamil的4.58倍。对P-gp表达和功能的双重抑制、诱导凋亡共同参与了PHⅡ-7的耐药逆转作用,强大的逆转效应保证了其应用的安全性。
     mdrl在转录水平可被多个转录因子调节。活化蛋白-1(activating protein-1, AP-1)是调节应激反应的重要的转录因子之一,由Fos和Jun蛋白家族的二聚体组成。AP-1是多个信号转导途径中的关键因子,在细胞分化、增生、凋亡过程中都起非常重要的作用。在乳腺癌细胞,AP-1已被证实为乳腺癌浸润和转移的重要的调节因子。此外,其他几条证据也使我们去调查AP-1在mdrl转录调节中的可能作用:(1) mdrl启动子区包含AP-1的重复位点,且位于启动子起始转录所必须的区域。(2)在几株人多药耐药细胞上已证实了c-fos、c-jun的过表达和AP-1活性的增强。AP-1活性的降低可增加对抗癌药的敏感性,提示了AP-1在MDR信号转导途径中的重要作用。
     作为AP-1的组成成分之一,c-fos在肿瘤发生、肿瘤细胞增生、转化、血管生成、肿瘤浸和转移中起非常重要的作用。在乳腺癌,c-fos的过度表达和预后成反比。c-fos基因的敲除能够延长乳腺癌移植瘤的存活时间,抑制乳腺癌细胞的增生和浸润。而且,研究表明,一些用于诱导多药耐药的药物如阿霉素、长春新碱(vincristine)、依托泊甙(VP-16)和秋水仙碱(colchicine),在应用过程中也引起c-fos表达水平的升高。这提示在多药耐药形成早期,转录机制的加强促进了P-gp表达增高。
     相对于敏感株MCF-7,耐药株MCF-7/ADR高表达c-fos mRNA和蛋白。而PHⅡ-7以时间和浓度依赖性的方式抑制MCF-7/ADR细胞的c-fos表达。4μM PHⅡ-7处理MCF-7/ADR24h后,c-fos蛋白水平明显下降,这和4μM PHⅡ-7对P-gp25.87%的抑制率相一致。为进一步确证c-fos在P-gp介导的多药耐药中的作用,用重组的干扰载体pSilencer3.1/sic-fos转染MCF-7/ADR细胞,干扰c-fos基因。并筛选出两株稳定单克隆细胞,MCF-7/ADR/sic-fos-8B和-3D,观察c-fos基因的抑制引起的耐药性的变化。转染结果表明,c-fos基因的抑制可下调mdrl和P-gp的表达,增加细胞内的Rhodamine123蓄积量,对ADR的敏感性增加。和c-fos的干扰程度相一致,MCF-7/ADR/sic-fos-3D因为c-fos干扰得更明显,因此表现出对ADR更强的敏感性、更多的细胞内Rhodamine123的蓄积、较少的mdrl/P-gp表达,这些结果更进一步确定了c-fos对P-gp介导的多药耐药的调节作用。
     综上所述,PH Ⅱ-7作为靛玉红衍生物之一,一方面可诱导耐药的乳腺癌细胞凋亡,另一方面可通过抑制转录因子AP-1,下调P-gp表达,逆转MCF-7/ADR的多药耐药。因此,PHⅡ-7具有抗癌和逆转耐药的双重作用。虽然靛玉红衍生物的抗癌作用已被广泛研究,但本研究首次报道了靛玉红衍生物具有逆转耐药作用。且强大的逆转耐药作用保证了其应用的安全性,优于传统的逆转剂verapamil。同时,我们的研究结果提示了c-fos可以作为耐药逆转剂的潜在的靶点之一。另外,本研究结果也为PHⅡ-7的临床应用(单独或与抗癌药联合应用)治疗多药耐药肿瘤提供了实验基础。
Breast cancer is one of the most common female malignancies in the world. Its incidence ranks second as a cause of cancer death in women (after lung cancer). Although a definite therapeutic effect has been achieved by existing treatment modalities of surgery, hormonal therapy, chemotherapy and radiation, multidrug resistance (MDR) is one of the most significant impediments to successful chemotherapy of progressive breast cancer.
     There are a number of mechanisms by which a cell can acquire MDR. It is generally thought that the overexpression of P-gp, a product of the mdrl gene family, is a predominant cause of the acquisition of an MDR phenotype. Human P-gp is a170kDa plasma membrane glycoprotein, and functions as an ATP-dependent transmembrane drug transporter that reduces intracellular drug accumulation by pumping drugs out of the cells. In about30-40%of primary and more than50%of metastatic breast cancer patient samples, P-gp has been found to be overexpressed. Therefore, the identification of novel agents which can inhibit pump function or/and expression of P-gp is of utmost interest in cancer research. In the past years, a number of experimental agents, including verapamil, cyclosporine and trifluroperazine, have been studied with various efficacies in reversing MDR phenotype in cancer cells. However, the application of these compounds is very limited due to their unfavorable toxicities and/or their significant effects on the metabolism and pharmacokinetics of the concurrently administered chemotherapeutic agents. Therefore, development or discovery of safe and effective MDR reversal agents is urgently required.
     Recently, the use of traditional Chinese medicine (TCM) was found to be a fertile area in which to look for antitumor agents with activity against MDR because of their potency and safety. Indirubin has been identified as an active component of a CTM, Danggui Longhui Wan, which is used for the treatment of chronic myelogenous leukemia (CML). Indirubin has undergone clinical trials in China to treat CML with promising results, although its mechanism of action remains unclear. In addition, anti-solid tumor activity of indirubin has also been investigated. Several studies have recently demonstrated that indirubin derivatives had antitumor activity on a variety of human cancer cells. Some indirubin derivatives, such as, indirubin-5-sulfonate and indirubin-3-monoxime, have undergone clinical trials with promising results. Based on the fact that indirubins belong to the chemical class of oxindole, we designed and synthesized a series of derivatives of oxindole:Ⅰ, Ⅱ, Ⅲ. Through further SAR (structure-activity relationship) analysis on the-X substitute, and finally got the most potent antitumor compound PH Ⅱ-7.
     The previous data in our lab indicated that this compound had significant antitumor activity against malignant tumor cells and xenografts (not yet printed). One of the major features of PHⅡ-7was its activity against MDR tumor cells. In this study, we chose breast cancer cells MCF-7and its resistant MCF-7/ADR cells, a classic multidrug-resistant cell subline expressing high level of P-glycoprotein (P-gp), as a model, and found that the IC50of ADR for MCF-7cells and MCF-7/ADR cells were3.45μM and137.80μM, respectively, So MCF-7/ADR cells in these experiments were about40-fold resistant to ADR in comparison with the parental MCF-7cells, In contrast, both the parent and the MDR lines were almost equally sensitive to PH Ⅱ-7with IC50values6.07μM and5.51μM, respectively. The cytotoxicity of PHⅡ-7toward MCF-7/ADR cells was also evaluated by quantification of apoptotic cells.4μM PH Ⅱ-7treatment significantly induced apoptosis in MCF-7/ADR cells, and the percentage of apoptosis was about20%. The results indicated that PH Ⅱ-7significantly inhibited the growth and induced its apoptosis in MCF-7/ADR cells.
