用户名: 密码: 验证码:
Al-5Cu-Fe-B合金组织性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石化能源枯竭,以及温室效应加重,人类迫切需要新能源的应用,因此核能成为首选的新能源。人类利用原子能技术的日趋成熟,核电站及其他核设施的数量和规模日益扩大,鉴于辐射屏蔽体系在反应堆中的重要作用,屏蔽材料的研究与开发成了世界各国的热点。不仅仅表现为国家的大量投入,各国专家和学者也对这一课题产生了浓厚的兴趣。而10B优异的核特性,使得研究者们在开发新的屏蔽材料时从来就没有把关注的目光从它身上移开。在这些含B的屏蔽材料中,含硼铝铜合金以其良好的机械性能、特别是良好的韧性,成为了辐射屏蔽体系中结构材料的补充。然而国内外的辐射屏蔽多采用硼钢硼铁的形式,基体中铁硼化合物的脆硬性导致硼钢和硼铁冲击韧性不好。硼铝合金屏蔽用材料良好的力学性能正好是这些屏蔽材料的有益补充,国外已有尝试。本课题正是希望能开发新的低成本高性能含硼铝铜合金屏蔽用材料提供一些科研资料。
     本试验利用真空感应炉熔炼铝铜硼合金,采用ICP法分析制备合金的化学成分,用OLYMPUS型金相显微镜及S3400N型电子扫描电镜观察铸态及热处理态制备试样的显微组织,并结合STA-300HV型扫描探针显微镜进一步分析试样微区成分的变化。
     试验结果表明:采用一次性加入炉料,制备出的含硼量为小于1.0wt%的含硼铝铜合金,真空熔炼硼的收得率优于非真空熔炼硼的收得率,真空熔炼的铸件成分较纯净,硼化物夹杂较少,但在熔炼过程中,会有硼化物沉淀在坩埚壁上,同时还会有硼的挥发。基体结构组织主要为α相和θ相(Al2Cu),当加入硼后,会有硼化物生成,夹杂在基体的晶界处。硼含量的增加,使硬度增大,使θ相(Al2Cu)逐渐由网状变为断续网状和孤立状,也使AlB2的弥散相数目在增多。
     铁加入铝铜硼合金中,组织形态发生改变网状的θ相(Al2Cu)变成弥散状,生成针状的硬质化合物(FeAl3),并生成块状的Fe2B。加入1%钛铁后,生成块状的TiB2,θ相又变成网状,其中网状的θ相一部分仍Al2Cu,另一部分变为Al7Cu2Fe等含铁化合物,当加入1.5%Fe和2.2%Ti后组织中θ相变为鱼骨状和菊花状,一部分仍保持半孤立网状,鱼骨状在组织中主要是Al7Cu2Fe等含铁化合物。
     对加入不同元素铝铜合金固溶后,硬度发生明显不同。Al-Cu-B合金随着固溶时间延长,硬度逐渐提高,15h、24h出现两个硬度峰值。加入铁或钛铁后的Al-Cu-B合金固溶随时间延长,硬度没有变化。Al-Cu-B合金时效后,在270min出现最大硬度,比铝铜合金慢30min。
With the depletion of fossil fuels, and the increase of the greenhouse effect, Human urgent the application of the new energy, therefore the nuclear energy was taken as the preferred new energy. The use of nuclear technology has matured, and the number and size of nuclear power plants and other nuclear facilities is growing, studying and developing shielding materials has become the world's hot spots ,in view of radiation shielding system's play important role in the reactor. This displayed not merely for the national massive input , but also for the nationals experts and scholars had a strong interest on the topic. However,The outstanding nuclear properties of 10B, cause the researchers has never been to pay attention away from it aside. In these shielding materials with B, boron -aluminum -copper alloy for its good mechanical properties, especially good toughness, as a complement of the radiation shield system structural materials . However, in the domestic and international the use of radiation shielding mainly in the form of iron boron or steel boron, the iron boron compounds‘s hard brittle of matrix cause iron boron steel and boron poor impact toughness. Boron Aluminum alloy shielding structural materials used exactly the complements of these shielding materials, has been tried abroad. This study is precisely hoped to like to provide some scientific research materials and information to develop a new low-cost boron-containing constructional shielding (the boron-containing Aluminum copper alloy).
