用户名: 密码: 验证码:
四种蝙蝠色觉的行为学、免疫组织化学和视觉诱发电位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蝙蝠(翼手目,Chiroptera)作为哺乳动物的第二大类群,是唯一真正具有飞行能力的兽类,行夜行性生活,这种进化上的优势使它们利用了兽类中一个全新的生态位。蝙蝠具有极其丰富的物种多样性,在生态系统中扮演着不可或缺的角色,因此对蝙蝠的保护和研究具有很重要的意义。因其具有独特的回声定位能力,目前对蝙蝠的研究主要集中在听觉领域,而对其视觉尤其是色觉的研究很少。
     本研究首次运用行为学、免疫组织化学和神经电生理学三种技术手段对四类蝙蝠的色觉进行了研究。结果表明,调频小蝙蝠和树栖的大蝙蝠具有紫外视觉,而恒频小蝙蝠和洞栖的大蝙蝠不具有紫外视觉,进一步验证了前期分子学研究的结论(Zhao et al.,2009)。大蝙蝠原本生活在树上,进化过程中有小部分栖息地变为基本无光的洞穴,其结果导致了这部分旧大陆果蝠视觉发生退化。对恒频蝙蝠而言,视觉退化的根本原因在于它具有一种更发达的回声定位能力。发达的听觉使恒频蝙蝠不再需要发达的视觉,进而引起视觉退化。这也与前人提出的感觉代偿理论相符合(Speakman,2001).
     我们还发现,调频小蝙蝠、恒频小蝙蝠和洞栖大蝙蝠的视觉诱发电位都在中/长波段550nm附近出现一个反应峰值,树栖大蝙蝠的视觉诱发电位虽没有在此波段出现明显的反应峰值,但中/长波段反应的最大值也出现在550nm附近。这与分子学证据,即中/长波长视蛋白(M/LWS)基因在哺乳动物中高度保守,大部分蝙蝠M/LWS的最大光吸收值在553nm相符(Zhao et al.,2009)。
Bats (Chiroptera) are the second largest group of mammal, which are the only mammals that achieve true self-powered flight. They live a nocturnal life. This evolutionary advantage makes them can use a new niche compared to another animals. Bats are extremely rich in species diversity and indispensable to ecosystems. Therefore, the protection of and research on bats has very important significance. Because of their unique echolocation ability, previous researches in bats are focused on the auditory area. But there are not so many researches which focused on the vision of the bats, especially color vision.
     In this study, for the first time, we studied color vision of four different groups of bats through ethological, immunohistochemical and electroneurophysiological experiments. The results showed that the frequency modulation (FM) microbats and the tree habited old world fruit bats had UV band vision. On the contrary, the old world fruit bats which live in the caves and the constant frequency (CF) niicrobats could not detect the UV light. And this further verified early molecular studies' conclusions (Zhao et al,2009). Old world fruit bats originally lived in trees. Small part of their habitats shaded into dark caves during evolution, which lead the visual degradation of the cave-lived magabats. To the CF bats, the basic reason of visual degradation is that they have more developed echolocation capabilities. Developed audition makes the CF bats no longer need developed vision, thereby causes the visual degradation. And this supports the longstanding but weakly supported assumption that tradeoffs are indeed associated with ecological specializations (Speakman,2001).
     In this study we also found that the action spectrum function of FM microbats, CF microbats and cave-lived old world fruit bats all showed a maxima around 550nm (green). And that of tree-lived old world fruit bats around 550nm was the strongest among the medium/long-wavelength lights. These electrophysiological findings were consistent with the molecular evidence that the medium/long-wavelength opsin (M/LWS) gene was highly conserved in mammals, and most bats M/LWS had peak light absorption at 553nm (Zhao et al.,2009).
引文
Alan DG (1995) Hearing in bats:An overview. In:Hearing by bats. (Popper AN, Fay RR, eds). New York:Springer-Verlag.