     PH Ⅱ-7was examined for its reversal activity, in comparison to verapamil, in MCF-7/ADR cells. At nontoxic concentrations of0.5,1, and2μM, PHⅡ-7induced a significant decrease of the IC50of ADR against MCF-7/ADR cells in a concentration dependent manner. In detail,10μM verapamil produced a54.68-fold ADR sensitization in MCF-7/ADR cells, while0.5,1, and2μM PHⅡ-7lowered the IC50of ADR from 137.80μM to108.20,18.64, and0.55μM, and this gave a1.27-,7.39-, and250.55-fold reversal of MDR, respectively. The mechanism by which this occurs was unknown, the effects of PHⅡ-7on expression and function of P-gp were examined.
     Rhodamine123, a fluorescent substrate of P-gp, was used to monitor the efflux activity of P-gp. Incubation with (0.5,2μM) PH Ⅱ-7or with (10μM) verapamil effectively enhanced the intracellular accumulation of Rhodamine123in MDR cells, but showed no significant effects in the parental sensitive cells. These results demonstrated that like verapamil, PH Ⅱ-7was able to interfere with P-gp function. The variation of P-gp protein expression level was analyzed by flow cytometry. In comparison to25.83%P-gp downregulation by10μM verapamil,0.5μM,1μM,2μM and4μM PH Ⅱ-7gave a1.35%,5.39%,14.72%and25.87%P-gp decrease, respectively.4μM PH Ⅱ-7had the same inhibiton rate of P-gp expression as10μM verapamil. Interestingly,2μM PH Ⅱ-7completely reversed MDR in MCF-7/ADR cells with a much better potency (about4.58fold) than10μM verapamil. Inhibition of P-gp expression and function, induction of apoptosis were involved in the potent MDR reversal of PH Ⅱ-7, and the pentency suggested a greater degree of safety.
     mdrl is regulated at the transcriptional level by multiple factors. A well known mediator of stress response pathways is the transcription factor activating protein-1(AP-1), which is composed of dimers from the Jun and Fos protein families. AP-1is a key component of many signal transduction pathways, which has been implicated in many different biological processes including cell differentiation, proliferation, and apoptosis. In breast cancer cells, the AP-1proteins have been identified as important regulators of growth and invasion. In addition, several lines of evidence led us to investigate a possible role for AP-1in the transcriptional regulation of mdrl. First, the promoter region of mdrl contains a putative site for AP-1located within a region of the promoter that has been demonstrated to be necessary for gene induction. Second, constitutive overexpression of both c-fosand c-Jun and increased AP-1binding activity have been observed in several human multidrug resistant cell lines, while reduced AP-1binding activity has been associated with increased drug sensitivity, suggesting a possible role for AP-1in the signal pathway leading to MDR.
     As a member of the AP-1transcription factor complex, c-fos is considered to play a critical role in tumorigenesis, proliferation and transformation, angiogenesis, tumor invasion, and metastasis, and its expression is associated with poor clinical outcomes. In breast cancer, increased c-fos protein expression was associated with poor prognosis. Knockdown of c-fos expression was able to prolong survival and inhibit the proliferation and invasiveness of breast cancer xenografts. Furthermore, several studies indicated that ADR resistance was associated with overexpression of the protooncogene c-fos in tumors. The additional finding that drugs like ADR, vincristine, VP-16, and colchicine, which are used to select cells for MDR, also cause a rise in the level of c-fos message suggests a model wherein an early event in the acquisition of MDR is the boosting of the transcriptional machinery, which allows for increased expression of P-gp.
     MCF-7/ADR cells displayed increased c-fos mRNA and protein levels compared to MCF-7cells, whereas PHⅡ-7inhibited c-fos expression in a time-and dose-dependent manner in MCF-7/ADR cells. After treatment of MDR cells with4μM PH Ⅱ-7for24h, c-fos protein levels decreased significantly, which was consistent with25.87%inhibition rate of P-gp by4μM PHⅡ-7.To comfirm furtherly the role of c-fos on P-gp mediated MDR, we performed the stable transfection of MCF-7/ADR cells with the pSilencer3.1-sic-fos construct, generating MCF-7/ADR/sic-fos cells. Two clones, MCF-7/ADR/sic-fos-8B and-3D, were selected for further expansion and characterization. The transfected results demonstrated that c-fos shRNA could downregulate expression of mdrl and P-gp, increase intracellular ADR concentration and sensitivity, Morever, consistent with c-fos interference level, MCF-7/ADR/sic-fos-3D displayed more sensitive to ADR, more Rhodamine123accumulation and mdrl/P-gp expression than MCF-7/ADR/sic-fos-8B cells, which confirming furtherly that c-fos may modulate P-gp expression in MCF-7/ADR cells.
     In conclusion, PH Ⅱ-7, one of indirubin derivatives, could induce apoptosis in MDR breast cancer cells; On the other hand, PH Ⅱ-7reversed MDR by downregulating P-gp through AP-1transcription factors in MCF-7/ADR cells. Therefore, PHⅡ-7is of dual functions of antitumor and reversing MDR. Meanwhile, the findings suggested c-fos might be a potential drug target for circumventing tumor MDR. In addition, the present results provide a biochemical basis for possible clinical application of PH Ⅱ-7alone, or in combination with conventional antineoplastic agents in treating MDR tumors.
     In conclusion, PH Ⅱ-7, one of indirubin derivatives, could induce apoptosis in MDR breast cancer cells; On the other hand, PH Ⅱ-7reversed MDR by downregulating P-gp through AP-1transcription factors in MCF-7/ADR cells. Therefore, PHⅡ-7is of dual functions of antitumor and reversing MDR. The anti-tumor activity of indirubin derivatives has also been investigated in many studies, however, the activity against MDR was firstly demonstrated. Meanwhile, the findings suggested c-fos might be a potential drug target for circumventing tumor MDR. In addition, the present results provide a biochemical basis for possible clinical application of PH Ⅱ-7alone, or in combination with conventional antineoplastic agents in treating MDR tumors
引文
1. Harris J, MorrowM,Bodadonna G.(1993).Cancer of the Breast. In Cancer:Principles and Practice of Oncology Devita VT, Hellman S and Tosenberg S (eds) Philadelphia:Lippincott Co,pp.1264-1332.
    2. Baselga J, Mendelsohn J.The epidermal growth factor receptor as a target for therapy in breast carcinoma[J]. Breast Cancer Res Treat.1994 Jan;29(1):127-138.
    3.贾立群.乳腺癌中西医综合治疗进展[J].中国中西医结合杂志.2005,25(10):942-943.
    4. Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, et al. P-glycoprotein:from genomics to mechanism[J]. Oncogene,2003,Oct 20;22(47):7468-7485.
    5. Ruefli AA, Smyth MJ, Johnstone RW. HMBA induces activation of a caspase independent cell death pathway to overcome p-glycoprotein-mediated multidrug resistence [J]. Blood,2000,Apr 1;95 (7):2378-2385.
    6. Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells [J]. Proc Natl Acad Sci USA.1998,Dec 22;95(26):15665-15670.
    7. Marzolini C, Paus E, Buclin T, et al. Polymorphisms in human MDR 1 (P-glycoprotein):recent advances and clinical relevance[J]. Clin Pharmacol Ther, 2004,Jan;75(1):13-33.
    8. Tan B, Piwnica-Worms D, Ratner L. Multidrug resistance transporters and modulation[J]. Curr Opin Oncol,2000, Sep;12(5):450-458.
