用户名: 密码: 验证码:
变形锌铜钛合金蠕变行为及其组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用熔铸、挤压等方法制备了一系列Zn-Cu-Ti、Zn-Cu-Ti-Cr、Zn-Cu-Ti-Mn、Zn-Cu-Ti-Mg、Zn-Cu-Ti-Al等锌铜钛合金,借助光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、差热分析仪(DSC)、X射线衍射仪(XRD)、能谱分析仪(EDS)以及蠕变试验机等手段和设备,研究了不同合金成分及含量的锌铜钛合金的微观组织及相组成,对比研究了合金化对合金力学性能的影响,建立了合金再结晶晶粒长大模型及高温蠕变本构方程,初步探讨了合金的高温蠕变机理及Cr对合金再结晶行为和常温蠕变行为的影响。得出以下结论:
     (1) Zn-0.5~3.0Cu-0.1~0.3Ti合金的熔点在419.7℃~422.6℃之间;变形锌铜钛合金的相组成主要包括η相、ε相和TiZn15相;250℃热挤压过程合金发生了动态再结晶,第二相能够抑制再结晶晶粒长大。
     (2)随着Cu、Ti含量的升高合金的强度升高,伸长率则先升后降;分别添加微量Cr、Mn、Mg、Al提高了Zn-1.0Cu-0.2Ti合金的强度;添加微量Mg的合金强度达280MPa。
     (3) Zn-1.0Cu-0.2Ti合金与Zn-1.0Cu-0.2Ti-0.1Cr合金的再结晶温度分别为230℃和260℃;Zn-1.0Cu-0.2Ti合金再结晶晶粒长大的热激活能为49.96 kJmol-1。Zn-1.0Cu-0.2Ti合金的再结晶晶粒长大模型:D2= 21.47+533851.14te(6009.14/T)
     (4)Zn-1.0Cu-0.2Ti合金的蠕变激活能为83.7 kJmol-1,高温蠕变本构方程可以表示为:ε= 5.32×10-3σ5.10 exp(-83700/RT); Zn-Cu-Ti合金高温蠕变过程中,高温蠕变主要机制为自扩散控制机制。常温蠕变中主要机制为晶粒内部位错滑移和攀移机制;Zn-1.0Cu-0.2Ti-0.1Cr合金的常温抗蠕变性能优于Zn-1.0Cu-0.2Ti合金。
A serial of Zn-Cu-Ti、Zn-Cu-Ti-Cr、Zn-Cu-Ti-Mn、Zn-Cu-Ti-Mg、Zn-Cu-Ti-Al alloys were parepared by melting, casting and extruding. This eassay studied the microstructure of the alloys of different compositions with the help of XRD、DSC、SEM、TEM、EDS and so on, revealed the alloying effects on alloys' mechanical properties, and also estabilished the equation of recrystallization and creep at high temperature, discussed the alloys' recrystallization mechanism and creep mechanism. The following results were obtained:
     (1) Zn-0.5~3.0Cu-0.1~0.3Ti alloy melting pointis is between 419.7℃and 422.6℃; Wrought Zn-Cu-Ti alloy is constituted of phase、εphase and TiZn15 phase. During hot extrusion process at 250℃, dynamic recrystallization occurres and the second phase inhibits the recrystallization grain growth.
     (2) Strength and elongation of the alloys increases with the increase of Cu and Ti elements, but elongation decreases once Ti% is above 0.2%. Trace Cr、Mn、Mg、Al increases the strength of Zn-1.0Cu-0.2Ti alloy; The tensile strength of Zn-1.0Cu-0.2Ti-0.05Mg is up to 280MPa.
     (3) The recrystallization temperatures of Zn-1.0Cu-0.2Ti alloy and Zn-1.0Cu-0.2Ti-0.1Cr alloy are 230℃and 260℃respectively. The ecrystallization grain growth activation energy is 49.96 KJmol-1. Grain growth equation of the Zn-1.0Cu-0.2Ti alloy is established: D2= 21.47+533851.14te (6009.14/T)
     (4) The creep activation energy of Zn-1.0Cu-0.1Ti alloy at high temperature is 83.7 KJmol-1. Zn-1.0Cu-0.1Ti alloy constitutive equation can be expressed as:ε= 5.32×10-3σ5.10exp(-83720/RT). The main mechanism of high temperature creep is controlled mainly by diffusion mechanisms. the main mechanism is the sliling and climbing mechanism of dislocation during the creep period at room temperature. Zn-1.0Cu-0.2Ti-0.1Cr alloy shows a better creep property than the Zn-1.0Cu-0.2Ti alloy at 25℃.