    Alger SJ, Maasch SN, Riters LV (2009) Lesions to the medial preoptic nucleus affect immediate early gene immunolabeling in brain regions involved in song control and social behavior in male European starlings. Eur J Neurosci 29:970-982.
    Altringham JD (1996) Echolocation. In:Bats:Biology and Behaviour. (Altringham JD, McOwat T, Hammond L, eds), pp 128-236. Oxford:Oxford University Press.
    Arita H, Fenton MB (1997) Flight and echolocation in the ecology and evolution of bats. TREE 12:53-58.
    Arrese CA, Hart NS, Thomas N, Beazley LD, Shand J (2002) Trichromacy in Australian marsupials. Curr Biol 12:657-660.
    Barzilai A, Kennedy TE, Sweatt JD, Kandel ER (1989) 5-HT modulates protein synthesis and the expression of specific proteins during long-term facilitation in Aplysia sensory neurons. Neuron 2:1577-1586.
    Bell GP, Fenton MB (1984) The use of Doppler-shifted echoes as a flutter detection and clutter rejection system:the echolocation and feeding behavior of Hipposideros ruber (Chiroptera:Hipposideridae). Behav Ecol Sociobiol 15:109-114.
    Bell GP, Fenton MB (1986) Visual acuity, sensitivity and binocularity in a gleaning insectivorous bat, Macrotus californicus(Chiroptera:Phyllostomidae). Anim Behav 34:409-414.
    Bharati IS, Goodson JL (2006) Fos responses of dopamine neurons to sociosexual stimuli in male zebra finches. Neuroscience 143:661-670.
    Bogdanowicz W, Csada RD, Fenton.MB (1997) Structure of nose leaf, echolocation, and foraging behavior in the Phyllostomid (Chiroptera).J Mammal 78:942-953.
    Bolhuis JJ, Zijlstra GG, den Boer-Visser AM, Van Der Zee EA (2000) Localized neuronal activation in the zebra finch brain is related to the strength of song learning. Proc Natl Acad Sci U S A 97:2282-2285.
    Bolhuis JJ, Hetebrij E, Den Boer-Visser AM, De Groot JH, Zijlstra GG (2001) Localized immediate early gene expression related to the strength of song learning in socially reared zebra finches. Eur J Neurosci 13:2165-2170.
    Bowmaker JK (1991) The evolution of vertebrate visual pigments and photorecepters. In:The evolution of the eye and visual system (Vision and visual dysfunction) (Cronly-Dillon JR, Gregory RL, eds), pp 63-81. London: Macmillan.
    Bradbury JW, Nottebohm F (1969) The use of vision by the little brown bat, Myotis lucifugus, under controlled conditions. Animal Behaviour 17:480-485.
    Brainard GC, Beacham S, Sanford BE, Hanifin JP, Streletz L, Sliney D (1999) Near ultraviolet radiation elicits visual evoked potentials in children. Clin Neurophysiol 110:379-383.
    Bringham RM, Cebek JE, Hichey MBC (1989) IntraspecifiC variation and resource partitioning in insectivorous bats. J Mammal 70:426-428.
    Bures J, Wise Y, eds (1973) Techniques and basic experiments for the study of brain and behavior. Amsterdam:Elsevier Scientific Publishing Comp.
    Bussolino DF, de Arriba Zerpa GA, Grabois VR, Conde CB, Guido ME, Caputto BL (1998) Light affects c-fos. expression and phospholipid synthesis in both retinal ganglion cells and photoreceptor cells in an opposite way for each cell type. Brain'Res Mol Brain Res 58:10-15.
    Cai C, Li L, Li X, Chai X, Sun J, Lu Y, Sui X, Chen P, Ren Q (2009) Response properties of electrically evoked potential elicited by multi-channel penetrative optic nerve stimulation in rabbits. Doc Ophthalmol 118:191-204.
    Cai CS, Li LM, Li XL, Chai XY, Sun JJ, Lu YL, Sui XH, Chen PP, Ren QS (2008) Temporal and Spatial Responses of Electrically Evoked Potential Elicited by Multi-Channel Penetrative Optic Nerve Stimulation in Rabbits. Doc Ophthalmol 118:191-204.
