用户名: 密码: 验证码:
高含Mn量Mg-Mn中间合金的制备与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金的优异性能和产业化、市场化前景使其成为公认的21世纪绿色工程材料,对建立资源节约型环境友好型的低碳社会将具有重要作用。Mg-Mn系合金由于具有优异的挤压特性,良好的焊接性和耐蚀性得以广泛应用,其中Mn作为Mg-Mn系合金的基本元素,一般以中间合金的形式加入,但实际生产中Mg和Mn的熔点差别较大固溶度极小,故Mg-Mn中间合金的制备十分困难,目前商用Mg-Mn中间合金的Mn含量不超过3wt%,严重影响了其使用效率。因此,发展高含Mn量Mg-Mn中间合金已成为镁合金发展的瓶颈之一。
     本文首先采用电磁搅拌铸造法制备Mn含量10wt%和12wt%的高含Mn量Mg-Mn中间合金,通过正交试验,研究了Mn粉粒度,冷却方式,搅拌时间和搅拌功率对Mn含量及Mn均匀度的影响,确定了最佳制备工艺;然后采用粉末冶金技术方法制备了Mg-15wt%Mn中间合金,通过正交试验,研究了Mn粉粒度,压制温度,压制压力和粘结剂对压坯强度和塑性的影响,确定了最佳制备工艺;第三,通过自制固液扩散偶,从理论上研究了在963K,983K,1003K下固态Mn在液态镁及镁合金的溶解扩散行为;第四,将自制的中间合金用来熔炼M1A,AZ91和ZM21镁合金,并从化学成分,显微组织和力学性能三个方面与相应牌号的国家标准对比,进而评价自制中间合金的应用性。
     研究发现:
     ①电磁搅拌铸造法制备Mg-10wt%Mn中间合金的最佳熔炼工艺:Mn粉粒度150~68μm,冷却方式铜模空冷,搅拌时间4min,搅拌功率12.5kW;Mg-12wt%中间合金最佳熔炼工艺:Mn粉粒度150~68μm,冷却方式铜模空冷,搅拌时间4min,搅拌功率10kW。
     ②粉末冶金法制备Mg-15wt%中间合金最佳工艺:Mn粉粒度150~68μm,压制温度是室温,压制压力125MPa,不用添加粘结剂。
     ③利用菲克第二定律和Boltzmann-Matano法计算了963K,983K,1003K下固态Mn在液态镁中的平均扩散系数分别为1.72×10-14m2/s,4.07×10-14m2/s,6.91×10-14m2/s,平均溶解速率分别为9.393×10-10m/s,2.219×10-9 m/s,3.771×10-9 m/s;固态Mn在液态AZ91中平均扩散系数分别为8.10×10-15m2/s,8.29×10-15m2/s,2.27×10-14m2/s,平均溶解速率分别为4.419×10-10m/s,4.522×10-10 m/s,1.473×10-9 m/s;固态Mn在液态ZM21中的平均扩散系数分别为1.24×10-14m2/s,2.92×10-14m2/s,4.17×10-14m2/s,平均溶解速率分别为6.747×10-10m/s,1.593×10-9m/s,2.273×10-9m/s。再根据Arrhenius方程,计算出了固态Mn在液态镁,液态AZ91及液态ZM21的溶解扩散激活能分别为:266.1 kJ/mol,202.8kJ/mol,232.33kJ/mol。为了节约能源和提高中间合金的收得率,根据激活能及溶解扩散速率结果,得出熔炼M1A,AZ91和ZM21的加热功率可以按照PAZ91中间合金应用的熔炼工艺。
     ④自制Mg-Mn中间合金可以制备出M1A,AZ91和ZM21,铸态下的化学成分和显微组织与相应合金的标准相比没有太大差别,而在力学性能方面,电磁搅拌铸造法制备的中间合金熔炼出的M1A,AZ91和ZM21力学性能达到标准,而粉末冶金法制备的中间合金熔炼出的ZM21可以达到标准,而熔炼出的M1A和AZ91没有达到国家标准。
Magnesium alloys with outstanding performance,industrialization and market prospect are widely recognized as green engineering materials in the 21st century. It also takes an important role in establishing resource-saving and environment-friendly low-carbon society. Mg-Mn alloy is widely used with excellent extrusion property,good weldability and corrosion resistance. Mn is the basic element in Mg-Mn alloy and is joined in the form of master alloy. However Mn-content of the current commercial Mg-Mn master alloy is not more than 3wt%,affecting its efficiency. Therefore,the development of high Mn-content Mg-Mn alloy has become a bottleneck in the development of magnesium alloys.
