用户名: 密码: 验证码:
高性能混凝土剪力墙直接基于位移的抗震设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于性能/位移的抗震设计理论自20世纪90年代提出以来,受到广泛关注,被认为是未来结构抗震设计的发展方向。在抗震结构中,剪力墙作为主要的抗侧力构件,通常为第一道抗震防线,其抗震性能的优劣对整个房屋的抗震性能影响很大。近年来,随着经济和技术的发展,高性能混凝土剪力墙已被普遍应用于高层及超高层建筑结构中,但是由于高性能混凝土的脆性以及剪力墙本身变形能力较差的特点,其使用范围受到严格限制。对高性能混凝土剪力墙基于位移的抗震设计方法进行研究,可很好地解决高性能混凝土剪力墙强度高而变形能力较差的矛盾,扩大高性能混凝土剪力墙的使用范围,具有重要的理论意义和实用价值。
     本文简要介绍了基于性能/位移的抗震设计理念、研究现状及研究成果,论述了考虑高振型影响的直接基于位移的抗震设计的基本方法及设计过程。在以往研究基础上,以我国现行抗震设计规范的相关规定为基础,着力解决高性能混凝土剪力墙直接基于位移的抗震设计中的以下几个问题:
     (1)剪力墙抗震性能研究及性能指标的确定。通过对5片剪跨比分别为1.5和1.0的高性能混凝土剪力墙试件低周水平反复荷载试验,研究了中高、低矮高性能混凝土剪力墙的破坏形态、破坏机理及变形性能,验证了分段约束配箍方式对于提高弯曲型剪力墙变形能力的有效性,说明了剪力墙截面变形能力设计方法在一定程度上的可靠性,论证了剪力墙塑性铰转角与其破坏程度有较好的相关性。根据墙体不同阶段的破坏程度,将剪力墙结构的性能划分为“使用良好、保证人身安全和防止倒塌”三个水平,提出用层间位移角和塑性铰转角共同作为剪力墙结构的性能控制指标,并给出了三性能水平的建议值。
     (2)剪力墙弹塑性分析的宏观墙元模型。以结构三维非线性分析程序CANNY为平台,采用纤维墙元模型对剪力墙进行非线性分析。通过对4片剪力墙试件的非线性仿真分析,并与试验结果对比,说明了这种墙元模型的有效性。
     (3)考虑高阶振型效应的静力弹塑性分析方法。在模态Pushover分析方法中,用能力谱法替代原有的动力时程分析,在现行规范加速度反应谱基础上计算结构各振型等效单自由度体系各性能水平的位移反应,然后将其转化为相应多自由结构的位移反应,并通过SRSS法求得结构的总位移反应,用其与剪力墙的目标位移进行比较,判断设计结果是否满足性能目标要求。
     (4)剪力墙弹性刚度的选取。提出一种“目标周期法”,即由剪力墙各性能水平的目标位移导出其相应等效周期(目标周期),以结构各性能水平自振周期小于或等于目标周期为原则确定墙肢的截面厚度,使剪力墙的能力曲线与需求曲线在弹性阶段基本重合,抗震能力基本等于抗震需求。
     (5)剪力墙承载力设计值的确定。研究了高性能混凝土剪力墙超强系数的取值,提出了超强系数的取值方法;将结构各性能水平地震需求的最大值除以超强系数得到剪力墙的承载力设计值,并以此为依据进行剪力墙截面承载力设计,使剪力墙的能力曲线在弹塑性阶段不低于需求曲线,确保剪力墙满足各性能水平的承载力需求。
     (6)剪力墙斜截面受剪承载力计算。根据收集到的313片剪力墙试件的受剪性能试验数据,分析了中国混凝土规范、美国ACI规范及桁架-拱模型所给的剪力墙受剪承载力计算公式的可靠性和拟合效果,探讨了剪力墙受剪承载力的主要影响因素及其相互关系。在此基础上,根据试验数据重新拟合能够适应不同计算理论的剪力墙受剪承载力计算公式。为我国现行规范剪力墙受剪承载力计算公式的进一步修正提供参考。
     (7)基于塑性铰转角需求的剪力墙截面变形能力设计方法。以性能目标要求的剪力墙极限塑性铰转角需求作为设计基准,建立了剪力墙塑性铰转角、轴压比、边缘构件约束区长度以及配箍特征值的关系,针对目前我国规范设计现状,提出了较合理的剪力墙轴压比限值及边缘构件设计方法。
     以上各内容包含了剪力墙的性能目标确定、弹性刚度选取、承载力设计、变形能力设计以及静力弹塑性分析验证,概括了剪力墙直接基于位移的抗震设计全过程。最后将各问题串联,通过一算例分析介绍了本文所给方法的设计全过程,为剪力墙类结构直接基于位移的抗震设计提供了一个可供参考的思路和方法。
Performance/Displacement-based Seismic Design theory,which was put forward in 1990s,has been receiving considerable attentions,and it is regarded as the development direction of seismic design theory in the future.In the seismic fortification system of structure,shear walls are the prime lateral force-resisting elements and it is used as the first seismic fortification line generally.The seismic behavior of shear walls has a significant effect on the seismic behavior of the whole structure.In recent years,high performance concrete shear walls are used in tall buildings or super tall buildings widely, but the application scope of high performance shear walls is restricted because of the brittle character of high performance concrete and shear walls.Study on the displacement-based seismic design method of high performance concrete shear walls can improve the deformation capacity of high performance concrete shear walls to some extent,enlarge the application scope of high performance concrete shear walls,has important theoretical significance and practical value.
     In this paper,Performance-based Seismic Design(PBSD) methodology is briefly introduced.The basic methodology and corresponding design procedure of Direct Displacement-based Seismic Design(DDBSD) are emphasized.Based on previous research achievements,it manages to solve some problems in the process of DDBSD method of high performance concrete shear walls,and it will make this new design method more practical for shear-wall structures.The main content is presented as follows:
     (1) The performance objective of high performance concrete shear walls.Based on the tests of 5 high-performance concrete shear walls which shear span ratios are 1.5 and 1.0,the failure mode,failure mechanism and deformation capacity of medium-high and low-rise shear walls are studied.The new reinforcement method of several rings like a chain along boundary element in plastic hinge zone is verified to improve the deformation capacity of shear walls effectively,it shows that the deformation capacity design method of shear wall is reliable to a certain extent,and it indicates that the rotation of plastic hinge zone is related to the damage level of shear walls well.According to the damage level,the performance of shear wall structure is divided into three levels: "serviceability,life-safety and collapse-prevention",the storey drift ratio and the plastic hinge rotation are both used as the performance controlling indicators of shear wall structures,and the proposed values for each performance level are provided in this paper.
     (2) The macro model for high performance concrete shear walls' nonlinear analysis.The fiber wall element model in CANNY program is used to analyze the shear wall's non-linear performance.4 shear wall specimens' analysis results are very agreement with their test results,and it proves that the fiber wall element model is reasonable and efficient in the nonlinear analysis of shear walls.
     (3) Pushover analysis procedure considering higher mode effect.In the procedure of modal pushover analysis,the capacity spectrum theory is used to take the place of dynamic time-history analysis.Converting the acceleration response spectrum of current code into displacement response spectrum,the displacement response of ESDOF in each mode can be calculated by capacity spectrum method.Then the displacement response of MDOF can be obtained too,and it is used to compare with the objective displacement of each performance level,judging whether the structure satisfying its performance objective or not.
     (4) The reasonable elastic stiffness of shear walls.The structural target period in "serviceability" is deduced by its target displacement based on the displacement response spectrum."Target period" method that demands the natural periods should be smaller than or equal to corresponding target periods is used to select the section rigidity of shear walls.It can ensure that the capacity curve in elastic range is in agreement with the demand curve,and the seismic capacity equals to the seismic demand basically.
     (5) The design bearing capacity of shear walls.The bearing capacity demand of each performance level is determined by the target displacement and corresponding elasto-plastic displacement response spectrum,and the maximum is regarded as the structural bearing capacity demand.The over-strength coefficient of high performance concrete shear walls designed by Chinese code which is defined as the ratio of actual bearing capacity to design bearing capacity is discussed,and the bearing capacity demand divided by over-strength coefficient equals to the design beating capacity which ensures the structure meeting its performance objective in inelastic stage.