    Calderone JB, Jacobs GH (1999) Cone receptor variations and their functional consequences in two species of hamster. Vis Neurosci 16:53-63.
    Carvalho Ldos S, Cowing JA, Wilkie SE, Bowmaker JK, Hunt DM (2006) Shortwave visual sensitivity in tree and flying squirrels reflects changes in lifestyle. Curr Biol 16:R81-83.
    Chase J (1972) The role of vision in echolocating bats. In:Indiana University.
    Cowing JA, Poopalasundaram S, Wilkie SE, Robinson PR, Bowmaker JK, Hunt DM (2002) The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments. Biochem J 367:129-135.
    Cox PA, Elmqvist T, Pierson ED, Rainey WE (1992) Flying foxes as pollinators and seed dispersers in Pacific island ecosystems. Serv Biol Rep 90:18-23.
    Dietrich CE, Dodt E (1970) Structural and some physiological findings on the retina of the bat Myotis myotis. In:Symp. Electroretinography. (Wirth A, ed), pp 120-132. Pisa:Pacini.
    Donahoe J (1999) Edward L. Thorndike:The Selectionist Connectionist. J Exp Anal Behav 72:451-454.
    Dragunow M, Robertson HA (1988) Localization and induction of c-fos protein-like immunoreactive material in the nuclei of adult mammalian neurons. Brain Res 440:252-260.
    Eklof J (2003) Vision in echolocating bats. In:University of Gothenburg.
    Emde Gvd, Schnitzler HU (1986) Fulttering target detection in Hipposiderid bats. J Comp Physiol A 159:765-772.
    Fenton MB, Rautenbach IL (1986) A comparison of the roosting and foraging behaviour of three species of African insectivorous bats(Rhinolophidae, Vespertilionidae, and Molossidae). Can J Zool 64:2860-2867.
    Fleming TH (1982) Foraging strategies of plant-visiting bats. In:Ecology of Bats. (Kunz TH, ed), pp 287-325. New York:Plenum Press.
    Fleming TH (1988) The short-tailed fruit bat:a study in plant-animal interactions: University of Chicago Press.
    Fu ZY, Tang J, Sun J, Chen QC (2009) Spectrum Characteristics of Echolocation Call and Frequency Tuning of Inferior Collicular Neurons in Hipposideros armiger [In Chinese]. Chinese Journal of Zoology 44:128-132.
    George I, Hara E, Hessler NA (2006) Behavioral and neural lateralization of vision in courtship singing of the zebra finch. J Neurobiol 66:1164-1173.
    Goldman D, Brenner HR, Heinemann S (1988) Acetylcholine receptor alpha-, beta-, gamma-, and delta-subunit mRNA levels are regulated by muscle activity. Neuron 1:329-333.
    Greenberg ME, Greene LA, Ziff EB (1985) Nerve growth factor and epidermal growth factor induce rapid transient changes in proto-oncogene transcription in PC12 cells. J Biol Chem 260:14101-14110.
    Griffin DR, ed (1958) Listening in the dark. New Haven:Yale University Press.
    Griffin DR (1970) Migration and homing of bats. In:Biology of Bats (Wimsatt WA, ed), pp 233-264. New York:Academic Press.
    Guo Q, Xie B, Gu YH, An J, Zhang ZM (2007) Visual evoked potential by implanted scalp electrode in rats [In Chinese]. Int J Ophthalmol 7:1530-1534.
    Heideman PD, Heaney LR (1989) Population biology and estimates of abundance of fruit bats (Pteropodidae) in Philiphhine submontane rainforest. J Zoo Lond 218:565-586.
    Heimovics SA, Riters LV (2005) Immediate early gene activity in song control nuclei and brain areas regulating motivation relates positively to singing behavior during, but not outside of, a breeding context. J Neurobiol 65:207-224.
