用户名: 密码: 验证码:
带约束拉杆双层钢板内填混凝土组合剪力墙抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高层建筑结构的剪力墙往往要承担巨大的竖向荷载和地震作用,若采用普通钢筋混凝土剪力墙,其墙体过厚,导致成本增加及结构整体控制困难。因此,研发出承载力高、延性耗能好且施工简便的组合剪力墙是解决此难题的有效途径。
     本文中提出一种新型带约束拉杆双层钢板内填混凝土组合剪力墙,并采用试验研究、理论分析、数值模拟相结合的方法对其力学性能和抗震性能进行了研究,具体开展了以下几方面的研究工作:
     (1)进行了11个带约束拉杆双层钢板内填混凝土组合剪力墙在低周往复荷载作用下的试验研究。试验考察的主要参数为:约束拉杆间距、约束拉杆布置方式、轴压比、剪跨比。分析了上述各个参数对组合剪力墙的破坏形态、滞回曲线、骨架曲线、强度及刚度退化、位移延性系数及耗能等抗震性能的影响。结果表明,带约束拉杆双层钢板内填混凝土组合剪力墙具有良好的承载力、延性和耗能能力,是一种抗震性能良好的新型组合构件。
     (2)采用纤维模型法,基于MATLAB平台,自编程序建立了带约束拉杆双层钢板内填混凝土组合剪力墙在压弯状态下数值仿真模型。利用试验结果验证了数值模型,在此基础上,分析了混凝土强度、钢板强度、含钢率、端柱和墙身钢板比例、截面高度、混凝土板厚度、约束拉杆直径、约束拉杆屈服强度、墙身约束拉杆间距、边缘端柱约束拉杆间距等参数对组合剪力墙压弯承载力的影响。最后通过数值回归分析,提出了带约束拉杆双层钢板内填混凝土组合剪力墙压弯承载力简化计算公式。
     (3)提出了适用于ABAQUS分析带约束拉杆方形、矩形钢管混凝土柱的混凝土应力-应变关系式,并基于ABAQUS平台,编写了能考虑多种材料泊松比在整个受力过程变化的子程序USDFLD,完善了材料的本构模型,分析了带约束拉杆方形、矩形钢管混凝土柱的工作机理。基于前面基础,建立了带约束拉杆双层钢板内填混凝土组合剪力墙有限元分析模型,并利用试验结果验证了此模型。在此基础上,研究了组合剪力墙的工作机理并进行了混凝土强度、钢板强度、截面含钢率、墙体剪跨比等参数的分析。基于承载力叠加原理,提出了带约束拉杆双层钢板内填混凝土组合剪力墙抗剪承载力简化计算公式。
     (4)在试验所获得滞回曲线和骨架曲线的基础上,采用试验拟合法,建立了带约束拉杆双层钢板内填混凝土组合剪力墙的骨架曲线,给出了骨架曲线各个关键点的计算公式。通过刚度退化数据的回归分析给出了刚度退化计算公式和基于试验所得滞回曲线的分析描述了强度退化规律,得到了组合剪力墙的滞回规律。基于简化三折线骨架曲线和滞回规律,建立了带约束拉杆双层钢板内填混凝土组合剪力墙恢复力模型。
The core wall in super high-rise buildings is usually subjected to high axial compressiveforce and seismic effect. If the traditional RC structural wall is used for core wall,the wallthickness would be excessively thick. The excessively thick wall may result in the increase ofconstruction cost and the difficulty of structural design. Therefor, one effective way to solvethis problem is to develop new forms composite shear wall which show good strength,deformability, energy dissipation capacity and simple construction.
     A new type of composite shear wall with double steel plates and infill concrete withbinding bars (CSW) is proposed. The mechanical behavior and seismic performance of CSWare studied by experimental method, theoretical analysis and numerical simulation method.The main research work is as follows:
     (1) Eleven CSW specimens were tested under lager axial compressive force and reversedcyclic lateral load. The main parameters varied in the tests were binding bars spacing, bindingbars setting, axial compressive ration and shear-span ration. The influences of theseparameters on failure characteristics, hysteretic curve, skeleton curve, strength degradation,stiffness degradation, ductility and energy dissipation capacity of the specimens wereobserved. The results indicate that the CSW shows good strength, ductility and energydissipation capacity. The CSW has great seismic performance.
     (2) Based on the MATLAB platform and the fiber model method, the numericalsimulation model of CSW under compression-bending state was built up by self-compiledprograms. The numerical simulation model was validated by experimental results. The mainparameters varied in the analysis were concrete strength, steel strength, steel ration, theproportional steel of column and wall, depth of section,thickness of concrete wall, diameter ofbinding bars, yield strength of binding bar,binding bars spacing of wall, binding bars spacingof column. The influences of these parameters on the compression-bending capacity of CSWwere investigated. Through regressive analysis of the results of numerical calculation, asimplified formula to calculate compression-bending capacity of CSW was proposed.
     (3) The constitutive model of core concrete was proposed, which was suitable for finite element (FE) analysis of square and rectangular concrete-filled steel tubular (CFST) columnswith binding bars. Based on the ABAQUS FE platform, the USDFLD subroutine wascompiled, which could consider the changing of Poisson ratio of many materials in loadingprocess. The material models were perfected. The mechanical behavior were analyzed forsquare and rectangular CFST by ABAQUS. The FE model of CSW was built up and validatedby experimental results. The main parameters varied in the analysis were concrete strength,steel strength, steel ration, shear-span ration. The influences of there parameters on shearcapacity of CSW were observed. The mechanical mechanisms of CSW were then analyzed byABAQUS. Through regressive analysis of the results of numerical calculation, a simplifiedformula to calculate shear capacity of CSW was provided.