     In this study, the vacuum inductance furnace is used to smelt aluminum-copper-boron alloy. the ICP method is used to analysis the chemical composition of the prepared alloy, the OLYMPUS metallographic microscope and the S3400N SEM are used to observe as cast structure and the heat-treated structure of the prepared aluminum-copper-boron alloy sample, and the change of the samples’micro-area composition is further analysised in conjunction with the STA-3100N EDS.
     The test results show that: vacuum smelting absorption rate of boron is better than with the non-vacuum melting, the boron-containing aluminum-copper alloy through adopting the craft that putting in burden one-time, prepared by the boron content of less than 1.0wt% of the boron-containing aluminum-copper alloy. The casting of vacuum melting has very little borides Inclusions; The casting of vacuum melting has the purer components; In the smelting process, there will be boride precipitation in the crucible wall, while there will be volatile boron. the main Structural organization of matrix for theαphase andθphase (Al2Cu),when the boron added into the alloy, the Boride will be generated, mixed in the grain boundaries of the matrix. With the increase of boron content, the hardness will be increase, so thatθphase (Al2Cu) gradually become half-mesh network and isolate state ,so the number of the dispersed phase AlB2 will be increased.
     Adding iron into aluminum copper boron alloy, the morphology will be changed.θphase (Al2Cu) from the net shape change into a dispersion state, generated Needle-like rigid compounds(FeAl3), and generated bulk of Fe2B.Adding 1% titanium and iron, will be generated block of TiB2,θphase has become a net shape. Parts of net shape’sθ-phase is still Al2Cu, another part of the iron compounds into such as Al7Cu2Fe Iron compounds. When adding 1.5% Fe and 2.2% Ti-phase ,θphase of the organization becomes daisy-like or fish bones -like, some still remain semi-isolated network, the organization of the fish bones–like mainly is Al7Cu2Fe such iron compounds.
     After the aluminum copper alloys add with different elements Solid solution, the hardness of change obvious difference. as the Al-Cu-B alloy Solid solution time went on ,the hardness gradually increased , 15h、24h has two maximum hardness, after the iron or titanium iron add into Al-Cu-B alloy, As Solid solution time went on , the hardness does not any change. If Al-Cu-B alloy time ageing, the maximum hardness will appears in 270min, slower than the aluminum-copper alloy 30min.
引文
[1]王零森,方寅初.碳化硼在吸收材料中的地位及其与核应用有关的基本性能[J].粉末冶金材料科学与工程,2000,5(2):113.
    [2]刘新锦,朱亚先,高飞.无机元素化学[M].北京:科学出版社,2005.
    [3]刘新锦,黄铁钢.谈谈硼族的缺电子性[J].大学化学,1992,7(1):12~16.
    [4]本溪钢铁公司第一炼钢厂编.《硼钢》.冶金工业出版社,1975.
    [5]周益年.核动力工程用主要新材料的研制[J].核动力工程,1993,14(3):244.
    [6] Anon.Brief reports on new research and developments,Stal'n,1992,11,p92.
    [7] M.A .Lee.Nuclear Data Sheets[J].1989,56(2),p199.
    [8] L.M.Katel and VI.Biba. Through technology for manufacturing the high-strength fasteners from boron-containing steel[J].Stal'n ,1996,1,p51.
    [9]蒋少涌.硼同位素及其地质应用研究[J].高校地质学报,2000,1(6):1~16.
    [10] N.Ohtani,et al.Proc.Int.Conf.Fast Reactor and Related FuelCycles,Kyoto,Japan,1991,3.
    [11] E.V.Prozorovskii and G.L.Petrov.The Arc Welding of Austenitic Chromium-Nickel Steels Alloyed with Boron[J].Avt Svarka,1966(1):1
    [12] Horiuchi T,Igarnsh M,Abe F.Improved utilization of added B in 9Cr heat-resistant steels containing W[J].ISIJ International,2002,42(1):67~71.
    [13] Bemasovsky P.Weldability aspects of austenitic stainless steel with high boron content[J].Metal Science and Heat Treatment (English translation), 1994,43(6):145~149.
    [14] Llewellyn D T.Boron in steels[J].Iron making and Steel making, 1993, 20(5):338~343.
    [15]刘赛业,陈跃,龙锐,等.Fe-B-C耐磨合金的研究进展及展望[J].铸造技术,2007,28(11):1526~1530.