    Hill JE, Smith JD (1984) Echolocation and vocalization. Bats, A Natural History. London:British Museum.
    Hiryu S, Katsura K, Lin LK, Riquimaroux H, Watanabe Y (2005) Doppler-shift compensation in the Taiwanese leaf-nosed bat (Hipposideros terasensis) recorded with a telemetry microphone system during flight. J Acoust Soc Am 118:3927-3933.
    Hiryu S, Katsura K, Nagato T, Yamazaki H, Lin LK, Watanabe Y, Riquimaroux H (2006) Intra-individual variation in the vocalized frequency of the Taiwanese leaf-nosed bat, Hipposideros terasensis, influenced by conspecific colony members. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192:807-815.
    Hope GM, Bhatnagar KP (1979) Electrical response of bat retina to spectral stimulation:comparison of four microhiropteran species. Experientia 35:1189-1191.
    Jacobs GH, Deegan JF,2nd (1992) Cone photopigments in nocturnal and diurnal procyonids. J Comp Physiol A 171:351-358.
    Jacobs GH, Deegan JF,2nd (1994) Sensitivity to ultraviolet light in the gerbil (Meriones unguiculatus):characteristics and mechanisms. Vision Res 34:1433-1441.
    Jacobs GH, Williams GA (2007) Contributions of the mouse UV photopigment to the ERG and to vision. Doc Ophthalmol 115:137-144.
    Jacobs GH, Neitz J, Deegan JF,2nd (1991) Retinal receptors in rodents maximally sensitive to ultraviolet light. Nature 353:655-656.
    Jacobs GH, Williams GA, Fenwick JA (2004) Influence of cone pigment coexpression on spectral sensitivity and color vision in the mouse. Vision Res 44:1615-1622.
    Jones G (2005) Echolocation. Curr Biol 15:R484-488.
    Jones G, Teeling EC (2006) The evolution of echolocation in bats. Trends Ecol Evol 21:149-156.
    Kaczmarek L (2002) C-Fos in learning:beyond the mapping of neuronal activity. In: Handbook of Chemical Neuroanatomy,Vol.19, Immediate Early Genes and Inducible Transcription Factors in Mapping of the Central Nervous System Function and Dysfunction. (Kaczmarek L, Robertson HJ, eds), pp 189-215:Elsevier Science B.V.
    Karlsson BL, Ekl.f J, Rydell J (2002) No lunar phobia in swarming insectivorous bats (family Vespertilionidae). Journal of Zoology 256:473-477.
    Kick SA (1982) Target-detection by the echolocating bat, Eptesicus fuscus. Journal of Comparative Physiology A:Neuroethology, Sensory, Neural, and Behavioral Physiology 145:431-435.
    Kishida T (2008) Pattern of the divergence of olfactory receptor genes during tetrapod evolution. PLoS One 3:e2385.
    Klistorner A, Crewther DP, Crewther SG (1998) Temporal analysis of the chromatic flash VEP--separate colour and luminance contrast components. Vision Res 38:3979-4000.
    Lyytinen A, Lindstrom L, Mappes J (2004) Ultraviolet reflection and predation risk in diurnal and nocturnal Lepidoptera. Behav Ecol 15:982-987.
    Masterson FA, Ellins SR (1974) The role of vision in the orientation of the echolocating bat, Myotis lucifugus. Behaviour:88-98.
    Meeren HK, Van Luijtelaar EL, Coenen AM (1998) Cortical and thalamic visual evoked potentials during sleep-wake states and spike-wave discharges in the rat. Electroencephalogr Clin Neurophysiol 108:306-319.
    Metzner W (1989) A possible neuronal basis for Doppler-shift compensation in echo-locating horseshoe bats. Nature 341:529-532.
    Miller-Butterworth CM, Murphy WJ, O'Brien SJ, Jacobs DS, Springer MS, Teeling EC (2007) A family matter:conclusive resolution of the taxonomic position of the long-fingered bats, miniopterus. Mol Biol Evol 24:1553-1561.