     (4) On the basis of the test data (hysteretic curve and skeleton curve), the simplifiedskeleton curve was provided by fitting method. The formulas of key points on the simplifiedskeleton curve were given. Through regressive analysis of the results of degradation ofstiffness, a formula to calculate degradation of stiffness was proposed. A restoring forcemodel of CSW was built up with degradation of strength and stiffness taken into account.
引文
[1] Astaneh-Asl A.Seismic behavior and design of composite steel plate shear plate shearwalls[R].Steel tips,Structural Steel Educational Council,2002:1-49
    [2]王连广.钢与混凝土组合结构理论与计算[M].北京:科学出版社,2005
    [3]王连广,李立新.国外型钢混凝土(SRC)结构设计规范基础介绍[J].建筑结构,2001,31(2):23-24,35
    [4] Yamada M.Steel panel encased RC composite shear walls[C].Monographtitle:Composite Construction in Steel and Concrete II,Conference name:proceedings ofan Engineering Foundation conference;Conference location:Potosi,MO,USA
    [5] Wallace J.W.Lateral load behavior of shear walls with structural steel boundarycolumns[J].Composite and Hybrid Structures.LosAngeles,California:Association forInternational Cooperation and Research in Steel-Concrete Composite Structures;2000:801-809
    [6]乔彦明,钱稼茹,方鄂华.钢骨混凝土剪力墙抗剪性能的试验研究[J].建筑结构,1995,25(8):3-7
    [7]王志浩,方鄂华,钱稼茹.钢骨混凝土剪力墙的抗弯性能[J].建筑结构,1998,8(2):13-16
    [8]刘航,蓝宗建,庞同和.劲性钢筋混凝土低剪力墙抗震性能试验研究[J].工业建筑,1997,27(5):32-36
    [9]黄雄军,赵世春.带劲性钢筋混凝土边框低剪力墙的试验研究[J].西安交通大学学报,1999,34(5):536-539
    [10]罗英,赵世春.带SRC砼低剪力墙抗震性能试验研究[J].西安公路交通大学学报,1999,19(2):66-69
    [11]黄双华,黄雄军.劲性砼低剪力墙极限承载力有限元分析模型[J].四川建筑,2001,21(3):34-35
    [12]黄双华,黄雄军.劲性混凝土带边框低剪力墙极限承载力的计算[J].西南交通大学学报,2001,36(4):360-364
    [13]武敏刚,吕西林.钢骨联肢剪力墙抗震性能试验研究[J].结构工程师.2004,20(5):53-56
    [14]吕西林,董宇光,丁子文.截面中部配置型钢的混凝土剪力墙抗震性能研究[J].地震工程与工程振动,2006,26(6):101-107
    [15]董宇光.型钢与混凝土粘结-滑移关系及型钢混凝土剪力墙抗震性能研究[D].上海:同济大学,2006
    [16]张静娜,曹万林,郑同亮,等.内藏钢桁架混凝土组合中高剪力墙抗震性能试验研究[J].地震工程与工程振动,2006,26(4):108-113
    [17]陶军平,曹万林,张静娜,等.内藏钢桁架混凝土组合低剪力墙抗震性能试验研究.世界地震工程,2006,22(2):131-137
    [18]郑同亮,曹万林,张静娜,等内藏钢桁架混凝土组合高剪力墙抗震性能试验研究.世界地震工程,2006,22(2):77-84
    [19]郑同亮.内藏钢桁架混凝土组合高剪力墙抗震性能试验及理论分析[D].北京:北京工业大学,2006
    [20]张静娜.内藏钢桁架混凝土中高剪力墙抗震性能试验及理论分析[D].北京:北京工业大学,2006
    [21]陶军平.内藏钢桁架混凝土组合低剪力墙抗震性能试验及理论分析[D].北京:北京工业大学,2006
    [22]魏勇,钱稼茹等.高轴压比钢骨混凝土矮墙水平加载试验[J].工业建筑,2007,37(6):76-79
    [23]钱稼茹等.高轴压比钢骨混凝土剪力墙的抗震性能试验研究[J].建筑结构学报,2008,(4):43-50
    [24]中国工程建筑标准化标准CECS159:2004.矩形钢管混凝土结构技术规程[S].北京:中国计划出版社,2004
    [25]夏汉强,刘嘉祥.矩形钢管混凝土柱带框剪力墙的应用及受力分析[J].建筑结构,2005,35(1):16-18
    [26]廖飞宇.带钢管混凝土边柱的钢筋混凝土剪力墙抗震性能研究[D].福州大学博士学位论文,2007
    [27]王敏.钢管混凝土边框内藏桁架组合剪力墙抗震试验与理论研究[D].北京工业大学博士学位论文,2009
    [28]曹万林,张云鹏,董宏英,等.钢管混凝土叠合边框内藏钢板-钢桁架双肢剪力墙抗震研究[J].地震工程与工程振动,2010,30(4):37-44
    [29]钱稼茹,江枣,纪晓东.高轴压比钢管混凝土剪力墙抗震性能试验研究[J].建筑结构学报,2010,31(7):40-48
    [30]日本建筑构造技术者协会.日本结构技术典型实例100选[M].北京:中国建筑工业出版社,2005
    [31]李国强,张晓光,沈祖炎.钢板外包混凝土剪力墙板抗剪滞回性能试验研究[J].工业建筑,1995,25(6):32-35
    [32] Astaneh-Asl A,Zhao Q H.Seismic studies of an innovative and traditional composite shearwalls[J].Composite and Hybrid Structures.LosAngeles,California:Association for InternationalCooperation and Research in Steel-Concrete Composite Structures,2000:1009-1024