     In this paper,firstly Mg-10wt%Mn and Mg-12wt%Mn master alloy were prepared by electromagnetic stirring method.The key processing parameters such as the particle size of Mn powder,the power of electromagnetic stirring,the stirring time and the way of cooling have been developed for the higher Mn-content and the better distribution of Mn by orthogonal experiment and obtained the best process.Secondly Mg-15wt%Mn master alloy was prepared by powder metallurgy process.The key processing parameters such as the particle size of Mn powder,pressing temperature,zinc stearate and pressing temperature were developed for the higher compressive stress and better plasticity and the best technology parameters have been determined. Thirdly,Mn/Mg,Mn/AZ91 and Mn/ZM21 solid-liquid diffusion couple were made to study solid manganese diffuse behavior in liquid magnesium,AZ91 and ZM21.At last,slef-made master alloys were applied to manufacture M1A,AZ91 and ZM21.
     The research results show that:
     ①In the experiment conditions,Mg-10wt%Mn master alloy with excellent performance can be manufactured by adding Mn powder with the particle size ranged between 150~68μm in stirring at 12.5kW for 4min,cooling in the mold made from Cu. Mg-12wt%Mn master alloy with excellent performance can be manufactured by adding Mn powder with the particle size ranged between 150~68μm in stirring at 10kW for 4min,cooling in the mold made from Cu.
     ②In this experiment conditions,the best technology parameters of Mg-15wt%Mn master alloy are manganese powder size 150~68μm,room temperature,zinc stearate free,compressive stress of 125MPa.
     ③Based on Fick’s second law and Boltzmann-Matano methold,the average diffusion coefficients of solid Mn in liquid Mg in 963K,983K and 1003K were respectively 1.72×10-14m2/s,4.07×10-14m2/s,6.91×10-14m2/s,the average dissolution rates were 9.393×10-10m/s,2.219×10-9 m/s,3.771×10-9 m/s;the average diffusion coefficients of solid Mn in liquid AZ91 were 8.10×10-15m2/s,8.29×10-15m2/s,2.27×10-14m2/s and the average dissolution rates were 4.419×10-10m/s,4.522×10-10 m/s and 1.473×10-9 m/s;the average diffusion coefficients of solid Mn in liquid ZM21 were 1.24×10-14m2/s,2.92×10-14m2/s and 4.17×10-14m2/s and the average dissolution rates were respectively 6.747×10-10m/s,1.593×10-9m/s and 2.273×10-9m/s.Then, according to Arrhenius equation,the solution diffusion activation energy of solid Mn in liquid Mg,AZ91 and ZM21 were 266.1 kJ/mol,202.8kJ/mol,232.33kJ/mol.In order to save energy and improve the recovery rate of Mn in M1A,AZ91 and ZM21,The heating power of melting M1A,AZ91 and ZM21 can be as follow: PAZ91      ④M1A,AZ91 and ZM21 can be prepared with self-made Mg-Mn master alloy.As cast , both chemical compositions and microstructure met related standards . M1A , AZ91 and ZM21 with self-made master alloy prepared by electromagnetic stirring also reached the national standards in mechanical properties.However,M1A and AZ91 can not attained the national standard except for ZM21.
引文
[1] I. J.Polmear, Light Alloys,Metallurgy of the Light Metals, (2nd ed), Edward Arnold,Sevenoaks, UK 1989.
    [2] Guang Ling Song, Andrej Atrens.Corrosion Mechanisms Magnesium Alloys[J].Advanced Engineering Materials,1999,1(1):11-33.
    [3]张津,章宗和.镁合金及应用[M].北京:化学工业出版社.2004.7:2-3.
    [4]许并社,李明照.镁冶炼与镁合金熔炼工艺[M].北京:化学工业出版社.2006.1:113-116.
    [5]宋光铃.镁合金腐蚀与防护[M].北京:化学工业出版社.2006.6:12.
    [6]赵浩峰,王玲,吴红艳等.镁-锰合金抗环境腐蚀性能的研究[J].轻合金加工技术,2009,37(2),45-47.
    [7]刘正,王越,王中光等.镁基轻质材料的研究及应用[J].材料研究学报,2000,15(5):449-455.
    [8]范靖亚,康广范.Mg-Y-Mn合金高性能板材的研究[J].轻合金加工技术,1994,22(8):45-48.
    [9]关学丰.改善变形Mg-Mn系合金性能的研究[J].湖南冶金,1993,1(1):7-10.
    [10]王登峰,张金山等.镁锰合金的晶粒细化及其耐蚀性的研究[J],铸造设备研究,2005,(1):12-14.
    [11]戴庆伟,张丁非,袁炜等.新型Mg-Zn-Mn变形镁合金的挤压特性与组织性能研究[J],材料工程,2008,(4):38-42.