    Morgan JI, Curran T (1991) Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci 14:421-451.
    Moritani NH, Kubota S, Eguchi T, Fukunaga T, Yamashiro T, Takano-Yamamoto T, Tahara H, Ohyama K, Sugahara T, Takigawa M (2003) Interaction of AP-1 and the ctgf gene:a possible driver of chondrocyte hypertrophy in growth cartilage. J Bone Miner Metab 21:205-210.
    Morrison DW (1978) Lunar phobia in a neotropical fruit bat, Artibevs jamaicensis (Chiroptera:Phyllostomidae). Animal Behaviour 26:852-855.
    Moss CF, Sinha SR (2003) Neurobiology of echolocation in bats. Curr Opin Neurobiol 13:751-758.
    Muller B, Goodman SM, Peichl L (2007) Cone photoreceptor diversity in the retinas of fruit bats (mcgachiroptera). Brain Behav Evol 70:90-104.
    Muller B, Glosmann M, Peichl L, Knop GC, Hagemann C, Ammermuller J (2009) Bat eyes have ultraviolet-sensitive cone photoreceptors. PLoS One 4:e6390.
    Nathans J, Thomas D, Hogness DS (1986) Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science 232:193-202.
    Neuweiler G (1989) Foraging ecolocation, and audition in bats. TREE 4:160-166.
    Neuweiler G (1990) Auditory adaptations for prey capture in echolocating bats. Physiol Rev 70:615-641.
    Neuweiler G (2003) Evolutionary aspects of bat echolocation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189:245-256.
    Neuweiler G, W. M, Heilmann U, Rubsamen R, Eckrich M, Costa HH (1987) Foraging behaviour and echolocation in the rufous horseshoe bat(RhinoTophus rouxi)of Sri Landka. Behav Ecol Sociobiol 20:53-67.
    Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Tormene AP, Vaegan (2009) ISCEV standard for clinical visual evoked potentials (2009 update). Doc Ophthalmol 120:111-119.
    Pan SY (1992) Circadian effects of scopolamine on memory, exploratory behavior, and muscarinic receptors in mouse brain. Zhongguo Yao Li Xue Bao 13:323-326.
    Paxinos G, Franklin KBJ, eds (2001) The Mouse Brain in Stereotaxic Coordinates.: Academic Press.
    Peichl L (2005) Diversity of mammalian photoreceptor properties:adaptations to habitat and lifestyle? Anat Rec A Discov Mol Cell Evol Biol 287:1001-1012.
    Peichl L, Kunzle H, Vogel P (2000) Photoreceptor types and distributions in the retinae of insectivores. Vis Neurosci 17:937-948.
    Pettigrew JD (1988) Microbat vision and echolocation in an evolutionary context. Animal Sonar:Processes and Performance NATO Advanced Study Institute series A, Life Sciences 156:645-650.
    Riters LV, Teague DP, Schroeder MB, Cummings SE (2004) Vocal production in different social contexts relates to variation in immediate early gene immunoreactivity within and outside of the song control system. Behav Brain Res 155:307-318.
    Sagar SM, Sharp FR (1993) Early response genes as markers of neuronal activity and growth factor action. Adv Neurol 59:273-284.
    Schnitzler HU, Kalko EKV (2001) Echolocation by insect-eating bats. Bioscience 51:557-569.
    Schuller G, Beuter K, Schnitzler HU (1973) Response to frequency shifted artificial echoes in the bat Rhinolophus ferrequinum. J Comp Physiol A 89:275-286.
    Seghatoleslami MR, Tuan RS (2002) Cell density dependent regulation of AP-1 activity is important for chondrogenic differentiation of C3H10T1/2 mesenchymal cells. J Cell Biochem 84:237-248.
    Shang YC (1998) Behavioral Ecology [In Chinese]. Beijing:Peking University Press.
    Shen Z, Lin SZ, eds (1993) Physiological Psychology [In Chinese]. Bei Jing:Peking University Press.