    [33] Zhao Q H,Astaneh-Asl A.Cyclic behavior of traditional and innovative composite shearwalls[J].Journal of Structural Engineering,2004,130(2):271-284
    [34] Hitaka T,Matsui C,Sakai J.Cyclic tests on steel and concrete-filled tube frames with SlitWalls.Earthquake Engineering&Structural Dynamics.2007,36(6):707-727
    [35] American Institute of Construction(AISC).Seismic Provisions for Structural SteelBuildings,Chicago,2002
    [36]蔡克全,林盈成,林志翰.钢板剪力墙抗震行为与设计,第四届海峡两岸及香港钢结构技术交流会论文集,上海,2006:108-116
    [37]吴志坚.钢板剪力墙和组合剪力墙的抗剪静力性能[D].哈尔滨:哈尔滨工业大学,2006
    [38]高辉,组合钢板剪力墙试验研究与理论分析[D].上海:同济大学,2007
    [39]管娜,两边连接钢板混凝土组合剪力墙试验研究与理论分析.哈尔滨:哈尔滨工业大学,2008
    [40]干淳洁.内置钢板钢筋混凝土剪力墙抗震性能研究[D].上海:同济大学,2008
    [41]吕西林,干淳洁,王威.内置钢板钢筋混凝土剪力墙抗震性能研究[J].建筑结构学报,2009,30(5):89-96
    [42]干淳洁,吕西林.内置钢板钢筋混凝土剪力墙非线性仿真研究[J].建筑结构学报,2009,30(5):97-102
    [43]孙建超,徐培福,肖从真,等.钢板-混凝土组合剪力墙受剪性能试验研究[J].建筑结构,2008,38(6):1-5,10
    [44]孙飞飞,刘桂然.钢板开圆孔的组合钢板墙结构地震反应分析与试验验证[J].建筑结构学报,2009,30(5):82-88
    [45]孙飞飞,戴成华,高辉,等.四边连接组合钢板剪力墙简化模型[J].同济大学学报(自然科学版),2009,37(7):82-86
    [46] Guo Y L,Dong Q L.Static behavior of buckling restrained steel plate shear walls[C].Tall Buildings From Engineering to Sustainability. ED:Y.K.Cheung, K.W.Chau,World Scientific,Hong Kong,2005:666-670
    [47]郭彦林,董全利,周明.防屈曲钢板剪力墙滞回性能的理论与试验研究[J].建筑结构学报,2009,30(1):31-39,47
    [48]郭彦林,董全利,周明.防屈曲钢板剪力墙弹性性能及混凝土盖板约束刚度研究[J].建筑结构学报,2009,30(1):40-47
    [49]郭彦林,周明,董全利.防屈曲钢板剪力墙弹塑性抗剪极限承载力与滞回性能研究[J].工程力学,2009,26(2):108-114
    [50]曹万林,李刚,张建伟,等.钢管混凝土边框不同高厚比钢板剪力墙抗震性能[J].北京工业大学学报,2010,36(8):1059-1068
    [51]聂建国,樊健生,黄远等.钢板剪力墙的试验研究[J].建筑结构学报,2010,31(9):1-8
    [52]曹万林,张文江,张建伟,等.钢管混凝土边框内藏钢板组合剪力墙抗震研究[J].土木工程与管理学报,2011,28(3):219-225
    [53] Link R.A,Elwi A E.Composite concrete-steel plate walls:analysis and behavior[J].Journal of Structural Engineering,1995,121(2):60-71
    [54] Stephens M.J,Zimmerman T.J.E. The strength of composite ice resisting Wallssubjected to combined loads[R].Proc.,Eur.Offshore Mech.Symp.(EUROMS-90),Int. Soc. Of offshore and Polar Engrs.,Golden,Colo,1990
    [55] Emori K.Compressive and shear strength of concrete filled steel box wall[J].SteelStructures,2002,68(2):29-40
    [56] Emori K.Shear strength and analysis evaluation for steel concrete wall boxunit[J].Journal of Construction Steel,JSSC,2001,Vol.9:177-184
    [57] McKinley B,Boswell L F.Behaviour of double skin composite construction [J].Journalof constructional steel research,58(2002):1347-1359
    [58] Shanmugam N E,Kumar G,Thevendran V.Finite element modeling of double skincomposite slabs[J].Finite Elements in Analysis and Design,2002,38(2):579-599
    [59] Wright H D.The behaviour of composite walling under construction and serviceloading.[J].Construct Steel Research,1995,35(3):257-273
    [60] Wright Howard.The axial load behaviour of composite walling.[J].Construct. SteelResearch,1998,45(3):35-375
    [61] Anwar Hossain K M,Wright H D.Experimental and theoretical behaviour of compositewalling under in-plane shear[J].Journal of Constructional Steel Research,2004,60(1):59-83
    [62] Wright H D.Axial and bending behaviour of composite walls[J].Journal of StructureEngineering,1998,vol7:758-764