引文
[1]孙连超,田荣璋.锌及锌合金物理冶金学[M].长沙:中南工业大学出版社,1994:1~20
    [2]格拉西莫夫.有色冶金化学热力学手册(第一卷)[M].刘崇志译,北京:中国工业出版社,1966(4):1874~1878
    [3]Devillers L P. Investigation of corrosion mechanism of zinc alloys [J]. Corrosion Science.1986(16):243~252
    [4]Melton K N, Welson J. The corrosion and passivity of zinc alloy exposed to dary air and dilute sodium sulfate solutions [J]. Corrosion Science.1984(4):159~164
    [5]Torres G, Milon K H. A study of intergranular corrosion of ZA12 alloy in industrial air [J]. Corrosion,1985(4):243-248
    [6]朱汉兴.锌合金板材加工研究[J].广州冶金科技,1979,154:42~47
    [7]美国矿务局研究报告.1970,No.7363
    [8]杨留栓.高铝锌合金[M].西安:西北工业大学出版社,1997:27~30
    [9]陆伟,严彪.铸造锌铝合金的研究进展及其应用[J].上海有色金属,2004,(3):71~75
    [10]侯平均,李会强,倪峰.改善高铝锌合金性能的研究进展[J].材料开发与应用,2001,16(2):30~34
    [11]曹异生.铅锌工业现状及发展前景的预测[J].冶金经济分析,1994,(4):1~8
    [12]李伟文.代铜耐磨锌基合金[J],冶金丛刊,1995,(5):39~45
    [13]Chollet P. Recent progress in the metallurgy of wrought zinc alloys [J]. Canadian Metallurgical quarterly,7(3):177-185
    [14]王慧,薛松柏,陈文学.不同钎剂对Sn-Zn系无铅钎料润湿特性的影响[J].焊接学报,2009(1)
    [15]谭兵.锌铜钛合金板带材的试制与性能[J].冶金丛刊,1999(2):37~39
    [16]卢天健.一种微型锌/空气电池的开发[J].西安交通大学学报,2008,42(7):791~794
    [17]覃奇贤.电镀锌及锌合金的添加剂[J].电镀与精饰,2008,(11):12~16
    [18]石志强,郗学奎,张磊,叶以富,李世春.Zn-Al合金超塑性变形的相界滑移与表面效应研究[J].金属热处理,2002(8):45~48
    [19]李定,郝远.超塑性锌铝共晶合金成形工艺的研究[J].兰州理工大学学报, 2004(2):94-97
    [20]赵玉珍,高庆,戴振羽.ZA27高阻尼合金的阻尼特性及微观机理的研究[J].西安交通大学学报,2001,36(6):591-594
    [21]项宏瑶,宫本奎.稀土对高强度锌基合金耐磨性的影响[J].机械工程材料,1996,20(1),30-32
    [22]Mathewson C H. Zinc reinhold publishing corporation [M]. New York:UAD Press,1959:12~25
    [23]Gane N. Influence of trace elements on dimention stabality of Zinc alloys[C]. Metals Forum (1984). No.4210
    [24]Apelian D, Dolley S. Study on an alloy of excellent dimensionally stability [J]. Journal Metals,1981(33):1308~1312
    [25]Wegria J. Deformation of polycrystals of zinc alloys [J]. Mechanisms and Microstructures,1981(11):972~984
    [26]Trautmann R. Metal Wirtschaft, March,1942. Translation in sheet metal industries, March 1943
    [27]Savas M A, Altintas S. The microstructural control of cast and mechanical properties of zinc-copper alloys [J]. Materials Science,1993(28):1775~1780
    [28]Sahoo M. Effect of Strontium on the Structure and Mechanical Properties of Zn-Cu Foundry Alloys [J]. AFS Transactions,1986(9),225~242.