    [16]周一志,宫秀敏.金属耐磨材料及其合金化[M].武汉:华中理工大学出版社, 1992.
    [17]刘常升,崔虹雯,陈岁元,等.高硼钢的组织与性能[J].东北大学学报,2004.25(3): 247~249.
    [18]陈岁元,刘常升,傅贵勤,等.高硼钢中B与Fe作用的超精细结构研究[J].物理学报, 2002.51(8):1711~1715.
    [19]杨军,王晋华,符寒光,等.热处理对高硼铸钢耐磨性的影响研究[J].铸造技术, 2006.27(10):1079~1081.
    [20]宋绪丁,蒋志强,符寒光.高硼铸钢的制备与应用[J].铸造技术,2006.27(8): 805~808.
    [21]吴占文,符寒光,马一民,等.热处理对变质高硼铸钢组织和性能的影响[J].铸造技术, 2006.27(12):1307~1310.
    [22]符寒光.铸造Fe-B-C合金组织和性能的基础研究[J].铸造,2005.54(9):859~863.
    [23]符寒光.高硼低碳铁基合金凝固组织研究[J].材料热处理报,2006.27(2):63~66.
    [24]冯锡兰,蒋志强,符寒光,等.新型高硼合金钢的研究[J].金属热处理, 2006.27(12): 57~60.
    [25]匡加才,符寒光,叶昌,等.改善Fe-B-C合金韧性的研究[J].四川大学学报,2006. 38(4).
    [26]潘学荣,吕继新,温耀曾,等.屏蔽用高硼钢和高硼铸铁研制[J].中国核科技报告,1996(S1):P266~278.
    [27]杨文峰,刘颖,杨林,等.核辐射屏蔽材料的研究进展[J].材料导报,2007, 21(5): 82~85.
    [28]高泽生.高浓度铝-硼中间合金的制法[J].轻合金加工技术,1994,22(6):14~17.
    [29]高泽生.世界铝晶粒细化剂供应工业[J].轻金属.1999(9)50~53(10)53~55.
    [30] CIBULA A[J]. Inst.Metals,1949~1950,76:321~360.
    [31] CIBULA A. The grain refinement of aluminum alloy castings by addition of titanium and boron[J].Inst.Met.,1951~1952,80:1~16.
    [32] GUZOWSKI M M,SIGWORTH G K,SENTERNER D A.The role of boron in the grain refinement of aluminum with titanium[J].Metallurgical Transactions A,1987,18:603~619.
    [33] WANG Chun-lei,WANG Ming-xing,LIU Zhi-yong,LIU. The grain refining action of fine TiB2 particles in the electrolytic low-titanium aluminum with Al-4B addition[J].Mater Sci Eng A, 2006,427:148~153.
    [34]孝云祯,马宏声,路贵民,刘劲波.Al-Ti-B晶粒细化合金中的有效形核相[J].中国有色金属学报,1997,7(3):137~139.
    [35]范广新,王明星,刘志勇,刘忠侠.加钛和加硼方式对铝合金的晶粒细化及其衰退行为的影响[J].中国有色金属学报,2004,14(9):1557~1563.
    [36] MOHANTY P S,GRUZLESKI J E.Grain refinement mechanisms of hypoeutectic Al-Si alloys[J].Acta Mater,1996, 44(9):3749~3760.
    [37]于亚鑫,邱竹贤,张明杰,等.铝硼及铝钛硼中间合金的研制(上)[J].轻金属,1988,(4):31~34.
    [38]于亚鑫,邱竹贤,张明杰,等.铝硼及铝钛硼中间合金的研制(下)[J].轻金属,1988,(5):30~34.
    [39]张时华.铝钛硼中间合金的研制与应用[J].轻金属,1987,(4) :56~57.
    [40]王芳,王明星,等.Al-B中间合金对铝合金晶粒的细化机理[J].中国有色金属学报,2006,6: 974~979.
    [41] YAGUCHI K,TEZUKA H,SATO T,KAMIO A.Grain refinement of cast Al alloys by Al-B[J].Materials Science Forum,2000,331/337:391~396.
    [42] Mohanty P S, Gruzleski J E. Grain Refinement Mechanism of Hypo-Eutectic Al-Si Alloys[J]. Acta Mater,1996,44(9):3749~3760.
    [43] Sigworth G K, Guzowski M M. Grain Reining of Hypo-Eutectic Al-Si Alloys[J]. AFS Trans,1985,93:907~912.