    Shichida Y, Imai H (1998) Visual pigment:G-protein-coupled receptor for light signals. Cell Mol Life Sci 54:1299-1315.
    Siegel J, Gayle D, Sharma A, Driscoll P (1996) The locus of origin of augmenting and reducing of visual evoked potentials in rat brain. Physiol Behav 60:287-291.
    Simmons NB (2005) Order Chiroptera. In:Mammal Species of the World:A Taxonomic and Geographic Reference. (Wilson DE, Reeder DM, eds), pp 312-529. Baltimore:The Johns Hopkins University Press.
    Speakman J (2001) The evolution of flight and echolocation in bats:another leap in the dark. Mammal Rev 31:111-130.
    Suthers RA (1970a) Vision, olfaction, taste. Biology of bats 2:265-309.
    Suthers RA (1970b) Vsion, olfaction, taste. In:Biology of bats. (Wimsatt WA, ed), pp 265-295. New York and London:Academic Press.
    Suthers RA, Wallis NE (1970) Optics of the eyes of echolocating bats. Vision Research 10:1165-1168.
    Suthers RA, Bradford MR (1980) Visual systems and the evolutionary relationships of the Chiroptera. In:Proc.5th Int. Bat. Res. Conf., pp 331-346.
    Swystun MB, Psyllakis JM, Brigham RM (2001) The influence of residual tree patch isolation on habitat use by bats in central British Columbia. Acta Chiroptriologica 3:197-201.
    Tan Y, Yoder AD, Yamashita N, Li WH (2005) Evidence from opsin genes rejects nocturnality in ancestral primates. Proc Natl Acad Sci U S A 102:14712-14716.
    Tang ZH, Parsons S, Sheng LX, Cao M, Zhang SY (2007a) Fruit-feeding behaviour and use of olfactory cues by the fruit bat Rousettus leschenaulti an experimental study. Acta Theriologica 52:285-290.
    Tang ZH, Mukherjee A, Sheng LX, Cao M, Liang B, Corlett RT, Zhang SY (2007b) Effect of ingestion by two frugivorous bat species on the seed germination of Ficus racemosa and F. hispida (Moraceae). Journal of Tropical Ecology 23:125-127.
    Trappe M, Schnitzler HU (1982) Doppler-shift compensation in insect-catching horseshoe bats. Naturwissenschaften 69:193-194.
    Usman K, Habersetzer J, Subbaraj R, Gopalkrishnaswamy G, Paramanandam K (1980) Behaviour of bats during a lunar eclipse. Behavioral Ecology and Sociobiology 7:79-81.
    Wang D, Oakley T, Mower J, Shimmin LC, Yim S, Honeycutt RL, Tsao H, Li WH (2004) Molecular evolution of bat color vision genes. Mol Biol Evol 21:295-302.
    Watson C, Paxinos G, eds (2004) The Rat Brain in Stereotaxic Coordinates.: Academic Press.
    Wimsatt WA, ed (1970) Biology of bats. New York and London:Academic Press.
    Winter Y, Lopez J, Von Helversen O (2003) Ultraviolet vision in a bat. Nature 425:612-614.
    Wu LZ, Wu DZ, eds (1999) Clinical electrophysiology [In Chinese]. Bei Jing: Science Press.
    Yokoyama S (2000) Molecular evolution of vertebrate visual pigments. Prog Retin Eye Res 19:385-419.
    Yokoyama S, Radlwimmer FB (1999) The molecular genetics of red and green color vision in mammals. Genetics 153:919-932.
    Yuki A (2002) Color Responses of Flash Visual Evoked Potentials in Normal Adults, Normal Elderly Subjects and Dementia of the Alzheimer Type Using Light Emitting Diodes. Psychogeriatrics 2:131-136.
    Zhao H, Rossiter SJ, Teeling EC, Li C, Cotton JA, Zhang S (2009) The evolution of color vision in nocturnal mammals. Proc Natl Acad Sci U S A 106:8980-8985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700