    [29]Faur M, Cosmeleata E, Georgeta K. Effects of hot and cold rolling on the microstructure of low alloy Zn-Cu and Zn-Cu-Ti zinc alloy with improved corrosion resistance [J]. UPB Scientific Bulletin, Series B:Chemistry and Materials Science,2006(1):67-74
    [30]Heubner U, Pelzel E. Properties and applications of high quality zinc alloys [J]. Metall,1975,29(9):875~881
    [31]美国矿务局研究报告,1968,No.7089
    [32]谭兵.锌铜钛合金板带材的试制与性能[J].冶金丛刊,1999(2):37-39
    [33]林高用,郑小燕,曾菊花,孙利平.锌基合金挤压型材的组织与性能[J].中南大学学报(自然科学版):2008,39(2):246~250
    [34]陆伟,严彪.铸造锌铝合金的研究进展及其应用[J].上海有色金属,2004,25(1):13-17
    [35]Ma Ying, Yan FengYun, Liu Hong-Jun. Microstructure analysis of ZA alloy rod directionally solidified by heated mold continuous casting [J]. Proceedings of the Symposium,2004:268~281
    [36]Ma Ying, Hao Yuan, Yan Feng Yun, Liu Hong Jun. Defect formation and mechanism of ZA alloy made in continuous casting by heated mold [J]. Transactions of the China Welding Institution,2007,28 (12):51~55,
    [37]许乐生,李卫东.高铝锌基合金作为轴瓦材料可行性的进一步探索[J].现代制造技术与装备:2008(1):35~36
    [38]郭亚希,谢敬佩,闫淑卿,王文焱,王爱琴,李继文,侯锦岭,李洛利.Ti、B对ZA27合金组织及力学性能的影响[J].特种铸造及有色合金:2008(1):269~270
    [39]Barnhurst R J. Study of the beraring characteristics of zinc-aluminum (ZA) alloys [J]. Canadian Metallurgical Quartely:1988,27(3):225~233
    [40]Choi, Jung Woo. Development of high performance magnesium alloys via microstructure and texture control [C]. Materials Science Forum,4th International Conference Organized by the CAST CRC 2009,249~252
    [41]汤宏群,曾建民,邹勇志,顾红.ZA27合金时效过程研究[J].机械工程材料:2007(4):45~47
    [42]王狂飞,白聿钦.热处理工艺对ZA27合金组织与性能的影响[J].机械工程材料,1999(1):76~79
    [43]王仕勤,张力宁.ZA22合金固态超塑性[J].热加工工艺,1997(2):21~23
    [44]罗兵辉,周善初.锌铝共析合金的超塑性变形组织特征[J].中南工业大学学报,1996,27(4):452~455
    [45]李世春,杨春松.Zn-5A1合金超塑性的表面效应[J].材料研究学报,1996(10):617~619
    [46]Maharbi. Majid, Karaman. Ibrahim. Flow response of a severe plastically deformed two-phase zinc-aluminum alloy [J]. Materials Science and Engineering A,2010,257(3):2518-2525
    [47]Balout B, Masounave J. Songmene V. Modeling of eutectic macrosegregation in centrifugal casting of thin walled ZA8 zinc alloy [J]. Journal of Materials Processing Technology,2009,209(18):5955~5965
    [48]姚晓燕.重有色金属及其熔炼[M].北京:国防工业出版社,1980,41~45
    [49]Savas M A, Altintas S. The microstructural control of cast and mechanical properties of zinc-aluminium alloys [J]. Materials Science,1993(28):1775~ 1780
    [50]耿浩然,张硕.锑对高铝锌基合金性能的影响[J].机械工程材料,1991,15(3):10~13
    [51]苏德煌.锂对ZA27合金高温力学性能影响[J].特种铸造及有色合金,1998(6):26-28
    [52]张伟.国内外高铝锌基合金研究现状与进展[J].铸造技术,1993(2):36~39
    [53]郭伟,曾建民.微量元素La, Sb, Ti和Mn对ZA27合金力学性能的影响[J].广西大学学报(自然科学版),2002,(9):192~1951
    [54]黄俊,袁中岳,张忠明.稀土变质高铝锌合金的组织和性能[J].热加工工艺,2002,(1):6~81
    [55]Sahoo M. et al. Effect of strontium on the structure and mechanical properties of Zn-Al foundry alloys [J]. AFS Transactions,1986,225-242.
    [56]张东风,韩万有,赵新.稀土、稀土-硼对ZA27铸造锌铝合金显微组织及性能的影响[J].鞍钢技术,1996,(11):36~411
    [57]杨留栓,杨根仓.改进高热强锌基合金的新思路[J].材料导报,1994(3):13~16.
    [58]许春香,赵沛廉.混合稀土对ZA27合金高温力学性能的影响[J].材料科学与工艺,1999,(9):105~1081
    [59]刘度云,马柏生等.稀土ZnA127合金组织性能影响的研究[J].华东工学院学报,1991,(1):62~67.