    [12] ZHANG Ding-fei, SHI Guo-liang, DAI Qing-wei,etal.Microstructures and mechanical properties of high strength Mg-Zn-Mn alloy[J],Transactions of Nonferrous Metals Society of China,2008,18:59-63.
    [13] Reading J T;Newport J J J.T.Reading,J.J.Newport Materials Protection 5,(1966):15.
    [14]郭顺勒.铬锰的性质及其应用[M].北京:高等教育出版社.1992.9:7-9.
    [15]乐毅,余永富,张泾生.中国锰矿资源开发利用评价体系研究[J],金属矿山,2009(10),16-20.
    [16]江权.锰的存在及应用[J],中国锰业,2001,19(3),36-38.
    [17]蔡元华,郝斌,崔华等.锰在7000系铝合金中的作用及机理[J],材料科学与工艺,2008(4),10-14.
    [18]陈刚,陈鼎.锰在有色金属中的应用[J].中国锰业,2003,21(3),34-37.
    [19]汤启良.中间合金的生产[M].北京:冶金工业出版社,1959.10:1-3.
    [20]徐宋兵,彭晓东等.Mg-Sr中间合金制备及锶收得率影响因素分析[J].材料导报,2006,20(11),150-152.
    [21] V.Auradi,S.A.Kori.Influence of reaction temperature for the manufacturing of Al-3Ti and Al-B master alloy[J].Journal of Alloys and Compounds,153 (2008) 147-156.
    [22]刘甲祥,杨庆山等.高质量Mg-Zr中间合金的研制[J].稀有金属与硬质合金,2006,34(1),30-32.
    [23] Yücel Birol.Production of Al–Ti–B master alloys from Ti sponge and KBF4[J].Journal of Alloys and Compounds,400(2007)108-112.
    [24]姜峰.Al-Mg-Sr中间合金制备及应用研究[D].中南大学,2002:11-12.
    [25] Zhonghua Zhang,Xiufang Bian,Xiangfa Liu.Preparation of an Al-Sr master alloy by molten salts electrolysis[J].Zeitschrift fur Metallkunde Zeitschrift fur Metallkunde,2001,92(12),1323-1326.
    [26]李继东,张明杰,张延安等.熔盐电解法制备铝锂中间合金[J].中国有色金属学报,2008,18(8).
    [27]李继东,张明杰,张延安等.熔盐电解法连续生产铝锂中间合金[J].东北大学学报(自然科学版),2009,30(1).
    [28]徐润泽.粉末冶金结构材料学[M].长沙:中南工业大学出版社,2002:1-3.
    [29]蒋汉祥,马文华,郭红等.粉末法生产Mn-Al中间合金[J].重庆科技学院学报,2006,8(3),21-23.
    [30] N. Zarrinfar,A. R. Kennedy,P. H. Shipway,Reaction synthesis of Cu–TiCx master-alloys for the production of copper-based composites[J], Scripta Materialia,1999,54(4),949-952.
    [31] Yucel Birol.Production of Al–B alloy by heating Al/KBF4 powder blends[J].Journal of Alloys and Compounds,481(2009)195-198.
    [32] Fujii H,Akiyama H,Kaneko J,etal.Al-Sc master alloy prepared by mechanical alloying of aluminum with addition of Sc2O3[J].Material Transcations,2003,44(5):1049-1052.
    [33] A. Srinivasan,U.T. Pillai,J. Swaminathan,S.K. Das, B.C. Pai. Observations of microstructural refinement in Mg-Al-Si alloys containing strontium, J. Mater. Sci,41,2006,6087–6089.
    [34] K.Y. Nam, D.H. Song, C.W. Lee, and S.W. Lee, Modification of Mg2Si morphology in as-cast Mg-Al-Si alloys with strontium and antimony,Mater. Sci. Forum,510–511 (2006) 238.
    [35] XQ ZENG,YX WANG,WJ DING,AA LUO and AK SACHDEV,Effect of strontium on the microstructure,mechanical properties,and fracture behavior of AZ31 magnesium alloys [J], Metal Mater Trans A 37 (2006), pp. 1333–1341.
    [36] R.J. Cheng,A.T. Tang,M.B. Yang,F.S. Pan,Effects of Al-Sr master alloys on the as-castmicrostructure of the AZ31 magnesium Alloys[J],Mater. Sci. Forum,546–549,2007,183–186.
    [37] Mingbo Yang,Fusheng Pan,Renju Cheng,Aitao Tang.Effect of Mg–10Sr master alloy on grain refinement of AZ31 magnesium alloy[J], Materials Science and Engineering A,491(2008)440-445.
    [38] Cheng RJ,Pan FS,Yang MB,Tang AT.Effects of various Mg-Sr master alloys on microstructural refinement of ZK60 magnesium alloy[J],Transactions of Nonferrous Metals Society of China,18(2008)s50-s54.