     (6) The calculation method for shear capacity of shear walls.Based on 313 test data of shear capacity of RC shear wall,the paper analyzes the reliability of calculation method for shear capacity of shear wall proposed by Chinese code,ACI code and truss-arch model.Some influencing factors of the shear capacity of RC shear wall are discussed,and the calculating equations of shear capacity of RC shear wall are rebuilt adopting mathematical statistics method.It provides a valuable thought to the modifying of current code.
     (7) The plastic hinge rotation-based design method of shear walls' deformation capacity.The relationship between plastic hinge rotation and cross section's curvature, axial load ratio and relative height of compression zone are deduced.The length of confined zone can be determined by plane-section assumption theory,and the transverse reinforcement characteristic value is determined by the stress-strain relationship of confined concrete.The length of confined zones and the transverse reinforcement characteristic values of boundary element in different seismic grades and axial load ratios are proposed.
     The paper illustrates the application of the proposed procedures above mentioned with an example and attempts to prove its feasibility.It provides a valuable thought to DDBSD method of high performance concrete shear wall structures.
引文
[1-1]周雍年.关于设防地震动水准的考虑[J].建筑结构学报,2000,21(1):17-20.
    [1-2]王亚勇.关于设计反应谱、时程法和能量方法的探讨[J].建筑结构学报,2000,21(1):21-28.
    [1-3]小谷俊介.日本基于性能结构抗震设计方法的发展[J].建筑结构,2000,30(6):3-9.
    [1-4]欧进萍等.钢筋混凝土结构的地震损伤控制设计[J].建筑结构学报,2000,21(1):63-70.
    [1-5]程耿东,李刚.基于功能的结构抗震设计中一些问题的探讨[J].建筑结构学报,2000,21(1):5-11.
    [1-6]钱稼茹,罗文斌.建筑结构基于位移的抗震设计[J].建筑结构,2001,31(4):3-6.
    [1-7]张新培.基于性能的抗震结构设计理论的若干进展[J].四川建筑科学研究,2001,27(1):34-35.
    [1-8]罗奇峰,王玉梅.从近几年震害总结中提出的结构性能设计理论[J].工程抗震,2001(2):3-7.
    [1-9]田颖,钱稼茹,刘凤阁.在用RC框架结构基于位移的抗震性能评估[J].建筑结构,2001,31(7):53-59.
    [1-10]侯钢领,何政,吴斌,欧进萍.钢筋混凝土结构的屈服位移Chopra能力谱损伤分析与性能设计[J].地震工程与工程震动,2001,21(3):29-35.
    [1-11]李应斌,刘伯权,史庆轩.基于结构性能的抗震设计理论研究与展望[J].地震工程与工程振动,2001,21(4):73-79.
    [1-12]马宏旺,吕西林.建筑结构基于性能抗震设计的几个问题[J].同济大学学报,2002,30(12):1429-1434.
    [1-13]李刚,程耿东.基于投资-效益准则的结构目标性能水平[J].大连理工大学学报,2005,45(2):166-171.
    [1-14]徐培福,戴国莹.超限高层建筑结构基于性能抗震设计的研究[J].土木工程学报,2005,38(1):1-9.
    [1-15]李刚,程耿东.基于性能的结构抗震设计-理论、方法与应用[M].科学出版社,2004.
    [1-16]王亚勇.我国2000年抗震设计模式规范展望[J].建筑结构,1999,29(6):32-36.
    [1-17]王亚勇.我国2000年工程抗震设计模式规范基本研究问题综述[J].建筑结构学报,2000,21(1):1-4.
    [1-18]钱稼茹,吕文,方鄂华.基于位移延性的剪力墙抗震设计[J].建筑结构学报,1999,20(3):42-48.
    [1-19]吕西林,王亚勇,郭子雄.建筑结构抗震变形验算[J].建筑科学,2002,18(1):11-15.
    [1-20]杨松涛,叶列平,钱稼茹.地震位移反应谱特性的研究[J].建筑结构,2002,32(5):47-50.