    [60]慕东.稀土对ZA27合金组织和性能影响的研究现状[J].四川工业学院学报,2004,23(5):237~240
    [61]张德生.几种合金元素对Zn-27%Al合金抗老化性能的影响[J].金属热处理,2007,32(9):59~62
    [62]张伟,黄积荣.高铝锌合金耐磨性能的研究[J].特种铸造及有色合金,1992,(4),6~10
    [63]张东风.稀土-硼对ZA27铸造锌铝合金显微组织及性能的影响[J],鞍钢技术,1996,(11),36~41
    [64]李俊,钱翰城.对ZA27合金用几种变质剂的试验与评价[J].机械工程材料,1994,18(5),17~19
    [65]韩青有,王佩君.锌基合金抗老化的改善[J].北京科技大学学报,1993,15(4),349~352
    [66]Pollard W A, et.al, Canadian Metallurgical Quarterly[J],1974,13(4),535~ 543
    [67]陈云贵,王宏敏.稀土对ZnAl-12组织及冲击韧性的影响[J].机械工程材料,1993,17(6),31~33
    [87]Mshra R S. and Pandey A B. Some observations on the high-temperature creep behavior of 6061 Al-SiC composites [J]. Metallurgical Transaction A,1990, 21A(7):2089-2090
    [88]Nieh T G. Creep rupture of silicon carbide reinforced aluminum composite [J]. Metallurgical Transactions A.1984,15(1):139~146
    [89]胡海明,吕乐扬,刘勇.Al-Ti-B变质剂对ZA27合金组织与性能影响[J].机械工程材料,1997,21(6):23~25
    [90]Nardone V C, Srrife J R. Analysis of the creep behavior of silicon carbide whisker reinforced 2124 Al (T4) [J]. Metallurgical Transactions A.1987,18A(1): 109-114
    [91]Pandy A B. Mishra R S. Mahajan Y R. Creep behavior of silicon carbide reinforced aluminum composite[J]. Acta Metallurgical Transaction 1992,40(8): 2045-2052
    [92]Pandy A B. Mishra R S. And Mohamed F A. Creep behavior of permanent mold cast Mg-Al-Ca based alloys [J]. Acta Materials.1990,38:2154~2161
    [93]Park K T. and Mohamed F A. Modeling creep behavior of niobium silicide in-situ composites [J]. Metallurge and Materials Transaction.1995,26A(10): 3119-3129
    [94]Reinback R. Study on the creep behavior of zinc-aluminum alloy [J]. Metal Industry.1944,21 (8):1913-1921
    [95]Pawlek F, Pfender M. Influnce of graince size on the creep resistance of Zn-27A1 alloy [J]. Metal Industry,1944,21(12):2014-2025
    [96]Mishra R S. Factor analysis on creep behavior of titanium alloys [J]. Scripta of Metallurgical.1992,26:309
    [97]Amhet T, Durman M. and Kayali E.Effect of copper on the behavior of gravity cast zinc-aluminum-based ZA-8 alloy [J]. Z.Metallked.1998,89(5):351~335
    [98]Prasad N, Malakondaiah G, and Banerjee D. Low-stress creep behavior of superplastic Zn-22%Al alloy [J]. Materials Science,1993,28:1585~1594
    [99]Murphy S. And Terziv L. Microstructural study of a Zn-Al-Cu alloy after thermal treatmemt at 100℃ and creep [J]. Z. Metallked.1994,85(3):640—644
    [100]Zhu Y H. Creep induced transformation in cast Zn-Al alloy [J]. Materials Science Letters,1996,15:1358~1360
    [101]Mostafa M M, Nada R H. Effect of phase transformation and predeformation on creep characteristics of Al-40%Zn alloy [J]. Physica Status Solidi(A).1994,143(2):297~304
    [102]Zhu Y H, Orozco E and Torres J. Tensile creep deformation and microstructure change in cast Zn-Al alloy [J]. Materials Transactions,2000,16(6):521~525
    [103]Zhu Y H, Juarez J and Orozco E. Creep induced phase transformation in extruded Zn-Al alloy [J]. Materials Science and Technology,1997,13(6):503~ 507
    [104]Zhu Y H, Orozco E and Murphy S. Creep induced phase transformation in furnace cooled Zn-Al alloy [J]. Materials Science,1997,21:5811~5815
    [105]Zhu Y H, Lopez Hirata V M and Saucedo-Munoz M. Milling induced microstructural change in furnace cooled eutectoid Zn-Al alloy [J]. Materials Processing Technology,1997,63:624~627