    [63] Howard W,Anwar Hossain K M,Stewart G. Composite walls as shear elements in tallstructures[C]//Proc Struct Congr94,Publ by ASCE,New York.N Y,USA,1994:140-145
    [64] Anwar Hossain K M.Design aspects of double skin profiled composite framed shearwalls in construction and service stages[J].ACI Structural Journal,2004,101(1):94-102
    [65] Anwar Hossain K M,Wright H D.Performance of double skin profiled composite shearwalls-Experiments and design equations[J].Canadian Journal of Civil Engineer-ing,2004,31(2):204-217
    [66] Anwar Hossain K M,Wright H.D.Behaviour of composite walls under monotonic andcyclic shear loading[J].Structural Engineering and Mechanics,2004,17(1):69-85
    [67] Anwar Hossain K M,Wright H D.Flexural and shear behaviour of profiled double skincomposite elements[J].Steel and Composite Structures,2004,4(2):113-132
    [68] Clubley S K,Moy Stuart S J,Xiao Robert Y.Shear strength of steel-concrete-steelcomposite panels.Part I testing and numerical modeling [J]. Journal of constructionalsteel research,2003,59(6):781-794
    [69] Clubley S K,Moy Stuart S J, Xiao Robert Y.Shear strength of steel-concrete-steelcomposite panels.Part II-detailed numerical modeling of performance [J].Journal ofconstructional steel research,2003,59(6):795-808
    [70] Ozaki M,Akita S, Osuga H,et al.Study on steel plate reinforced concrete panelssubjected to cyclic in-plane shear[J].Nuclear Engineering and Design,2004,(228):225-244
    [71]司波.双层钢板剪力墙的结构性能研究[D].北京:北京工业大学,2006
    [72]司波,白正仙.双层钢板剪力墙的初始抗侧刚度分析[J].长春工程学院学报(自然科学版),2006,7(1):8-11
    [73] Eom T S,Park H G,Lee C H,etc.Behavior of Double Skin Composite Wall Subjected toIn-Plane Cyclic Loading[J].Journal of Structural Engineering-ASCE,2009,135(10):1239-1249
    [74]祝文君,马军,黄会平,等.双层钢板组合剪力墙在异型结构中的应用及研究[J].特种结构,2010,27(2):14-16
    [75]黄会平.双层钢板内填混凝土组合剪力墙性能研究[D].南京:东南大学,2009
    [76]丁朝辉,江欢成,曾菁,等.双钢板-混凝土组合墙的大胆尝试—盐城电视塔结构设计[J].建筑结构,2011,41(12):87-91
    [77]聂建国,陶慕轩,樊健生,等.双钢板-混凝土组合剪力墙研究新进展[J].建筑结构,2011,41(12):52-60.
    [78]聂建国,卜凡民,樊健生.低剪跨比双钢板-混凝土组合剪力墙抗震性能试验研究[J].建筑结构学报,2011,32(11):74-81
    [79]卜凡民,聂建国,樊健生.高轴压比下中高剪跨比双钢板-混凝土组合剪力墙抗震性能试验研究[J].建筑结构学报,2013,34(4):91-98
    [80]聂建国,卜凡民,樊健生.高轴压比、低剪跨比双钢板-混凝土组合剪力墙拟静力试验研究[J].工程力学,2013,30(6):60-61
    [81] Nie J G,Hu H S,Fan J S,et al.Experimental study on seismic behavior of high-strengthconcrete filled double-steel-plate composite walls[J].Journal of Constructional SteelResearch,2013,vol88:206-219.
    [82]马晓伟,聂建国,陶慕轩,等.双钢板-混凝土组合剪力墙压弯承载力数值模型及简化计算公式[J].建筑结构学报,2013,34(4):99-106
    [83]胡红松,聂建国.双钢板-混凝土组合剪力墙变形能力分析[J].建筑结构学报,2013,34(5):52-62
    [84]纪晓东,蒋飞明,钱稼茹,等.钢管-双层钢板-混凝土组合剪力墙抗震性能试验研究[J].建筑结构学报,2013,34(6):75-83
    [85]朱立猛,周德源,赫明月.带约束拉杆钢板-混凝土组合剪力墙抗震性能试验研究[J].建筑结构学报,2013,34(6):93-102
    [86]韩林海,钟善桐.钢管混凝土力学[M].大连:大连理工大学出版社,1996
    [87]钟善桐.高层钢管混凝土结构[M].哈尔滨:黑龙江科学技术出版社,1997
    [88]韩林海.钢管混凝土结构的特点及发展[J].工业建筑,1998,28(10):1-5
    [89] Hu H T,Huang C S,et al.Nonlinear Analysis of Axial Loaded Concrete-Filled TubeColumns with Confinement Effect[J].Journal of Structural Engineering-ASCE,2003,129(10):1322-1329
    [90] Mursi M.Uy B.Strength of Concrete Filled Steel Box Columns Incorporating InteractionBuckling.Journal of Structural Engineering-ASCE.2003,129(5):626-639