    [1-21]王光远,吕大刚.基于最优设防烈度和损伤性能的抗震结构优化设计[J].哈尔滨建筑大学学报,1999(10).
    [1-22]吴波,李艺华.直接基于位移可靠度的抗震设计方法中目标位移代表值的确定[J].地震工程与工程振动.2002,22(6):44-51.
    [1-23]谢礼立.抗震性态设计和基于性态的抗震设防.大型复杂结构的关键科学问题和设计理论 研究论文集(1999),大连理工大学出版社,2000,5.
    [1-24]孙俊,刘铮,刘永芳.工程结构基于性能的抗震设计方法研究[J].四川建筑科学研究,2005,31(3):98-101.
    [1-25]J.P.Moehle,Displacement-design of RC Structure[J].10th world conf.on Earthquake Eng.,Mexico,1992:1574-1576.
    [1-26]姜锐.建筑结构基于位移的抗震设计方法研究[J].太原科技大学学报,2005,26(2):153-156.
    [1-27]R..帕克,T.波利.钢筋混凝土结构[M].重庆:重庆建筑大学出版社,1992.
    [1-28]Paulay T.Displacement-based design approach to earthquake-induced torsion in ductile buildings[J].Engineering Structures,1997,19:699-707.
    [1-29]范立础,卓卫东.桥梁延性抗震[M].北京:人民交通出版社,2001.
    [1-30]罗文斌,钱稼茹.钢筋混凝土框架基于位移的抗震设计[J].土木工程学报,2003,(5):22-29.
    [1-31]建筑抗震设计规范(GB50011-2001)[S].中国建筑工业出版社,2001.
    [1-32]Chopra AK,Goel RK.Capacity-demand-diagram methods based on inelastic design spectrum [J].Earthquake spectra,1999,15(4):637-656.
    [1-33]Fajfar P.Capacity spectrum method based on inelastic demand spectra[J].Earthquake Engng Strut.Dyn.,1999,28:979-993.
    [1-34]ATC.Seismic retrofitting guidelines for highway bridges,Report ATC-6-2.Calif:Applied Technology Council,1983.
    [1-35]Priestley M.J.N and Kowalsky M.J..Direct Displacement-based Design of Concrete Buildings[J].Bulletin of the New Zealand National Society for Earthquake Engineering,New Zealand National Society for earthquake Engineering,Silverstream.2000,33(4):421-444.
    [1-36]M.S.Medhekar,D.T.L.Kennedy.Displacement-based Seismic Design of Buildings-Theory[J].Engineering Structures,2000,22:201-221.
    [1-37]Chandler A.M.,Mendis P.A.Performance of Reinforced Concrete Frames Using Force and Displacement Based Seismic Assessment Methods[J].Engineering Structures,2000,22:352-363.
    [1-38]KowalskyM.J..R.C.Structural Walls Designed According to UBC and Displacement Based Methods[J].Journal of Structural Engineering,Vol.127,NO.5,2001:506-516.
    [1-39]梁兴文,黄雅捷等.钢筋混凝土框架结构基于位移的抗震设计方法研究[J].土木工程学报,2005,38(9):53-60.
    [1-40]刘有军,周建民.基于位移的RC框架结构抗震设计研究[J].结构工程师,2003,(3):1-6.
    [1-41]吴波,熊焱.一种直接基于位移的结构抗震设计方法[J].地震工程与工程震动,2005,25(2):62-67.
    [1-42]Federal Emergency Management Agency(FEMA),NEHRP Guidelines for the Seismic Rehabilitation of Building Seismic Safety Council,FEMA Report 273,1997.
    [1-43]邓小刚.多层钢筋混凝土框架房屋的震害预测方法[J].工程抗震,1993(1):28-33.
    [1-44]FEMA356.Prestandard and commentary for the seismic rehabilitation of buildings.Washington (DC)[S]:Federal Emergency Management Agency,2000.
    [1-45]梁兴文,邓明科等.钢筋混凝土高层建筑结构基于位移的抗震设计方法研究[J].建筑结构,2006,36(7):15-22.