    9. Limtrakul P, Siwanon S, Yodkeeree S, et al. Effect of Stemona curtisii root extract on P-glycoprotein and MRP-1 function in multidrug-resistant cancer cells[J]. Phytomedicine,2007,Jun;14(6):381-389.
    10. Fong WF, Wan CK, Zhu GY, et al. Schisandrol A from Schisandra chinensis reverses P-glycoprotein-mediated multidrug resistance by affecting P-gp-substrate complexes[J]. Planta Med,2007,73(3):212-20.
    11. Qin GW, and Xu RS. Recent advances on bioactive natural products from Chinese medicinal plants[J]. Med Res Rev,1998,18(6):375-382.
    12. Han J. Traditional Chinese medicine and the search for new antineoplastic drugs[J]. JEthnopharmacol,1988,24(1):1-17.
    13. Meijer L, Thunnissen AM, White AW, et al. Inhibition of cyclin-dependent kinases, GSK-3beta and CK1 by hymenialdisine, a marine sponge constituent[J]. Chem Biol, 2000,7(1):51-63.
    14. Chen F, Li L, Ma D, et al. Imatinib achieved complete cytogenetic response in a CML patient received 32-year indirubin and its derivative treatment[J]. Leuk Res, 2010,34(2):75-77.
    15. Damiens E, Baratte B, Marie D, et al. Anti-mitotic properties of indirubin-3'-monoxime, a CDK/GSK-3 inhibitor:induction of endoreplication following prophase arrest[J]. Oncogene,2001,20(29):3786-3797.
    16. Shi J, Shen HM. Critical role of Bid and Bax in indirubin-3'-monoxime-induced apoptosis in human cancer cells[J]. Biochem Pharmacol,2008,75(9):1729-1742.
    17. Marko D, Schatzle S, Friedel A, et al. Inhibition of cyclindependent kinase 1 (CDK1) by indirubin derivatives in human tumour cells[J]. Br J Cancer,2001,84(2):283-289.
    18. Merz KH, Schwahn S, Hippe F, et al. Novel indirubin derivatives, promising anti-tumor agents inhibiting cyclin-dependent kinases [J]. Int J Clin Pharmacol Ther,2004,42(11):656-658.
    19. Nam S, Buettner R, Turkson J, et al. Indirubin derivatives inhibit Stat3 signaling and induce apoptosis in human cancer cells[J]. Proc Natl Acad Sci,2005,102(17): 5998-6003.
    20. Chan E, Tan M, Xin J, et al. Interactions between traditional Chinese medicines and Western therapeutics[J].Curr Opin Drug Discov Devel,2010,13(1):50-65.
    21.Tao J, Zhang P, Liu G, et al. Cytotoxicity of Chinese motherwort (YiMuCao) aqueous ethanol extract is non-apoptotic and estrogen receptor independent on human breast cancer cells[J]. J Ethnopharmacol,2009,122(2):234-239.
    22.田发安,龚考才,李春敏.N1-甲基靛玉红肟的结构和性质研究[J].高等学校化学学报,1996,17(1):69-72.
    23.籍秀捐,张福荣.靛玉红类化台物时抗肿瘤作用及构效关系的研究[J].药学学 报,1985;20(2):137-139.
    24. Juliano RL, Ling V. A surface glyeoprotein modulating drug permeability in Chinese hamster ovary cell mutants[J]. Biochimica Biophysica Acta,1976,455(1):152-162.
    25. Sauna ZE, Kim IW, Ambudkar SV. Genomics and the mechanism of P-glycoprotein (ABCB1) [J]. J Bioenerg Biomembr,2007; 39(5-6):481-487.
    26. Wartenberg M, Ling FC, Schallenberg M, et al.Down-regulation of intrinsic P-glycoprotein expression in multicellular prostate tumor spheroids by reactive oxygen species[J]. J Biol Chem 2001; 276(20):17420-17428.
    27. Mitsuhashi J, Tsukahara S, Suzuki R, Oh-hara Y, Nishi S, Hosoyama H, Katayama K, Noguchi K, Minowa S, Shibata H, Ito Y, Hatake K, Aiba K, Takahashi S, Sugimoto Y. Retroviral integration site analysis and the fate of transduced clones in an MDR1 gene therapy protocol targeting metastatic breast cancer.Hum Gene Ther 2007; 18(10):895-906.
    28. Buss EC, Laufs S, Naundorf S, Kuehlcke K, Nagy KZ, Zeller WJ, Fruehauf S. Retroviral MDR1 gene transfer into marrow-engrafting human peripheral blood progenitor cells results in preferential transgene expression in the immature myeloid compartment rather than in mature myeloid progeny in vivo.Cytotherapy. 2006;8(6):562-569.
    29. Modlich U, Kustikova OS, Schmidt M, Rudolph C, Meyer J, Li Z, Kamino K, von Neuhoff N, Schlegelberger B, Kuehlcke K, Bunting KD, Schmidt S, Deichmann A, von Kalle C, Fehse B, Baum C. Leukemias following retroviral transfer of multidrug resistance 1 (MDR1) are driven by combinatorial insertional mutagenesis. Blood 2005 1;105(11):4235-4246.
    30. Troch BJ,Leonessa F,Clarke R. Multidrug resistance in breast cancer:a meta-analysis of MDR1/gp170 expression and its possible functional signiflcance[J]. J Natl Cancer Inst,1997;89(13):917-931.
    31. Li EX, Li Y, Yang J, et al. Influence of P-glycoprotein expression on chemotherapeutic response of metastatic breast carcinoma[J]. Ai Zheng 2002; 1(4): 430-432.
    32. Starrovskaya AA. Celtuar mechanisms of multidrug resistance of tumor cells[J]. Biochem Mose 2000; 65(1):95-106.
    33.立彦,王自正。P-gp介导的肿瘤多药耐药逆转研究进展[J]。放射免疫学杂志2005;18(2):133-134.
    34. Naito M, Tsuruo T, New multidrug resistance reversing drugs, MS-209 and SDZ PSC 833[J]. Cancer Chemothetapy and Pharmacology 1997; 40(Suppl):20-24.
    35. H. Bark, Cheol-Hee Choi. PSC833, cyclosporine analogue, downregulates MDR1 expression by activating JNK/c-Jun/AP-1 and suppressing NF-κB. Cancer Chemother Pharmacol DOI 10.1007/s00280-009-1121-1127.
    36. Thomas H, Coley H M. Overcoming multidrug resistance in cancer:an update on the clinical strategy of inhibiting p-glycoprotein[J]. Cancer Control 2003; 10(2):1-59.
    37.徐峰,蔡卓夫。肿瘤耐药逆转剂研究进展[J]。中南药学2004;2(5):301-303.
    38. Varma, M, Ashokraj, Y, Dey, C. S., et al. P-glycoprotein inhibitors and their screening:a perspective from bioavailability enhancement. Pharmacol[J]. Res 2003; 48:347-359.
    39. Krishna R and Mayer LD. Muhidrug resistance(MDR) in cancel mechanisms, reversal using modulators of MDR and the role of MDR medulatom in influencing the pharmaeokinetics of anticancer drugs[J]. Eur.J.Pharm.Sci.2000; 11:265-283.