    [106]Zhu Y H. Microstructure dependence of the creep behavior of a Zn-Al based alloy [J]. Materials Processing Technology,1998,73:18~24
    [107]Terziv L. Microstructural study of a Zn-Al-Cu alloy after thermal treatmemt at 100℃ and creep [J]. Z. Metallked.1994,85(3):640~644
    [108]Ma D, Xu W, Ng S C, Li Y. On secondary dendrite arm coarsening in peritectic solidification [J]. Materials Science and Engineering A,2005, 390(1-2):52~62
    [109]Ma D, Li Y, Ng S C. Unidirectional solidification of Zn-rich peritectic alloy-I. Microstructure selection [J]. Acta material.2000,48(2):419~431
    [110]Diot M, Philippe M J, WeGria J and Esling C. Addition elements and texture gradients in rolled zinc alloy [J]. Scripta Materialia,1999,40(11):1295~1303,
    [111]Julius C.Schuster, Pierre Perrot. Copper-Titaniun-Zinc. Landolt-Bornstein New Series Ⅳ/11C2:451-458
    [112]Julius C. Schuster, Pierre Perrot. Non-Ferrous Metal Ternary Systems. Part 2[M]. Stuttgart, Germany:Springer Berlin Heidelberg Press,2007,451~458
    [113]Gebhardt E. Alloy Systems of Zinc with Titanium and Zirconium [J]. Z. Metallkd,1941,33:355~357
    [114]Spittle J. A, The Effects of Composition and Cooling Rate on the As-Cast Microstructures of Zn-Ti Alloys, Metallography,1972,5(5):423~447
    [115]Pelzel, E. The Structure of Zn-Cu-Ti Alloys [J]. Metallurge,1961,15:881 ~883
    [116]Heine W, Zwicker U. Contribution on the Constitution of Zn-Cu-Ti Alloys [J], Z. Metallkd.,1962,53:386-388
    [117]Wegria J, Foct J. Structural Aspects of the Bendability of Zinc-Copper-Titanium Alloys [J]. Metal Science and Heat Treatment,1984,81(3),145~155
    [118]Miller W A, Chadwick G A, The Solidification of Metals, The Iron and Steel Insittute, London, Publication 110(1968):49~56
    [119]唐仁正.物理冶金基础[M].北京:冶金工业出版社,1997:149~171
    [120]宋余九.金属的晶界与强度[M].西安:西安交通大学出版社,1986:1285~87
    [121]候增寿,卢光熙,金属学原理[M].上海:上海科学技术出版社,1995:197~213
    [122]毛为民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1997:181~195
    [123]Himmel L. Recovery and Recrystallization of Metals [M].New York:Interscience Publishers,1963:199~223
    [124]张俊.合金强度学[M].哈尔滨:哈尔滨工业大学出版社,2004:130~150
    [125]Puwlya J P.晶体的高温塑性变形[M].关德林译.大连:大连理工大学出版社,1989,70~75
    [126]张俊善.材料的高温变形与断裂[M].北京:科学出版社,2007:28~225
    [127]Zhang J S, Li P E, Jin J Z. Combined matrix/boundary precipitation strengthening in creep of Fe-15Cr-25Ni alloys [J]. Acta Metall. Mater., 1991,39(12):3063-3070
    [128]Li P E, Zhang J S, Wang F Q Jin J Z. Influence of intergranular carbide density and grain size on creep of Fe-15Cr-25Ni alloys. Metall. Trans.,1992, 23A(4):1379-1381
    [129]Kim W J, Chung S W, Chung C S, Kum D. Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures [J]. Acta Materialia,2001,49(16):3337~3346
    [130]Chung S W, Watanabe H, Kim W J, Higashi K. Mater Trans JIM,2004,45:1266
    [131]Prasad N, Malakondaiah G, Banerjee D. Low-stress creep behavior of superplastic Zn-22%Al alloy [J]. Materials Science,1993,28:1585~1594
    [132]Kassner M E, Perez-Prado M T. Fundamentals of creep in Metals and alloys [M]. Oxford:Elsevier Ltd.,2004:12~75
    [133]Langdon T G. Philosophical Magazine,1970,22(178):689-697

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700