    [1-46]Honggun Park,Su-min Kang,Lan Chung,Do-bum Lee.Moment-curvature Relationship of Flexure-dominated Walls with Partially Confined End-zones[J].Engineering Structure,2007,29:33-45.
    [1-47]Aschhein MA,Black EF.Yield Point Spectra for Seismic Design and rehabilitation.Earthquake Spectra[J],EERI 2000,16(2):317-335.
    [1-48]罗文斌,钱稼茹.RC框架弹塑性位移的解构规则与构件的目标侧移角[J].工程力学,2003,20(5):32-36.
    [1-49]吕西林,周定松,蒋欢军.钢筋混凝土框架柱的变形能力及基于性能的抗震设计方法[J].地震工程与工程振动,2005,25(6):53-61.
    [1-50]周定松,吕西林,蒋欢军.钢筋混凝土框架梁的变形能力及基于性能的抗震设计方法[J].地震工程与工程振动,2005,25(4):60-66.
    [1-51]Priestley M J N.Aspect of drift and ductility capacity of rectangular cantilever structural walls [J].Bulletin of New Zealand Society for Earthquake Engineering,1998,31(2):73 -85.
    [1-52]Thomsen J H,Wallace J.Displacement-based design of slender reinforced concrete walls-Experimental verification[J].Journal of Structural Engineering.2004,130(4):618-630.
    [1-53]钱稼茹,徐福江.钢筋混凝土剪力墙基于位移的变形能力设计方法[J].清华大学学报,2007,47(3):1-4.
    [1-54]H Hiraishi.Evaluation of Shear and Flexural Deformations of Flexural Type Shear Walls.Proc.of 8th WCEE,Vol.5,1984.
    [1-55]Vulcano A,Azzato F.Nonlinear seismic analysis of RC frame-wall structures[J].ECEE,1994,(10):1347-1352.
    [1-56]汪梦甫,周锡元.钢筋混凝土剪力墙多垂直杆非线性单元模型的改进及应用[J].建筑结构学报,2002,23(1):38-42.
    [1-57]陈伯望,王海波等.剪力墙多垂直杆单元模型的改进及应用[J].工程力学,2005,22(3):183-189.
    [1-58]李宏男,李兵.钢筋混凝土剪力墙抗震恢复力模型及试验研究[J].建筑结构学报,2004,25(5):35-42.
    [1-59]吕西林,卢文生.纤维墙元模型在剪力墙结构非线性分析中的应用[J].力学季刊,2005,26(1):72-80
    [1-60]A K Chopra,R Goel,A modal pushover analysis procedure to estimate seismic demands for buildings:theory and preliminary evaluation[R].Research Center,Collage of Engineering,University of California,Berkeley,2001.1.
    [1-61]卢文生,吕西林.框架剪力墙结构模态静力非线性抗震分析方法研究[J].地震工程与工程振动,2005,25(1):58-66.
    [1-62]梁兴文,邓明科等.高性能混凝土剪力墙性能设计理论的试验研究[J].建筑结构学报.2007,28(5):80-87.
    [2-1]陈肇元.高强与高性能混凝土的发展及应用[J].土木工程学报,1997,30(5):3-11.
    [2-2]周履.高性能混凝土(HPC)发展的综合评述[J].建筑结构,2004,34(6):65-72.
    [2-3]冯乃谦.高性能混凝土结构[M].机械工业出版社.2004.
    [2-4]梁兴文,邓明科等.高性能混凝土剪力墙性能设计理论的试验研究[J].建筑结构学报.2007,28(5):80-87.
    [2-5]国家标准.建筑抗震设计规范(GB50011-2001)[S].中国建筑工业出版社,2001.
    [2-6]钱稼茹,吕文,方鄂华.基于位移延性的剪力墙抗震设计[J].建筑结构学报,1999,20(3):42-48.
    [2-7]钱稼茹,徐福江.钢筋混凝土剪力墙基于位移的变形能力设计方法[J].清华大学学报,2007,47(3):1-4.
    [2-8]过镇海、时旭东.钢筋混凝土原理和分析[M].清华大学出版社,2003:336-337.