    40. Ozben T. Mechanisms and strategies to overcome multiple drug resistarise in cancer[J]. FEBS Letters 2006; 580:2903-2909.
    41. Liscovitch M, and Lavie Y. Cancer muhidrug resistance:A review of recent drug discovery research[J]. Idrugs 2002; 5:1-7.
    42. Kashihara N, Toe S, Nakamura K, et al. Synthesis and biological activities of hapalosin derivatives with modification at the C12 position[J]. Bioorg Med Chem Lett 2000; 10(2):101-103.
    43. Ferte J, Kuhnel JM, Chapuis G, et al. Flavonoid-related modulators of multidrug resistance:synthesis, pharm acological activity and structure-activity relationships[J]. J Med Chem 1999; 42(3):478-489.
    44. Gilles C, Jean BD, Christine B et al. C-isoprenylation of flavonoids enhances binding affinity toward P-glycoprotein and modulation of cancer cell chemoresistance [J]. J Med Chem 2001; 44(5):763-768.
    45. Nathan RG, Frank RS, Jeffrey B et al. Flavonolignan and flavone inhibitors of a staphylococcus aureus multidrug resistance pump:structure-activity relationships[J]. J Med Chem,2001,44(2):261-268.
    46. Bois F, Beney C, Boumendjel A, et al. Halogenated chalcones with high affinity binding to P-glycoprotein:potential modulators of multidrug resistance[J]. J Med Chem 1998; 41(21):4161-4164.
    47. Murakami N, Sugimoto M, M orita M, et al. Total synthesis of agosterol A:an MDR-modulator from a marine sponge[J]. Chemistry 2001; 7(12):2663-2670.
    48. Murakami N, Sugimoto M, Morita M, et al. Synthesis and evaluation of 4 deacetoxyagosterol A as an M DR-modulator[J]. Bioorg Med Chem Lett 2000; 10(22):2521-2524.
    49. M urakami N, Iwata E, Tamura S, et al. New multidrug resistance modulators from Atractylodis Lanceae Rhizoma[J]. Bioorg Med Chem Lett 2000; 10(23):2629-2632.
    50. Lavie Y, Harel OT, Gaffield W, et al. Inhibitory effect of steroidal alkaloids on drug transport and multidrug resistance in human cancer cells[J]. Anticancer Res 2001; 21(2A):1189-1194.
    51. Fu LW, Deng ZA, Pan QC et al. Screening and discovery of novel M DR modifiers from naturally occurring bisbenzyliso quinoline alkaloids [J]. Anticancer Res 2001; 21(4A):2273-2280.
    52.李旭芬,张苏展,郑树等。苦参碱对K562及其多药耐药细胞K562/vin, K562/dox的诱导凋亡作用[J]。实用癌症杂志2000;15(6):566-568。
    53. David T, Sylvie B, Sylviane T, et al. Influence of tumor necrosis factor-a on the expression and function of P-glycoprotein in an immortalized tat brain capillary endothelial cell line GPNT[J]. Biochemical Pharmacology 2003; 66:579-587.
    54. Udea K, Pastan I, GottesmanMM. Isolation and sequence of the promoter region of the human multidrug resistance (Pglycoprotein) gene[J]. J Biol Chem 1987; 262: 17432-17436
    55. Madden MJ, Morrow CS, Nakagawa M, Goldsmith ME, Fairchild CF, Cowan KH. Identification of 50 and 30 sequences involved in the regulation of transcription of the human MDR1 gene in vivo[J]. J Biol Chem 1993; 268:8290-8297.
    56. Goldsmith ME, Madden MJ, Morrow CS, Cowan KH. A Y box consensus sequence is required for basal expression of the human multidrug resistance (MDR1) gene[J]. J Biol Chem 1993; 268:5856-5860.
    57. Ohga T, Koike K, Ono M, Makino Y, Itagaki Y, Tanimoto M, Kuwano M, Kohno K. Role of the human Y box-binding protein YB-1 in cellular sensitivity to the DNA-damaging agents cisplatin, mitomycin C, and ultraviolet light[J]. Cancer Res 1996; 56:4224-4228.
    58. Cornwell MM, Smith DE. SP-1 activates the MDR1 promoter through one of two distinct GC-rich regions that modulate promoter activity[J]. J Biol Chem 1993; 268: 19505-19511.
    59. Glazer RI, Rohlff C. Transcriptional regulation of multidrug resistance in breast cancer. Breast Cancer ResTreat 1994; 31:263-271.
    60. Kohno K, Sato S, Uchiumi T, Takano H, Kato S,Kuwano M. Tissue-specific enhancer of the human multidrug resistance(MDR1) gene. J Biol Chem 1990; 265: 19690-19696.
    61. Combates NJ, Rzepka RW, Chen YP, Cohen D:NF-IL6, a member of the C/EBP family of transcription factors, binds and trans-activates the human MDR1 gene promoter. J Biol Chem 1994; 269:29715-29719.
    62. Chin KV, Ueda K, Pastan I, Gottesman MM:Modulation of activity of the promoter of the human MDR1 gene by Ras and p53. Science 1992; 255:459-462.
    63. Goldsmith ME, Gudas JM, Schneider E, Cowan KH:Wild type p53 stimulates expression from the human multidrug resistance promoter in a p53-negative cell line. J Biol Chem 1995; 270:1894-1898.
    64. ChinKV, Tanaka S, Darlington G, Pastan I, GottesmanMM:Heat shock and arsenite increase expression of the multidrug resistance (MDR1) gene in human carcinoma cells. J Biol Chem 1990; 265:221-226.
    65. Bates SE, Mickley LA, Chen YN, Richert N, Rudick J, Biedler JL, Fojo AT: Expression of a drug resistance gene in human reuroblastoma cell lines:modulation by retinoic acid-induced differentiation. Mol Cell Biol 1989; 9:4337-4344.
    66. Uchiumi T, Dohno K, Tanimura H, Matsuo K, Sato S, Uchida Y, Kuwano M: Enhanced expression of the human multidrug resistance 1 gene in response to UV light irradiation. Cell Growth Differ 1993; 4:147-157.
    67. Kohno K, Sato S, Takano H, Matsuo K, Kuwano M:The direct activation of human multidrug resistance gene (MDR1) by anticancer agents. Biochem Biophys Res Commun1989; 165:1415-1421.
    68. McCoy C, Smith DE, Cornwell, M.M.12-O-tetradecanoylphorbol-13-acetate activation of the MDR1 promoter is mediated by EGR1. Mol Cell Biol 1995; 15: 6100-6108.
    69. Angel P, ImagawaM, Chiu R, Stein B, Imbra RJ, Rahmsdorf HJ, Jonat C, Herrlich P, Karin M. Phorbol ester-inducible genes contain a common cis element recognized by TPA modulated trans-acting factor. Cell 1987; 49:729-739.
    70. Angel P, Karin M.The role of Jun, Fos and the AP-1 complex in cell proliferation and transformation. Biochim Biophys Acta 1991; 1072:129-157.
    71. Wisdom, R. AP-1:one switch for many signals.Exp Cell Res,1999; 253:180-185.
    72.72.Kovary K and Bravo R. The jun and fos protein families are both required for cell cycle progression in fibroblasts.Mol. Cell. Biol 1991; 11(9):4466-4472.