    [91] Bradford M A,Loh H Y. Slenderness Limits for Filled Circular Steel Tubes.Journal ofConstructional Steel Research,2002,58(2):243-252
    [92]韩林海,陶忠,尧国皇,等.钢管混凝土基本构件承载力的设计计算一各国规程比较(I)[J].建筑钢结构进展,2002,4(3):47-55
    [93]韩林海,陶忠,尧国皇,等.钢管混凝土基本构件承载力的设计计算一各国规程比较(II)[J].建筑钢结构进展,2002,4(4):53-6l
    [94] Saw H S,Liew J Y R.Assessment of current methods for the design of compositecolumns in buildings.Journal of Constructional Steel Research,2000,53(2):121-147
    [95]韩林海,陶忠.方钢管混凝土轴压力学性能的理论分析与试验研究.土木工程学报,2001,34(2):17-25
    [96]韩林海,钟善桐.钢管混凝土压扭、弯扭构件承载力相关方程[J].哈尔滨建筑工程学院学报,1994,27(2):32-37
    [97]韩林海,钟善桐.钢管混凝土压扭短柱理论分析方法[J].哈尔滨建筑工程学院学报,1993,26(3):18-23
    [98]韩林海,钟善桐.钢管混凝土压弯扭(剪)承载力相关关系及钢管混凝土统一设计理论构想[J].工业建筑,1995,25(1):14-20
    [99]钟善桐.钢管混凝土统一理论[J].哈尔滨建筑工程学院学报,1994,27(6):21-27
    [100]蔡绍怀,邸小坛.钢管混凝土偏压柱的性能和强度计算[J].建筑结构学报,1985,6(4):32-34
    [101]蔡绍怀,顾万黎.钢管混凝土抗弯强度的试验研究[J].建筑结构学报,1985,6(3):28-29
    [102]蔡绍怀,顾万黎.钢管混凝土长柱的性能和强度计算[J].建筑结构学报,1985,6(1):32-40
    [103]蔡绍怀,焦占栓.钢管混凝土短柱的基本性能和强度计算[J].建筑结构学报,1984,5(6):13-29
    [104]张正国.方钢管混凝土偏压短柱基本性能研究[J].建筑结构学报,1989,(6):10-20
    [105]吕西林,余勇,陈以一,等.轴心受压方钢管混凝土短柱的性能研究:I试验[J].建筑结构,1999,(10):41-43
    [106]吕西林,余勇,Kiyoshi T,等.轴心受压方钢管混凝土短柱的性能研究:II分析[J].建筑结构,2000,30(2):43-46
    [107]李四平,霍达,王菁,等.偏心受压方钢管混凝土柱极限承载力的计算[J].建筑结构学报,1998,19(1):4l-51
    [108]张正国,左明生.方钢管混凝土轴压短柱在短期一次静载下的基本性能研究[J].郑州工学院学报,1985,6(2):19-32
    [109]韩林海,陶忠.方钢管混凝土柱的延性系数[J].地震工程与工程振动,2000,20(4):56-65
    [110]陶忠.方形截面钢管混凝土力学性能及承载力的理论分析与试验研究[D].哈尔滨:哈尔滨建筑大学,1998
    [111]陶忠.方钢管混凝土构件力学性能若干关键问题的研究[D].博士学位论文,哈尔滨:哈尔滨工业大学,2001
    [112]韩林海,杨有福.矩形钢管混凝土轴心受压构件强度承载力的试验研究[J].土木工程学报,2001,34(4):22-31
    [113]姚民乐,高金良.矩形钢管混凝土短柱强度研究[J].混凝土,2006,(3):50-52
    [114]李学平.矩形钢管混凝土柱的基本力学性能研究[D].上海:同济大学,2004
    [115]蒋涛,沈之容,余志伟.矩形钢管混凝土轴压短柱承载力计算[J].特种结构,2002,19(2):4-6
    [116]高金良,姚民乐,詹锋.矩形钢管混凝土短柱轴心受压性能研究[J].嘉兴学院学报,2005,17(6):23-26
    [117]陶忠,王志滨,韩林海.矩形冷弯型钢钢管混凝土柱的力学性能研究[J].工程力学,2006,23(3):147-155
    [118]沈之容,蒋涛,余志伟.矩形钢管混凝土构件试验研究[J].工程力学(增刊),2002:632-636
    [119]杨有福.矩形截面钢管混凝土构件力学性能的若干关键问题研究[D].哈尔滨:哈尔滨工业大学,2003
    [120]韩林海.钢管高强混凝土构件基本力学性能及承载力的初步研究.哈尔滨建筑大学学报,1996,29(2):29-34
    [121]谭克锋,蒲心诚.钢管高强混凝土力学性能的研究[J].东南大学学报,1999,29(4):127-13l
    [122]谭克锋,蒲心诚,蔡绍怀.钢管超高强混凝土的性能与极限承载能力的研究[J].建筑结构学报,1999,20(1):10-15
    [123]王玉银,张素梅.圆钢管高强混凝土轴压短柱剥离分析[J].哈尔滨工业大学学报,2003,35(增刊):31-34
    [124]卢孝哲,张耀春,徐超.设肋方形薄壁钢管混凝土柱滞回性能试验研究[J].建筑结构,2006,36(增刊):80-83
    [125]张耀春,徐超,卢孝哲.带肋薄壁方钢管混凝土柱的滞回性能[J].东南大学学报(自然科学版),2007,37(1):100-106
    [126]韩林海.陶忠,罔维波.圆形截面钢管混凝土弯矩一曲率滞回性能[J].地震工程与工程振动,2000,3(3):31-36
    [127]陶忠,韩林海.方钢管混凝土压弯构件荷载-位移滞回性能研究[J].工业建筑,2000(6):13-18
    [128]吕西林,陆伟东.反复荷载作用下方钢管混凝土柱的抗震性能试验研究[J].建筑结构学报,2000,(4):2-11
    [129]韩林海,陶忠,刘威,等.长期荷载作用下方钢管混凝土轴心受压柱的变形特性[J].中国公路学报,2001,14(2):52-57
    [130]韩林海,陶忠,刘威,陈宝春.长期荷载作用对方钢管混凝土柱承载力的影响[J].中国公路学报,2001(7):60-66
    [131]韩林海,杨有福,霍静思.钢管混凝土柱火灾后剩余承载力的试验研究[J].工程力学,2001,18(6):100-109
    [132]韩林海,霍静思.火灾后钢管混凝土柱的承载力研究[J].土木工程学报,2002,35(4):25-35
    [133]韩林海,贺军利等.钢管混凝土柱耐火性的试验研究[J].土木工程学报,2000,33(3):31-35,63
    [134] Wang Y C.The Effects of Structural Continuity on the Fire Resistance of ConcreteFilled Columns in Non Sway Frames[J].Journal of Constructional SteelResearch,1999,50:177-197