    [2-9]ACI Committee 318 Structural Building Code,ACI 318M-05,BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE AND COMMENTARY[S].American Concrete institute.
    [2-10]EUROPEAN STANDARD,Eurocode 2,Design of concrete structures[S].The Technical Committee CEN/TC 250.
    [2-11]FEMA356.Prestandard and commentary for the seismic rehabilitation of buildings.Washington(DC)[S]:Federal Emergency Management Agency,2000.
    [2-12]李刚,程耿东.基于投资-效益准则的结构目标性能目标[J].大连理工大学学报,2005,45(2):166-171.
    [2-13]邵武,钱国芳,童岳生.钢筋混凝土低矮抗震墙试验研究[J].西安冶金建筑学院学报,1989,21(3):15-23.
    [2-14]钱稼茹,李耕勤.钢筋混凝土抗震墙墙肢约束边缘构件基于弹塑性层间位移角的设计[J].建筑结构,2002,32(8):3-6.
    [2-15]T.N Tjhin,M.A Aschheim,J.W Wallace.Yield displacement-based seismic design of RC wall buildings[J].Engineering Structural,2007,29:2946-2959.
    [3-1]Lai S.S.,Will G.T.,Otani S.Model for inelastic biaxial bending of concrete members[J].Journal of Structural Engineering,1984,110(11):2563-2584.
    [3-2]Hiraishi H,Kawashima T.Deformation behavior of shear walls after flexural yielding[A].9th WCEE,1988:653-658.
    [3-3]Kabeyasawa,S.T.H,Otanl S.U.S-Japan Cooperative Research on RC Full-scale Building Test[J].8th WCEE,1984,6:627-634.
    [3-4]Vulcano A.,Bertero V.V.,and Colotti V.Analytical Modeling of RC Structural Walls[J].9th WCEE,1988,6:41-46.
    [3-5]孙景江,江近仁.高层建筑抗震墙非线性分析的扩展铁木辛哥分层梁单元[J].世界地震工程,2001,21(2):78-83.
    [3-6]Linda P.and Bachmann H.Dynamic modeling and design of earthquake resistant walls[J].EESD,1994,23:1331-1350.
    [3-7]宋亚新.考虑土-桩-结构相互作用的框-剪结构弹塑性地震反应分析[D].同济大学申请博士学位论文.1998.
    [3-8]Milev J.T..Two Dimensional analytical model of reinforced concrete shear walls[J].11th WCEE,Elsevier Science Ltd.1996,320.
    [3-9]李宏男,李兵.钢筋混凝土剪力墙抗震恢复力模型及试验研究[J].建筑结构学报,2004,25(5):35-42.
    [3-10]蒋欢军,吕西林.一种宏观剪力墙单元模型应用研究[J].地震工程与工程振动,2003,23(1):38-43.
    [3-11]Hwang H M,Jaw J W.Probability damage analysis of structure[J].Journal of Structural Engineering,ASCE,1990,116(7):19-22.
    [3-12]吕西林,卢文生.纤维墙元模型在剪力墙结构非线性分析中的应用[J].力学季刊,2005,26(1):72-80.
    [3-13]张令心,杨桦,江近仁.剪力墙的剪切滞变模型[J].世界地震工程,1999,15(2):9-16.
    [3-14]Kangning Li.Canny Users' Manual:Technical Manual.Canny Consultant Pte Ltd,2004.
    [3-15]钱稼茹,程丽荣,周栋梁.普通箍筋约束混凝土柱的中心受压性能[J].清华大学学报,2002,42(10):1369-1373.
    [3-16]梁兴文,邓明科,张兴虎等.高性能混凝土剪力墙性能设计理论的试验研究[J].建筑结构学报,2007,28(5):80-88.
    [4-1]Craig D.Comartin,et al.A summary of FEMA440[J].Improvement of nonlinear static seismic analysis procedures.13WCEE,Aug.2004:1476.
    [4-2]Balram Gupta,M.EERT,Sashi K.Kunnath.Adaptive spectra-based Pushover procedure for seismic evaluation of structures[J].Earthquake Spectra,2000,16(2).