    73.73.Riabowol KT, Vosatka RJ, Ziff EB, at el. Microinjection of fos-specific antibodies blocks DNA synthesis in fibroblast cells. Moleculur and Cellular Biology.1988; 8: (4):1670-1676.
    74. Brown JR, Nigh E, Lee R J, Ye H.Thompson M A, et al. Fos family members induce cell cycle entry by activating cyclin D1. Mol Cell Biol.1998;18:5609-5619.
    75. Johnson R, Spiegelman B, Hanahan D, Wisdom R. Cellular transformation and malignancy induced by ras require c-jun. Mol Cell Biol 1996; 16:4504-4511.
    76. Saez E, Rutberg S E, Mueller E, Oppenheim H, Smoluk J, Yuspa S H, Spiegelman B M. Cell.1995;82:721-732.
    77. Liu Y, Ludes-Meyers J, Zhang Y, Munoz-Medellin D, Kim HT, Lu C, Ge G, Schiff R, Hilsenbeck SG, Osborne CK, and Brown PH. Inhibition of AP-1 transcription factor causes blockade of multiple signal transduction pathways and inhibits breast cancer growth. Oncogene 2002; 21,7680-7689.
    78. Liu Y, Lu C, Shen Q, Munoz-Medellin D, Kim H, and Brown PH. AP-1 blockade in breast cancer cells causes cell cycle arrest by suppressing G1 cyclin expression and reducing cyclin-dependent kinase activity. Oncogene 2004; 23,8238-8246.
    79. Udea K, Pastan I, and Gottesman MM. Isolation and sequence of the promoter region of the human multidrug resistance (Pglycoprotein) gene. J Biol Chem 1987; 262,17432-17436.
    80. Uchiumi T, Dohno K, Tanimura H, Matsuo K, Sato S, Uchida Y, and Kuwano M. Enhanced expression of the human multidrug resistance 1 gene in response to UV light irradiation. Cell Growth Differ 1993; 4,147-157.
    81. Ogura M, Takatori T, Sugimoto Y, and Tsuruo T. Identification and characterization of three DNA-binding proteins on the promoter of the human MDR1 gene in drug-sensitive and resistant cells. Jpn J Cancer Res 1991; 82,1151-1159.
    82. Bhushan A, Abramson R, Chiu JF, and Tritton TR. Expression of c-fos in human and murine multidrug-resistant cells. Mol Pharmacol 1992; 42,69-74.
    83. Ritke MK, and Yalowich JC. Altered gene expresion in human leukemia K562 cells selected for resistance to etoposide. Biochem Pharmacol 1993; 46,2007-2020.
    84. Chen TK, Smith LM, Gebhardt DK, Birrer MJ, Brown PH. Activation and inhibition of the AP-1 complex in human breast cancer cells. Mol Carcinogen 1996; 15,215-226.
    85. Rohlff C, Safa B, Rahman A, Cho-Chung YS, Klecker RW, and Glazer RI. Reversal of resistance to Adriamycin by 8-C1-cAMP in adriamycin resistant HL-60 leukemia cells is associated with reduction of type I cAMP-dependent protein kinase and cAMP response element binding protein binding activity. Mol Pharmacol 1993; 43, 372-379.
    86. Baselga J, Mendelsohn J. The epidermal growth factor receptor as a target for therapy in breast carcinoma. Breast Cancer Res Treat.1994; 29(1):127-38.
    87. Sarup JC, Johnson RM, King KL, Fendly BM, Lipari MT, Napier MA, Ullrich A, Shepard HM; Characterization of an anti-p185HER2 monoclonal antibody that stimulates receptor function and inhibits tumor cell growth. Growth Regul.1991; 1(2):72-82.
    88. Drebin JA, Link VC, Greene MI. Monoclonal antibodies specific for the neu oncogene product directly mediate anti-tumor effects in vivo.Oncogene.1988; 2(4):387-94.
    89. Wagner EF, and Eferl R. Fos/AP-1 proteins in bone and the immune system. Immunol Rev 2005; 208,126-140.
    90. Bland KI, Konstadoulakis MM, Vezeridis MP, and Wanebo HJ. Oncogene protein co-expression. Value of Ha-ras, c-myc, c-fos, and p53 as prognostic discriminants for breast carcinoma. Ann Surg 1995; 221:706-720.
    91. Robinson-Benion C, Li YX, and Holt JT. Gene transplantation:combined antisense inhibition and gene replacement strategies. Leukemia 1994; 8:S152-S155.
    92. Arteaga CL, and Holt JT.Tissue-targeted antisense c-fos retroviral vector inhibits established breast cancer xenografts in nude mice. Cancer Res 1996; 56:1098-1103.
    93. Kashani-Sabet M, Wang W, and Scanlon KJ. Cyclosporin A suppresses cisplatin induced c-fos gene expression in ovarian carcinoma cells. J Biol Chem 1990; 265: 11285-11288.
    94. Scanlon KJ, Wang W, and Han H. Cyclosporin A suppresses cisplatin-induced oncogene expression in human cancer cells. Cancer Treat Rev 1990; 17:27-35.
    95. Moorehead RA, and Singh G. Influence of the proto-oncogene c-fos on cisplatin sensitivity. Biochem Pharmacol 2000; 59:337-345.
    96. Endicott JA, and Ling V.The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem 1989; 58:137-171.
    97. Chiu R, Boyle WJ, Meek J, Smeal T, Hunter T, Karin M. The c-Fos protein interacts with c-Jun/AP-1 to stimulate transcription of AP-1 responsive genes. Cell 1989; 54: 541-552.
    98. Kovary K, Bravo R. Existence of different Fos/Jun complexes during the G0-to-G1 transition and during exponential growth in mouse fibroblasts:differential role of Fos proteins. Mol Cell Biol 1992; 12:5015-5023.
    99. Schuermann M. The Fos family:gene and protein structure, homologies, and differences. In:Angel PE, Herrlich PA (eds). The FOS and JUN Families of Transcription Factors. CRC Press 1994; Boca Raton:15-35.
    100. Hollander MC, Fornace AJ Jr. Induction of fos RNA by DNAdamaging agents. Cancer Res 1989; 49:1687-1692.
    101. Aasland R, Lillehaug JR, Male R, Jasendal O, Varhaug JE, Kleppe K Expression of oncogenes in thyroid tumours:coexpression of c-erb B2/neu and c-erb B.Br J Cancer 1988; 57:358-363.
    102. Kaina B, Haas S, Kappes H. A general role for c-fos in cellular protection against DNA-damaging carcinogens and cytostatic drugs. Cancer Res 1997; 57: 2721-2731.
    103. Moorehead RA, Singh G. Influence of the proto-oncogene c-fos on cisplatin sensitivity. Biochem Pharmacol 2000;59:337-345.
    104. Arteaga CL, Holt JT. Tissue-targeted antisense c-fos retroviral vector inhibits established breast cancer xenografts in nude mice.Cancer Res 1996; 56:1098-1103.
    105. Bonovich M, Olive M, Reed E, O'Connell B, Vinson C. Adenoviral delivery of A-FOS, an AP-1 dominant negative, selectively inhibits drug resistance in two human cancer cell lines. Cancer Gene Ther 2002; 9:62-70.