    [135] Wakabayashi M.Recent Development and Research in Composite and Mixed BuildingStructures in Japan,Proceedings of the4th ASCCS International Conference,Kosice,Slovakia,1994,237-242
    [136] Kodur V.K.R.Performance-Based Fire Resistance Design of Concrete-Filled SteelColumns[J]. Journal of Constructional Steel Research,1999,51:21-26
    [137] British Steel Tubes and Pipes.Design for SHS Fire Resistance to BS5950: Part8,London,1990
    [138] Flake J.Comparison of Simple Calculation Methods for the Fire Design of CompositeColumns and Beams,Proc.Of an Engineering Foundation Confer on Steel-ConcreteComposite Structure,ASCE,New York,1992,226-241
    [139] Klingsch W.New Developments in Fire Resistance of Hollow SectionStructures,Symposimon Hollow Structural Sections in Building Construction, ASCE,Chicago Illinois,1985
    [140] Klingsch W.Optimization of Cross Sections of Steel Composite Colum ns,Proc.of theThird International Conference on Steel-Concrete Composite Structures (II),ASCCS,Fukuoka,Japan,1991,99-105
    [141] Lie T T,Stringer D C.Calculation of the Fire Resistance of Steel Hollow StructuralSection Columns Filled with Plain Concrete,Can.J. Civ.Eng.,1994,21:382-385
    [142] Lie T.T.Fire Resistance of Circular Streel Columns Filled with Bar-ReinforcedConcrete[J].Journal of Structural Engineering,1994,120:1489-1509
    [143] Lie.T.T,Chabot M.Evaluation of the Fire Resistance of Compression Members UsingMathematical Models[J].Fire Safety Journal,1993,20:135-149
    [144] ECCS-Technical Committee.Fire Safety of Steel Structures.Technical Note,Calculationof the Fire Resistance of Centrally Loaded Composite Steel-Concrete Columns Exposedto the Standard Fire,ECCS General Seccretariat,1988
    [145] Architectural Institute of Japan(AIJ).Recommendations for Design and Construction ofConcrete Filled Steel Tubular Structures.Oct,1997(in Japanese)
    [146]中华人民共和国行业标准.钢骨混凝土结构设计规程(YB9082-97)[S].北京:冶金工业出版社,1997
    [147]中华人民共和国经济贸易委员会.钢-混凝土组合结构设计规程(DL/T-5085-1999)[S].北京:中国电力出版社,1999
    [148]中国工程建筑标准化协会标准(CECS28:90)[S].钢管混凝土结构设计与施工规程.北京:中国计划出版社,1992
    [149]国家军用标准.战时军港抢修早强型钢-混凝土组合结构设计规程(GJB)[S].解放军总后勤部,1999
    [150]福建省工程建设地方标准DBJ13-51-2003.钢管混凝土结构技术规程[S].2003
    [151] Kitada T.Ultimate strength and ductility of state of art on concrete-filled steel bridgespiers in Japan[J].Engineering Structures,1998,20(4-6):347-354
    [152] Huang C S,Yeh Y K,et.al.Axial load behavior of stiffened concrete-filled steelcolumns[J].Journal of Structural Engineering,ASCE,2002,128(9):1222-1230
    [153]陈德明.带约束拉杆异形钢管混凝土柱的基础力学研究[D].广州:华南理工大学,2000
    [154]黎志军.带约束拉杆方形钢管混凝土柱轴压和偏压性能的基础研究[D].广州:华南理工大学,2002
    [155]胡晖.带约束拉杆矩形钢管混凝土轴压短柱基本力学性能研究[D].广州:华南理工大学,2004
    [156]于锦华.带约束拉杆的矩形钢管混凝土偏压短柱基本力学性能研究[D].广州:华南理工大学,2004
    [157]周炜.带约束拉杆L形钢管混凝土轴压短柱的基本性能研究[D].广州:华南理工大学,2004
    [158] Cai J,He Z Q.Axial load behaviour of square CFT stub column with bindingbars[J].Journal of Constructional Steel Research,2006,62(5):472-483
    [159]何振强,蔡健.带约束拉杆方形钢管混凝土偏压短柱的试验研究[J].华南理工大学学报,2006,34(2):107-111
    [160]何振强.带约束拉杆方形钢管混凝土短柱受压性能的研究[D].广州:华南理工大学,2006
    [161]龙跃凌,蔡健.带约束拉杆L形钢管混凝土短柱轴压性能的试验研究[J].华南理工大学学报,2006,34(11):87-92