    [4-3]Tysh Shang Jan,Ming Wei Liu.An upper-bound Pushover Analysis Procedure for Estimating the Seismic Demands of High-rise Buildings[J].Engineering Structures,2004,26:117-128.
    [4-4]Chopra A K,Goel R.A model Pushover analysis procedure for estimating seismic demands for buildings[J].Earthquake Engineering and Structural Dynamics,2002,31(1):561-582.
    [4-5]侯爽,欧进萍.结构pushover分析的侧向力分布及高阶振型影响[J].地震工程与工程振动,2004,24(3),90-97.
    [4-6]周定松,吕西林.延性需求谱在基于性能的抗震设计中的应用[J].地震工程与工程振动,2004,24(1),30-38.
    [4-7]国家标准.建筑抗震设计规范(GB50011-2001)[S].中国建筑工业出版社,2001.
    [4-8]A.Shibata,M.Sozen,Substitute Structure Method for Seismic Design in RC[J].Journal of the Structure Division,ASCE,1976,102(1):1-18.
    [4-9]刘有军,周建民.基于位移的RC框架结构抗震设计研究[J].结构工程师,2003,(3):1-6.
    [4-10]梁兴文,黄雅捷等.钢筋混凝土框架结构基于位移的抗震设计方法研究[J].土木工程学报,2005,38(9):53-60.
    [4-11]A.Filiatrault and B.Folz.Performance-Based Seismic Design of Wood Framed Buildings[J].Journal of Structural Engineering,2002,128(1):39-47.
    [4-12]卢文生,吕西林.框架剪力墙结构模态静力非线性抗震分析方法研究[J].地震工程与工程振动,2005,25(1):58-66.
    [4-13]Miranda E,Garcia JG.Evaluation of Approximate Methods to Estimate Maximum Inelastic Displacement Demands[J].Earthquake Engineering and Structural Dynamics,2002,31:539-560.
    [5-1]梁兴文,邓明科等.钢筋混凝土高层建筑结构基于位移的抗震设计方法研究[J].建筑结构,2006,36(7):15-22.
    [5-2]罗文斌,钱稼茹.钢筋混凝土框架基于位移的抗震设计.土木工程学报[J],2003,(5):22-29.
    [5-3]梁兴文,黄雅捷等.钢筋混凝土框架结构基于位移的抗震设计方法研究[J].土木工程学报,2005,38(9):53-60.
    [5-4]T.N.Tjhin,M.A.Aschheim,J.W.Wallace.Yield Displacement-based Seismic Design of RC Wall Buildings.Engineering Structures[J],2007,29:2946-2959.
    [5-5]Browning J.P.Proportioning of Earthquake-Resisting RC Building Structures[J].Journal of the Structural Division ASCE,2000,127(2):145-151.
    [5-6]Medhekar MS,Kennedy DTL.Displacement-based Seismic Design of Buildings-theory[J].Engineering Structures,2000;22:201-209.
    [5-7]刘有军,周建民.基于位移的RC框架结构抗震设计研究[J].结构工程师,2003,(3):1-6.
    [5-8]A K Chopra,R Goel,A modal pushover analysis procedure to estimate seismic demands for buildings:theory and preliminary evaluation[R].Research Center,Collage of Engineering,University of California,Berkeley,2001.1.
    [5-9]A.Shibata,M.Sozen,Substitute Structure Method for Seismic Design in RC[J].Journal of the Structure Division,ASCE,1976,102(1),1-18.
    [5-10]国家标准.建筑抗震设计规范(GB50011-2001)[S].中国建筑工业出版社,2001.
    [5-11]Miranda E,Garcia JG.Evaluation of approximate methods to estimate maximum inelastic displacement demand[J]s.Earthquake Engineering and Structural Dynamics,2002,31:539-560.
    [5-12]Applied Technology Council.Seismic evaluation and retrofit of concrete building[R].Report ATC240,1996.
    [5-13]FEMA273,FEMA274.NEHRP Commentary on the guidelines for the rehabilitation of building[R].Washington D C:Federal Emergency Management Agency,1996.