    106. KIM D, ROSSI J. RNAi mechanisms and applications[J]. Biotechniques 2008, 44(5):613-616.
    107. Jacque JM, Triques K, Stevenson M. Modulation of HIV-1 replication by RNA interfefence [J]. Nature 2002,418(6896):435438.
    108. Shlomai A, Shaul Y. Inhibition of hepatitis B virus expression replication by RNA interference[J]. Hepatology,2003,37(4):764-770.
    1. Moll R., Franke W. W., Schiller D.L., Geiger B. and Krepler R. (1982)The catalog of human cytokeratins:patterns of expression in normal epithelia, tumors and cultured cells. Cell 31:11-24
    2. Hesse M., Magin T. M. and Weber K. (2001) Genes for intermediate filament proteins and the draft sequence of the human genome:novel keratin genes and a surprisingly high number of pseudogenes related to keratin genes 8 and 18. J. Cell Sci. 114:2569-2575
    3. Omary, M.B., N.-O Ku, J. Lial, and D. Price.1998. Keratin modifications and soluble properties in epithelial cells and in vitro. Subcell. Biochem.31:105-139.
    4. Brulet, P., C. Babinet, R.Kemler, and F. Jacob.1980. Monoclonal antibodies against trophectoderm-specific markers during mouse blastocyst formation. Proc. Natl. Acad. Sci. USA.77:41134117.
    5. Jackson, B. w., c. Grund, E. Schmid, K. Burke, W. Franke, and K. Illmensee.1980. Formation of cytoskeletal elements durng mouse embryogenesis intermediate filaments of the cytokeratin type and desmosomes in preimplantation embryos. Differentiation.17:161179.
    6. Jackson, B W., C. Grund, S. Winter, W. W> Franke, and K. Illmensee.1981. Formation of cytoskeletal elements during mouse embryogenesis:epithelial differentiation and intermediate-sized filaments in early postimplantation embryos. Differentiation.20:203216.
    7. Oshima, R. G 1981. Identification and immunoprecipitation of cytoskeletal proteins from murine extra-embryonic endodermal cells. J. Bio. Chem.256:81248133.
    8. Oshima, R. G., H. Baribault, and C. Caulin.1996. Oncogenic regulation and function of keratin 8 and 18. Cancer Metastasis Rev.15:445471
    9. Garrod, D. R. (1993). Desmosomes and hemidesmosomes. Curr. Opin. Cell Biol.5, 30-40.
    10. Owaribe, K., Nishizawa, Y. and Franke, W. W (1991). Isolation and characterization of hemidesmosomes from bovine corneal epithelial cells. EXP. Cell Res.192, 622-630.
    11. Omary, M. B., N. O. Ku, J. Liao, and D. Price.1997. Keratin modify cations and solubility properties in epithelial cells and in vitro. Subcell. Biochem.31:105-140.
    12. Toivola, D. M., N. O. Ku, E. Z. Resurreccion, D. R, Nelson, T. L. Wright, and M. B. Omary,.2004. Keratin 8 and 18 hyperphosphorylation is a marker of progression of human liver disease. Hepatology,.40:459-466.
    13. Zatloukal, K., C. Stumptner, A. Fuchsbichler, P. Fickert, C. Lackner, M. Trauner, and H. Denk.2004. The keratin cytoskeleton in liver diseases. J. Pathol.204:367-376.
    14. Coulombe, P. A., and M.B.Omary.2002. "Hard" and "soft" principles defi ning the structure, function and regulation of keratin intermediate fi laments. CUrr. Opin. Cell Biol.14:110-122.
    15. Leube, R. E., Bosche, F. X., Romano, V., Zimbelmann, R., Holfer, H. and Franke, W. W. (1986). Cytokeratin expression in simple epithelial. Differentiation 33,69-85.
    16. Weber, K., Osborn, M., Moll, R., Wiklund, B. and Luning, B. (1984). Tissue polypeptide antigen (TPA) is related to the non-epidermal keratins 8,18 and 19 typical of simple and non-squamous epithelia:re-evaluation of a tumor marker. EMBO J.3,2707-2714.
    17. Godfroid, E., Geuskens, M., Dupressoir, T., Parent, I. and Szpirer, C. (1991). Cytokeratins are exposed on the outer surface of established human mammary carcinoma cells. J. Cell Sci.99,595-607.
    18. Donald, P. J., Cardiff, R. D., He, D. and Kendall, K. (1991). Monoclonal antibody-porphyrin conjugate for head and neck cancer:The possible magic bullet. Otolaryngol. Head Neck Surg.105,781-787.
    19. Zhang J. S., Wang L., Huang H., Nelson M. and Smith D. I. (2001) Keratin 23 (K23), a novel acidic keratin, is highly induced by histone deacetylase inhibitors during differentiation of pancreatic cancer cells. Genes Chromosomes Cancer 30:123-135
    20. Bork P. and Copley R. (2001) The draft sequences:filling in the gaps. Nature 409:818-820
    21. Kulesh D. A. and Oshima R. G (1988) Cloning of the human keratin 18 gene and its expression in nonepithelial mouse cells. Mol. Cell. Biol.8:1540-1550
    22. Rosenberg M., RayChaudhury A., Shows T. B., Le B. M. and Fuchs E. (1988)A group of type I keratin genes on human chromosome 17:characterization and expression. Mol. Cell. Biol.8:722-736
    23. Savtchenko E. S., Tomic M., Ivker R. and Fuchs E. (1990) Three parallel linkage groups of human acidic keratin genes. Genomics 7:394-407
    24. Troyanovsky S. M., Leube R. E. and Franke W. W> (1992) Characterization of the human gene encoding cytokeratin 17 and its exspression pattern. Eur. J. Cell Bio;. 59:127-137
    25. Fuchs, E., and D. W. Cleveland.1998. A structural scaffolding of intermediate filaments in health and disease. Science.279:514-519.
    26. Omary. M. B., P. A. Coulombe, and W. H. McLean.2004. Intrmediate fi lament proteins and their associated diseases. N. Engl. J. Med.351:2087-2100.
    27. Toivola, D. M., G Z. Tao, A. Habtezion, J. Liao, and M.B. Omary.2005. Beyond cellular integrity:organelle-related and protein-targeting functions of intermediate filaments. Trend Cell Biol.15:608-617.
    28. Ku, N. O., S. A. Michie, R. M. Soetikno, E. Z. Resurreccion, R. L. Broome, R. G Oshima, and M. B. Omary.1996. Susceptibility to hepatotoxicity in transgenic mice that express a dominant-negative human keratin 18 mutant. J. Clin. Invest. 98:1034-1046.
    29. Ku, N. O., R. M. Soetikno, and M. B. Omary.2003. Keratin mutation in transgenic mice predisposes to Fas but not TNF-induced apoptosis and massive liver injury. Hepatology,37:1006-1014.
    30. Loranger, A., S. Duclos, A. Grenier, J. Price, M. Wilson-Heiner, H. Baribault, and N. Marceau.1997. Simple epithelium keratins are required for maintenance of hepatocyte integrity. Am. J. Pathol.151:1673-1683.
    31. Caulin, C., C. F. Ware, T. M. Magin, and R. G. Oshima.2000. Keratin-dependent, epithelial resistance to tumor necrosis factor-induced apoptosis. J. Cell Biol. 149:17-22.