    [39] Lee Y.C,Dahle A.K,StJohn D.H.Grain refinement of magnesium [J].Magnesium Technology 2000 Symposium,211-218.
    [40] Ma Qian,D. H. StJohn,M. T. Frost. Characteristic zirconium-rich coring structures in Mg–Zr alloys[J].Scripta Materialia,2002,46(9):694-654.
    [41] Wenbin Yu,Hong He,Chunmei Li,Qing Li etal.Existing form and effect of zirconium in pure Mg,Mg-Yb,and Mg-Zn-Yb alloys[J],Rare Metals,2009,28(3):289-296.
    [42]陈建军,杨庆山.镁热还原K2ZrF6制备镁锆中间合金[J].金属材料与冶金工程,2007,(355):15-17.
    [43]邓永和.稀土镁合金研究现状与发展趋势[J].稀土,2009,30(1):76-79.
    [44] Yao H B,Li Y,Wee A T S.Passivity behavior of melt– spun Mg-Y alloys[J].Electrochimica Acta,2003,48 (28):4197-4204.
    [45] Yu - Fei Wang,Wei - Bing Zhang,Zhi-Zhong Wang,etal.First - principles study of structural stabilities and electronic characteristics of Mg-La intermetallic compounds[J]1.Computational Materials Science ,2007,41 (1):78-85.
    [46]汤妙香,镁锰中间合金的制造方法[P].中国专利.91108819.9, 1991-09-11.
    [47]刘正,一种镁锰中间合金及其制备方法[P].中国专利.03133459.8,2003-06-17.
    [48]胡赓祥,蔡珣.材料科学基础[M].上海交通大学出版社,2000:119-120.
    [49]杨穗.Zn-Fe-Mo体系相平衡研究及锌液中铝的扩散系数的测定[D].湘潭大学,2005.49.
    [50] Zheng M Y,Wu K,Kamado S,etal.Aging behavior of squeeze cast SiCw/ AZ91 magnesium matrix Composite [J].Materials Science and Engineering, 2003,A348 :67-75.
    [51]江伯鸿.材料热力学[M].上海:上海交通大学出版社,1999.134-135.
    [52] GROBNER J,MIRKOVIC D,OHNO M,etal.Experimental investigation and thermodynamic calculation of binary Mg-Mn phase equilibria[J].Journal of Equilibria and Diffusion,2005,26(3):234-239.
    [53] ROHATGI P K,ASTHANA R,YADAV R N,etal.Energetics of particle transfer from gas to liquid during solidification processing of composites [J].Metall.Trans,1990,21A:2073-2082.
    [54] ROHATGI P K,ASHANA R,DAS S.Solidification structures and prosperities of cast metalceramic particle composites[J].Inter Mater Rev,1986,31(2):115-139.
    [55]郝斌,崔华,蔡元华,等.搅拌铸造法制备金属基复合材料的热力学和动力学机制[J].稀有金属快报,2005,24(6):22-25.
    [56]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1982.255.
    [57]郑成琪,雄书明.复合材料凝固过程中的颗粒/界面行为数学模型[J].铸造设备研究,2002,1:17-19.
    [58] KOLIN A.An Electromagnetokinetic Phenomenon Involving Migration of Neutral Particles[J].Science.1953,117(3032):134-137.
    [59]钟云波.电磁力场作用下液态金属中非金属颗粒迁移规律及其应用研究[D].上海:上海大学,2000:7-8.
    [60]林涛,果世驹等.温压过程致密化机制探讨[J].北京科技大学学报,2000,22(2):131-133.
    [61] Whitman , W.G The two-film theory of gas absorption Chemical and Metallurgical Engineering[J],29,4(1924)146-148.
    [62] H.Schlichting.Boundary layer theory.7th Edition,McGraw—Hill,New York,1979.
    [63]邹僖.钎焊[M].北京:机械工业出版社,1989.
    [64]王怀国,张景新等.高硅镁合金的制备工艺及显微组织分析[J].稀有金属,2003,27(4):500-502.
    [65]美国金属学会.金属手册(第九版,第二卷)性能与选择:有色合金及纯金属[M],北京:机械工业出版社,1994.691-692.
    [66]高强.最新有色金属金相图谱大全[M].北京:冶金工业出版社,987-988.
    [67]彭建,樊世波,张丁非,等.均匀化退火工艺对ZM21镁合金热变形行为的影响[J].金属热处理,2009.,34(6):72-76.
    [68]彭建,樊世波,宋成猛.固溶处理对Mg-2.0%Zn-0.7%Mn合金热变形过程及变形组织的影响[J].热加工工艺,2009,7:8-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700