    [162]蔡健,何振强.带约束拉杆方形钢管混凝土柱的本构关系[J].工程力学,2006,23(10):145-150
    [163]蔡健,何振强.带约束拉杆方形钢管混凝土柱偏压性能[J].建筑结构学报,2007,28(4):25-35
    [164]蔡健,何振强,金雪峰.带约束拉杆方形钢管混凝土轴压柱局部屈曲性能[J].工程力学,2007,24(4):169-175
    [165]蔡健,何振强,陈星.带约束拉杆矩形钢管混凝土短柱轴压性能的试验[J].工业建筑,2007,37(3):75-80
    [166] Cai J,Long Y L.Axial load behavior of rectangular CFT stub Columns with binding bars[J].Advances in Structural Engineering,2007,10(5):551-565
    [167]龙跃凌.带约束拉杆矩形钢管混凝土短柱受力性能研究[D].广州:华南理工大学,2008
    [168]蔡健,孙刚.轴压下带约束拉杆L形钢管混凝土短柱的试验研究[J].土木工程学报,2008,41(9):14-20
    [169]孙刚.带约束拉杆L形截面钢管混凝土短柱的力学性能研究[D].广州:华南理工大学,2008
    [170]蔡健,孙刚.方形钢管约束下核芯混凝土的本构关系[J].华南理工大学学报2008,36(1):105-119
    [171]蔡健,孙刚.带约束拉杆L形截面钢管混凝土的本构关系[J].工程力学,2008,25(10):173-179
    [172]龙跃凌,蔡健.带约束托杆矩形钢管混凝土柱的偏压性能[J].华南理工大学学报,2008,36(12):21-27
    [173]蔡健,龙跃凌.带约束拉杆矩形钢管混凝土的本构关系[J].工程力学,2008,25(2):137-143
    [174]龙跃凌,蔡健.带约束拉杆矩形钢管混凝土短柱偏压性能的试验研究[J].工业建筑,2009,39(10):126-130
    [175]蔡健,龙跃凌.带约束拉杆方形、矩形钢管混凝土短柱的轴压承载力[J].建筑结构学报,2009,30(1):7-14
    [176] Cai J,Long Y L.Local buckling of steel plates in rectangular concrete-filled steel tubularcolumns with binding bars under axial compression [J].Journal of Constructional SteelResearch,2009,65(4):965-972
    [177]左志亮,蔡健,朱昌宏.带约束拉杆L形钢管混凝土短柱的偏压试验研究[J].东南大学学报(自然科学版),2010,40(2):346-351
    [178]陈宗弼,陈星,叶群英,等.广州新中国大厦结构设计[J].建筑结构学报,2000,21(3):1-9
    [179] JGJ101-1996建筑抗震试验方法规程[S].北京:中国建筑工业出版社,1997
    [180] B/T228-2002金属材料室温拉伸试验方法[S]北京:中国计划出版社,2002
    [181]朱伯龙.结构抗震试验[M].北京:地震出版社,1989
    [182]唐九如.钢筋混凝土框架节点抗震[M].南京:东南大学出版社,1989
    [183]韩林海.钢管混凝土结构:理论与实践[M].北京:科学出版社,2007
    [184] GB50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010
    [185] Nakai H,Kitada T,Sugiyama I, et.al. Experimental study on ultimate strength andductility of concrete filled thin-walled steel box columns after receiving seismicloading[J]. J Struct Engng, JSCE,1993,39A:1347-1360
    [186] Nakai H, Kitada T, Nakanishi K, et.al. Experimental study on ultimate strength andductility of steel and composite bridge piers with thin walled stiffened box crosssection[J]. J Struct Engng, JSCE,1997,39A:225-236
    [187] Uy B. Strength of concrete filled steel box columns incorporating local buckling[J].Journal of Structural Engineering, ASCE,2000,126(3):341-352
    [188] Shanmugam N E, Lakshmi B, Uy B. An analytical model for thin-walled steel boxcolumns with concrete in-fill[J]. Engineering Structures,2002,(24):825-838
    [189]李承铭,李志山,王国俭.混凝土梁柱构件基于截面纤维模型的弹塑性分析[J].建筑结构,2007,12:33-35+92
    [190]江韩,储良成,左江,等轴心受压双钢管混凝土短柱正截面受压承载力理论分析及试验研究[J].建筑结构学报,2008,04:96-105
    [191]刘祥庆,刘晶波.基于纤维模型的拱形断面地铁车站结构弹塑性地震反应时程分析[J].工程力学,2008,10:150-157
    [192]潘志宏,李爱群.基于纤维模型的外粘型钢加固混凝土柱静力弹塑性分析[J].东南大学学报(自然科学版),2009,03:552-556
    [193]左志亮,蔡健,朱昌宏.带约束拉杆L形钢管混凝土短柱的偏压承载力[J].工程力学,2010,07:161-167+185
    [194]韩小雷,陈学伟,林生逸,何伟球,郑宜,吴培烽,毛贵牛.基于纤维模型的超高层钢筋混凝土结构弹塑性时程分析[J].建筑结构,2010,02:13-16
    [195]王德才,叶献国,连星,常磊.基于纤维模型叠合板式剪力墙非线性分析[J].工程力学,2010,S1:164-167
    [196]许斌,龙业平.基于纤维模型的钢筋混凝土柱应变率效应研究[J].工程力学,2011,07:103-108+116
    [197]尧国皇,李永进,廖飞宇.钢管混凝土叠合柱轴压性能研究[J].建筑结构学报,2013,05:114-121
    [198]魏天华,姜柱,李军,李强.基于纤维模型的偏心桥墩强震分析[J].工业建筑,2013,06:67-70+104
    [199]聂建国,陶慕轩.采用纤维梁单元分析钢-混凝土组合结构地震反应的原理[J].建筑结构学报,2011,10:1-10