    32. Cilbert, S.,A. Loranger, N.Daigle, and N.Marceau.2001. Simple epithelium keratins 8 and 18 provide resistance to Fas-mediated apotosis. The protection occurs therough a receptor-targeting modulation.J.Cell Biol.154:763-733.
    33. Porter, R.M.,and E.B.Lane.2003. Phenotypes, genotypes and their contribution to understanding keratin function. Trends Genet.19:278-285.
    34. Leung, C.l.,Green, K.J.and Liem, R.K.(2002).Plakins:a family of versatile cytolinker proteins, Trends Cell Biol.12,37-45.
    35. Stappenbeck T.s.,Bornslaeger E.A., Corcoran C.m., Luu H.H., Virata M.L.and Green K.j.(1993)Functional analysis of desmoplakin domains specification of the interaction with keratin versus vimentin intermediaste filament networks.J.Cell Biol.123:691-705
    36. Gallicano G.I., Kiyjkus o., Bauer C., Yin M., V.,Degenstem L. Et al. (1998)Desmoplakin is required early in development for assembly of desmosomes and cytoskeletal linkage.J.Cell Biol.143:2009-2022
    37. Ruhrberg,C., Hajibagheri. M.A.,Parry, D.A. and Watt, F.M.(2000).Subcellular distribution of envopakin and periplakin:insights into their role as precursors of the epidermal cornified envelope.J. Cell Biol.151,573-586.
    38. Kazerounian, S.,Uitto, J.and Aho, S.(2002).Unique role for the periplakin tail in intermediate filament association:specific binding to deratin 8and vimentin. Exp. Dermatol.11,428-438.
    39. Karashima, T. And Watt, F.M.(2002). Interaction of periplakin and envoplakin with intermediate filaments. J.Cell Sci.115,5027-5037.
    40. Wiche, G 1998. Role of plectin in cytoskeleton organization and dynamics. J. Cell Sci.111:2477-2486
    41. Strnad, P., R. Windoffer,and R.E.Leube.2001. In vivo detection of cytokeratin filament network breakdownin cells treated with the phosphatase inhibitor okadaic acid. Cell Tissue Res.306:277-293.
    42. Osmanagic-Myers, S., and G Wiche.2004. Plectin-RACK1 (receptor for activity. J.Biol.)scaffolding:a novel mechanism to regulate protein kinase Cactivity. J.Biol. Chem.279:18701-18710.
    43. Fujiwara, S., Kohno, K., Iwamatsu, A. And Shinkai, H.(1994).A new bullous pemphigoid antigen. Dermatology 189 Suppl.1,120-122.
    44. Fujiwara, S., Kohno, K., Iwamatsu,k A., Naito, I. And Shinkai, H. (1996). Identification of a 450-k Da human epidermal autoantigen as a new member of the plectin family. J. Invest. Dermatol.106,1125-1130.
    45. Soazuererm D., Fycgsm O., Habda, L., Oehler, S., Fischer, I., Hauptmann, R.and Wiche, G.(2003). Epiplakin gene analysis in mouse reveals a single exon encoding a 725-k Da protein with expression restricted to epithelial tissues. J.Biol. Chem.278,31657-31666.
    46. Spazierer, D., Fuchs, P., Reipert, S., Fischer, I., Schmuth, M., Lassmann, H. And Wiche, G. (2006). Eouokakin is dispensable for skin barrier function and for integrity of keratin network cytoarchitecture in simple and stratified epithelia. Mol. Cell. Biol. 26,559-568.
    47. Goto, M., Sumiyoshi, H., Sakai, T., Fassler, R., Ohashi, S., Adachi, E., Yoshioka, H.and Fujiwara, S.(2006). Elimination of epiplakin by gene targeting results in acelerationof keratinocyte migration in mice. Mol. Cell. Biol.26,548-558.
    48. Guo L., Degenstein L., Dowling J., Yu Q. C., Wollmann r., Perman B. Et al. (1995)Gene targeting of BPAG1:abnormalities in mechanical strength and cell migration in stratified epithelia and neurologic degeneration. Cell 81:233-243
    49. Geerts D., Fontao L., Nievers M. G, Schaapveld R. Q., Purkis P. E., Wheeler G N. Et al.(1999) Binding of integrin alpha6beta4 to plectin prevents plectin association with F-actin but does not interfere with intermediate filament binding. J. Cell Biol.147-434
    50. Hijikata T., Murakami T., Imamura M., Fujimaki N. And Ishikawa H.(1999) Plectin is a linker of intermediate filaments to Z-discs in skeletal muscle fibers. J. Cell Sci. 112:867-876
    51. Wiche G(1998)Role of plectin in cytoskeleton organization and dynamics. J.Cell sci. 111:2477-2486
    52. Xu G. M., Sikaneta T., Sullivan B.M., Zhang Q., Andreucci M., Stehle T.et al. (2001) Polycystin-1 interacts with intermediate filaments. J. Biol. Chem.276:46544-46552
    53.Parnell S.C.,Magenheimer B.S.,Maser R.L.,Zien C.N.,Frischauf A.M.and Calvet J.P.(2002)Polycystin-1 activation of c-Jun N-terminal kinase and AP-1 is mediated by heterotrimeric G Proteins. J. Biol. Chem.277:19566-19572
    54. Ku,N., Liao, J., Chou, C., AND Omary, M.(1996). Implications of intermediate filament protein phosphorylation. Cancer Metastasis Rev.15,429-444
    55. Ku, N.-O.,Azhar, S., and Omary, M.B.(2002).Keratin 8 phosphorylation by p38 kinase regulates cellular keratin filament reorganization:modulation by a keratin 1-like disease causing mutation.J.Biol. Chem.277,10775-10782
    56. He, T., Stepulak, A., Holmstrom, T.H., Omary. M.B., and Eriksson, J.E.The intermediate filament protein keratin 8 is a novel cytopasmic substrate for c-Jun N-terminal kinase.(2002)J. Biol. Chem.277,10767-10774
    57. Liao, J.,and Omary, M.B.(1996).14-3-3 proteins associate with phosphorylated simple epithelial keratins during cell cycle progressionand act as a solubility cofactorJ Cell Biol.133,345-357
    58. Ku, N.O.,Liao,J.,and Omary, M.B.(1998). Phosphorylation of human keratin 18 serine 33regulates binding to 14-3-3 proteins. EMBOJ.17,1892-1906
    59. Liao, J., Lowthert, L.A.,and Omary, M.B.(1995).Heat stress or rotavirus infection of human epithelial cells generates a distinct hyperphosphorylated form of keratin 8. Exp. Cell Res.219,348-357
    60. Caulin C, Ware C.F., Magin T.M. and Oshima R. G.(2000).keratin-dependent, epithelial resistance to tumor necrosis factor-induced apoptosis.J.Cell Bilo.149:17-22
    61. Inada H., Izawa I., Nishizawa M., Fujita E., Kiyono T., Takahashi T. Et al.(2001) Kreatin attenuates tumor nectosis factorinduced cytotoxicity through association With TRADD.J.Cell Biol.155:41-426
    62. Gillbert S,.Loranger A,.Daigle N.and Marcean N,(2001) Simple epithelum keratins 8 and 18 provide resistansce to Fas-mediated apoptosis:the protection occursthrough a receptprtargeting modulation,J. Cell Biol.154:763-773
    63.Vidricfh, A., GILMARTIN m., Zimmerman, J. Fheedberg. I. (1983).Glycokeratins-potential extracellular components of the intracellular cytoskeleton,j,invest.Derm.80.340.