    [44] McCartney D G. Grain Refining of Aluminum and Its Alloys Using Inoculants[J]. Intl Mater Reviews,1989,34(5):247~260.
    [45] Kearns M A, Cooper P S. Effects of Solutes on Grain Refinement of Selected Wrought Aluminum Alloys[J]. Mater Sci Tech,1997,13(8):650~654.
    [46] Mohanty P S, Gruzleski J E. Mechanism of Grain Refinement in Aluminum[J]. Acta Metall Mater,1995,43(5):2001~2012.
    [47] Lu H T, Wang L C, Kung S K. Grain Rfeining in A356 Alloys[J]. Journal of Chinese Foundryman's Association, 1981,29:10~18.
    [48] Apelian D, Cheng J J A. Al-Si Processing Variables: Effect on Grain Refinement and Modification [J]. AFS Trans,1986,94:797~808.
    [49] Hansen M, Anderko K. Constitution of Binary Alloys[J]. New York: McDraw-Hill, 1958.
    [50]汪沛雨,徐淑清,张新颖.Al-Si-Cu合金加入Sr复合变质剂的变质效果[J].特种铸造及有色合金,1995(2):6~8.
    [51] Sigworth G K. Theoretical and Practical Aspects of the Modification of Al-Si Alloys[J]. AFS Trans,1983,91:7~16.
    [52] Bian Xiufang, Lin Xihua, Liu Xiangfa. Function of Modification and Refinement of Rapidly Solidified Master Alloy Al-Ti-Sr[J].Mater Sci,1998,33(1):99~102.
    [53]БИ邦达列夫.ВИ那帕尔科夫.ВИ塔拉雷什金著.变形铝合金的细化处理[J].王永海,张发明,高革译.北京:冶金工业出版社,1988:1~79.
    [54] Shivkumar S, Ricci S Jr, Steenhoff B, et al. An Experimental Study to optimize the Heat Treatment of A356 Alloy[J]. AFS Trans,1989,97:791~810.
    [55] Beumler H, Hammersfad A, Wieting B, et al. Analysis of Modified 319 Aluminum Alloy[J]. AFS Trans,1988,96:1~10.
    [56] Shabestari S G, Gruzleski J E. Modification of Iron Intermetallics by Strontium in 413 Aluminum Alloys[J]. AFS Trans,1995,103:2852~2892.
    [57]庞金辉,崔庆玲,王明星,刘志勇,刘忠侠. B对过共晶Al-Si合金初晶Si的细化作用[J].特种铸造及有色合金,2010, 1 26~29.
    [58] LU H T,WANG L C,KUNG S K.Grain refinement in A356 alloys[J].Journal of Chinese Foundryman’s Association,1981, 29:10~18.
    [59]王明星,宋天福,刘智勇,刘忠侠,范广心,王三军.低钛铝基合金微观组织的影响[J].铸造,2004, 06-04 23-28.
    [60]孙理.硼对黄铜腐蚀性能影响[J].腐蚀科学与防护技术,1989, 1 (1 )46~49.
    [61]马宏声.国产Al-Ti-B在工业中应用[J].轻合金加工技术,1988, No 3.
    [62]刘相法,杨阳,边秀房,等.杆状AlTiB中间合金的组织形貌及晶粒细化行为的研究[J].铸造,1996,(10):6~9.
    [63]高泽生. Al-Ti-B中间合金中的化合物颗粒与晶粒细化的机理[J].轻金属, 1986 No 7 No8.
    [64]董天顺,崔春翔,刘双进,刘福才. Al-Ti-B细化剂的快速凝固及其细化机理研究[J].稀有金属材料与工程,200801 7~12.
    [65] Sritharan T, Li H. Influence of Ti to B Ratio on the Ability to Grain Refine Al-Si Alloy[J]. Mater Sci Tech,1997,63(1~3):585~589.
    [66]苏学常.国产Al2Ti2B细化剂的冶金质量[J].轻合金及其加工,1996,(1):48~49.
    [67]曹建峰.国外Al-Ti-B细化剂及其应用[J].轻合金加工技, 1997, 7: 21~25.
    [68]张作贵,刘相法,边秀房,谷吉存,熊广程.Al-Ti-B中间合金的遗传性研究与推广应用[J].铸造,2000 10 36~40;
    [69]安岛辰郎等.Development of shielding analysis method for large fast reactor[J].TheAtomic Energy Society of Janpan,1997,39(2):156~163.