    [200] Mander JB, Priestley MJN, Park R. Theoretical stress-strain model for confinedconcrete[J]. Journal of Structural Engineering, ASCE,1988,114(8):1087-1826
    [201]陈锦石,张军.盐城广播电视塔双钢板组合剪力墙结构施工技术[J].施工技术,2011,40(15):17-20
    [202]黄忠海,廖耘,李盛勇,李志山.广州珠江新城东塔罕遇地震作用弹塑性分析[J].建筑结构学报.2012,33(11),82-90
    [203]孙建超,王杨,孙慧中,陈莹,杜文博,夏荣茂,陈叶妮.钢板混凝土组合剪力墙在中国国家博物馆工程中的应用[J].建筑结构,2011,06:14-19
    [204]丁洁民,巢斯,赵昕,吴宏磊.上海中心大厦结构分析中若干关键问题[J].建筑结构学报,2010,06:122-131
    [205] Hu H T,Lin F M,Jan YY.Nonlinear finite element analysis of reinforced concrete beamsstrengthened by fiber-reinforced plastics[J]. Composite Structures.2004,63(3):271–281
    [206] Oreste S B,Sun F F,Postal s. Non-linear analysis of steel–concrete composite frameswith full and partial shear connection subjected to seismic loads[J]. Journal ofConstructional Steel Research.2005
    [207] Shakir K H,Rawadan A. Experimental behavior and numerical modeling ofconcrete-filled rectangular hollow section tubular columns. Proceedings of theEngineering Foundation Conference1997,ASCE,New York,USA,1997:222-235
    [208] Schneider S P.Axially concrete-filled steel tubes. Journal of Structural Engineer-ing,1998,124(10):1125-1138
    [209] Johansson M.Structural behaviour of circular steel-concrete composite columns:Non-linear finite element analyses and experiments. Licentiate thesis, Department ofStructural Engineering, Chalmers University of Technology,Goteborg,Sweden,2000
    [210] Hu H T, Huang C S, Wu M H,et al. Nonlinear analysis of axially loaded concrete-filledtube columns with confinement effect.Journal of Structural Engineering,2003,129(10):1322-1329
    [211] Hu H T,Huang C S,Chen Z L.Finite element analysis of CFST columns subjected to anaxial compressive force and bending moment in combination. Journal of ConstructionalSteel Research,2005,61(12):1692-1712
    [212]刘威.钢管混凝土局部受压时的工作机理研究[D].福州:福州大学,2005
    [213]尧国皇.钢管混凝土构件在复杂受力状态下的工作机理研究[D].福州:福州大学,2006
    [214]黄宏.中空夹层钢管混凝土压弯构件的力学性能研究[D].福州:福州大学,2006
    [215]王文达.钢管混凝土柱-钢梁平面框架的力学性能研究[D].福州:福州大学,2006
    [216] Lubliner J,Oliver J,Oller S,O ate E.A Plastic-Damage Model for Concrete,International Journal of Solids and Structures,1989,25(2):299-329
    [217] Lee J,Fenves G L.Plastic-Damage Model for Cyclic Loading of Concrete Structures,Journal of Engineering Mechanics,1998,124(8):892-900
    [218] Hibbit,Karlson,Sorenson.ABAQUS Version6.5:Theory Manual, Users’Manual,Verification Manual and Example problems Manual.Hibbitt,Karlson and SorensonInc.,2005
    [219]黄平明,张征文,刘国林,等.内填式钢管混凝土受箍机理分析[J].西安公路交通大学学报,2001,21(4):43-45
    [220]何振强,蔡健,陈星.带约束拉杆方钢管混凝土短柱轴压性能研究[J].建筑结构,2006,36(8):49-53
    [221]陈曦.带约束拉杆矩形钢管混凝土轴压受力性能研究[D].上海:同济大学博士学位论文,2008
    [222]陈德明,苏恒强,蔡健.带约束拉杆钢管混凝土柱受压性能的研究[J].南昌水专学报,2003,22(3):38-40
    [223]中华人民共和国行业标准JGJ3-2010.高层建筑混凝土结构技术规程.北京:中国建筑工业出版社,2010
    [224]李杰,李国强.地震工程学导论.北京:地震出版社,1992
    [225]郭子雄,杨勇.恢复力模型研究现状及存在问题.世界地震工程,2004,20(4):47-51
    [226]郭子雄,童岳生,钱国芳.RC低矮抗震墙恢复力模型研究[J].西安建筑科技大学学报,1998,30(1):25-28
    [227]吕西林,董宇光,丁子文.截面中部配置型钢的棍凝土剪力墙抗震性能研究[J].地震工程与工程振动,2006,26(6):101-107
    [228]白亮.型钢高性能混凝土剪力墙抗震性能及性能设计理论研究[D].西安:西安建筑科技大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700