    64. Herrman, H., Aebli, U., Intermediate filaments:Molecular structure, assembly mechanism and integration into functionally distinct intracellular scaffolds. Annu. Rev. Biochem.2004,73,749-789.
    65. Baribault, H., Penner, J., Iozzo, J. V., Wilson-Heiner, M. Colorectal hyperplasia and inflammation in keratin 8-deficient evb/n mice. Genes Dev.1994,8,2964-2973.
    66. Owens, D. W., Wilson, N. J., Hill, A. J. M., Rugg, E. L., et al.Human keratin 8 mutations that disturb filament assembly observed in inflammatory bowel disease patients. J. Cell Sci.2004,117,1989-1999.
    67. Polley, A. C. J., Mulholland, F., Pin, C., Williams, E. A., et al., Proteomic analysis reveals field-wide changes in protein expression in the morphologically normal mucosa of patients with colorectal neoplasia. Cancer Res.2006,66,6553-6562.
    68. Paramio, J. M., Jorcano, J. L., Beyond structure:Do intermediate filaments modulate cell signalling? Bioessays 2002,24,836-844.
    69. Caulin, C, Ware, C. F., Magin, T. M., Oshima, R. G. Keratindependent, epithelial resistance to tumor necrosis factorinduced apoptosis. J. Cell Biol.2000,149,17-22.
    70. Inada, H., Izawa, I., Nishizawa, M., Fujit, E., et al., Keratin attenuates tumor necrosis factor-induced cytotoxicity through association with TRADD. J. Cell Biol.2001,155, 415-426.
    71. Gilbert, S., Loranger, A., Daigle, N., Marceau, N. Simple epithelium keratins 8 and 18 provide resistance to Fas-mediated apoptosis. The protection occurs through a receptortargeting modulation. J. Cell Biol.2001,154,763-773.
    72. Barak, V., Goike, H., Panaretakis, K.W., Einarsson, R. Clinical utility of cytokeratins as tumor markers. Clin. Biochem.2004,37,529-540.
    73. Ku, N. O., Zhou, X., Toivola, D. M., Omary, M. B. The cytoskeleton of digestive epithelia in health and disease. Am. J. Physiol.1999,277, G1108-G1137.
    74. He, T., Stepulak, A., Holmstrom, T. H., Omary, M. B., et al.,The intermediate filament protein keratin 8 is a novel cytoplasmic substrate for c-Jun N-terminal kinase. J. Biol. Chem.2002,277,10767-10774.
    75. Omary, M. B., Ku, N. O., Liao, J., Price, D. Keratin modifications and solubility properties in epithelial cells and in vitro. Subcell. Biochem.1998,31,105-140.
    76. Liao, J., Omary, M. B.,14-3-3 proteins associate with phosphorylated simple epithelial keratins during cell cycle progression and act as a solubility cofactor. J. Cell Biol.1996,133,345-357.
    77. Ku, N. O., Liao, J., Omary, M. B., Phosphorylation of human keratin 18 serine 33 regulates binding to 14-3-3 proteins. EMBO J.1998,17,1892-1906.
    78. Liao, J., Ku, N. O., Omary, M. B., Stress, apoptosis, and mitosis induce phosphorylation of human keratin 8 at Ser-73 in tissues and cultured cells. J. Biol. Chem.1998,272,17565-17573.
    79. Zimermanj,Vidrich,A,Gilmaktin,M,Freedbehg,I.M,(1982),An extrcellular subset of ME 180 keratins in the culture medium of MCF-7 cells. Cancer Res.46,6363-6359.
    80. Donald PJ, Cardiff RD, He DE, Kendall K. Monoclonal antibody-porphyrin conjugate for head and neck cancer:the possible magic bullet. Otolarynogol Head Neck Surg.1991 Dec; 105(6):781-7.
    81.Dugan EM, Labib RS, Anhalt GJ, Diaz LA. Selective surface radioiodination of keratinocytes in primary culture labels a 59 KD keratin and other surface proteins. Arch Dermatol Res.1989;281(7):463-9.
    82. todd A,Hembroygh LiLi,and Steven L.Gonias 11-surface Cytokertin 8 Is the Major Plasminogen Receptor on Breast Cancer Cells and Is Required for the Accelerated Activation of Cell-associated Plasminogen byTissue-tupe Plasminogen Activator
    83. Olivier Gites, Michaela Andratschke,Ba rbel Schmitt Brigitte Mack, Martina Schaffrik Cytokeratin 8 assocites with the external leaflet of plasma membranes in tumour cells. Biochemical and Biophysical Research Communications 328(2005) 1154-1162.
    84. Gonias SL, Hembrough TA, Sankovic M. Cytokeratin 8 functions as a major plasminogen receptor in select epithelial and carcinoma cells. Front Biosci.2001 Nov 1;6:D1403-11.
    85. Ku N.O. and Omary M. B.(2000) Keratins turn over by ubiquitination in a phoshorylation-odulated fashion. J. Cell Biol.149:547-552
    86. Fuchs E. and Cleveland D. W. (1998) A structural scaffolding of intermediate filaments in health and disease. Science 279:514-519
    87. Coulombe P. A. and Omary M. B. (2002)'Hard'and'soft'principles defining the structure, function and regulation of keratin intermediate filaments. Cum Opin. Cell Biol.14:110-122
    88. Herrmann H., Hesse M., Reichenzeller M., Aebi U. and MaginT. M. (in press) The functional complexity of intermediate filament cytoskeletons:from structure to assembly to gene ablation. Int. Rev. Cytol.
    89. Magin T. M, Hesse M. and Schroder R. (2000) Novel insights into intermediate-filament function from studies of transgenic and knockout mice. Protoplasma 211:140-150
    90. Baribault H., Price J., Miyai K. and Oshima R. G (1993) Midgestational lethality in mice lacking keratin 8. Genes Dev.7:1191-1202
    91. Baribault H., Penner J., Iozzo R. V. and Wilson H. M. (1994) Colorectal hyperplasia and inflammation in keratin 8-deficient FVB/N mice. Genes Dev.8:2964-2973
    92. Kupriyanov S. and Baribault H. (1998) Genetic control of extraembryonic cell lineages studied with tetraploid←→ diploid chimeric concepti. Biochem. Cell Biol.76: 1017-1027
    93. Magin T. M., Schroder R., Leitgeb S., Wanninger F., Zatloukal K., Grund C. et al. (1998) Lessons from keratin 18 knockout mice:formation of novel keratin filaments, secondary loss of keratin 7 and accumulation of liver-specific keratin 8-positive aggregates. J. Cell Biol.140:1441-1451
    94. Denk H. and Lackinger E. (1986) Cytoskeleton in liver diseases.Semin. Liver Dis.6: 199-211
    95. Tamai Y., Ishikawa T., Bosl M. R., Mori M., Nozaki M., Baribault H. et al. (2000) Cytokeratins 8 and 19 in the mouse placental development. J. Cell Biol.151: 563-572
    96. Hesse M., Franz T., Tamai Y., Taketo M. M. and Magin T. M. (2000) Targeted deletion of keratins 18 and 19 leads to trophoblast fragility and early embryonic lethality. EMBO J.19:5060-5070

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700