    [70]段永华,竺培显,孙勇. B/Pb复合材料组织与力学性能的研究[J].兵器材料科学与工程, 2008,31(2):43~45.
    [71]吕杰,刘伯操,杨凯,等.高强韧铸造铝合金[J].铸造,2000,49(2):66~69.
    [72]董晟全,周敬恩,严文,等.微量元素对AlCu4.5合金力学性能的影响[J].特种铸造及有色合金,2003,(1):16~18.
    [73]刘昌斌,夏长清,戴晓元.高强高韧铝合金的研究现状及发展趋势[J].矿冶工程,2003,23(5):74~78.
    [74]王玉伏,李启友,王凯泉,等.热处理工艺对高强铝合金性能的影响[J].武汉汽车工业大学学报,1998,10 33~36.
    [75]崔忠.金属学与热处理[M].北京:机械工业出版社. 2000.
    [76]王利波,于保义.热处理时间对铝铜合金组织和性能的影响热加工工艺[J]. 2006,03,30~31.
    [77]王苏华.ZL205A高强度铝铜合金的铸造及热处理[J].四川工业学院学报, 1996,02 51~54.
    [78]黄积荣主编.铸造合金金相图谱[M].机械工业出版社,1982(2):35-42.
    [79] Sercombe T .B sintering of free formed maraging Steel with boron addition[J]. Materials Science and Engineering,2003 , A363(3):242~252.
    [80]潘复生,张丁非.铝合金及应用[M].北京:化学工业出版社.2006.
    [81]张洁.金属热处理及检验. [M]北京:化学工业出版社. 2005.
    [82]施延藻.铸造实用手册(第二版)[M].长春:东北大学出版社,1994.
    [83]边秀房,刘相法,马家骥.铸造金属遗传学[M].济南,山东科学出版社.1999.
    [84] Toivanen K O, Lindroos V K.proc of 9th ICMC,Torento ,1984,2:621~632.
    [85]刘仲礼,李言祥,陈祥,等.铜对硼铁基合金性能的影响[J].铸造技术,2007 28 (2):175~178.
    [86]王吉会,姜晓霞,李诗卓.硼对HAl77-2铝黄铜的组织和腐蚀性能的影响[J].材料研究学报,1996,(6):597~602.
    [87]李喜珍,边秀房,刘相法. Al2Ti2B中间合金中TiB2和AlB2的研究[J].金属学报, 2001,37(3):235~238.
    [88]李德成,李玉胜,单海波.铸造高强度ZL107组织与性能[J].机械工程材料,1998 ,22(5):38~40.
    [89]蒋志强,左太国,符寒光.高硼抗磨不锈钢的研究和应用[J].润滑与密封, 2007 32(6):99~102.
    [90] Koppenaal T J.Interaction of vacancies with Sn atoms and the rate of G-P zone Formation in an Al-Cu-Su alloy [J]. ActaMetallurgica,1961,9:1076-1079.
    [91]叶大伦,胡建华.实用无机物热力学数据手册(第2版)[M].北京:冶金工业出版社,2002.
    [92]孙益民.消除铁在铝合金中有害作用的途径[J].铸造技术, 2009 04 520~522.
    [93]刘荣迁,贾晓伟,刘锦明,等.铸造铝合金的除铁[J].特种铸造及有色合金,2001,(1):107~108.
    [94] Yanxia Li Ping Li Gang Zhang. Mater.Sci, Eng .A 397 (2005): 204-208.
    [95]王杰芳,谢敬佩,翁永刚,等.电解低钛ZL108合金中钛含量对铁相形态及性能的影响[J].铸造技术,2004,25(9): 681~685.
    [96] F. Faudot, A. Quivy, Y. Calvayrac, D. Gratias and M. Harmelin. Mater. Sci. Eng. (1991), A133 383~387.
    [97] KOESTER U, LIU W, LIEBERT H, et al. Mechanical properties of quasicrystalline and crystalline phases in Al-Cu-Fe alloys[J]. J of Non-Crystalline Sloids, 1993.153~154.
    [98] Al65Cu20Fe15准晶颗粒/Al基复合材料在热压过程中的组织变化[J].大连海事大学学报, 2003, 29 3: 16~21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700