    [5-14]Krawinklar H.Pushover analysis:Why,How,and When not to use it[A].Proceedings of SEAOC 65th Annual Convention[C].HAWAII:Structural Engineering Association of California,MAUI,1996.
    [5-15]Kicher C A.Capacity spectrum Pushover method:Seeing is Believing[A].Proceedings of SEAOC 65th Annual Convention[C].HAWAII:Structural Engineering Association of California,MAUI,1996.
    [5-16]小古俊介.日本基于性能结构抗震设计方法的进展[J].建筑结构,2000,30(6):3-9.
    [5-17]Chopro A K,Goel R K.Capacity-demand-diagram methods for estimating seismic deformation of inelastic structures:SDF Systems[R].Pacific Earthquake Engineering Research Center,Report No:PEER21999/02,University of Califormia at Berkeley,1999.
    [5-18]叶燎原,潘文.结构静力弹塑性分析(Pushover)的原理和计算实例[J].建筑结构学报,2000,21(1):37-51.
    [5-19]白绍良,李刚强,李英民等.从R-μ-T关系研究成果看我国钢筋混凝土结构的抗震措施[J].地震工程与工程振动,2006,26(5):144-151.
    [5-20]范立础,卓卫东等.桥梁延性抗震设计[M].人民交通出版社,2001.
    [5-21]Mander J.B.,Priestley M.J.N.and Park R.Theoretical stress-strain model for confined concrete[J].ASCE,Joural of Structural Engineering,1988,114(8):1804-1826.
    [5-22]Mander J.B.,Priestley M.J.N.and Park R.Observed stress-strain behavior of confined concrete[J].ASCE,Joural of Structural Engineering,1988,114(8):1827-1849.
    [5-23]过镇海,张秀琴.混凝土应力-应变全曲线的试验研究[J].建筑结构学报,1982,3(1):1-12.
    [5-24]邢秋顺,翁义军,沈聚敏.约束混凝土应力-应变全曲线的试验研究[J].约束与普通混凝土强度理论及应用学术讨论会论文集,烟台,1987:81-87.
    [5-25]钱稼茹,程丽荣,周栋梁.普通箍筋约束混凝土柱的中心受压性能[J].清华大学学报,2002,42(10):1369-1373.
    [5-26]Honggun Park,Su-min Kang,Lan Chung,Do-bum Lee.Moment-curvature Relationship of Flexure-dominated Walls with Partially Confined End-zones[J].Engineering Structure,2007,29:33-45.
    [6-1]文保军,梁兴文,侯莉娜.钢筋混凝土剪力墙塑性铰区受剪承载力分析[J].工业建筑,2008,38(12):59-64.
    [6-2]王铁成,康谷贻.日本抗震指南钢筋混凝土构件抗剪强度的计算模型[J].建筑结构.2000,30(10):31-33.
    [6-3]管品武,王建强,刘立新.反复荷载下混凝土框架柱塑性铰区基于延性的抗剪承载力机理分析[J].世界地震工程.2005,21(3):75-81.
    [6-4]Ichinose T.A shear design equation for ductility R/C members[J].Earthquake Engineering and structural Dynamics.1992,21(2):197-213.
    [6-5]钢筋混凝土建筑保证延性型抗震设计指南[S].日本建筑学会,1997.
    [6-6]ACI Committee 318 Structural Building Code,ACI 318M-05,BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE AND COMMENTARY[S].American Concrete institute.
    [6-7]混凝土结构设计规范(GB50010-2002)[S].北京:中国建筑工业出版社,2002.
    [6-8]日本建築学会大会学術耩演梗概集,昭和59年10月.
    [6-9]Yunfeng Zhang and Zhihao Wang.Seismic Behavior of Reinforced Concrete Shear Walls Subjected to High Axial Loading.ACI Structural Journal,2000,97(5):739-750.
    [6-10]陈勤,李耕勤,钱稼茹等.HRB400级钢筋焊接网剪力墙试验研究[J].混凝土.2002.7:18-22.
    [6-11]龚治国,吕西林,姬守中.不同边缘构件约束剪力墙抗震性能试验研究[J].结构工程师,2006,22(1):57-61.
    [6-12]傅剑平,吴雁江,皮天祥等.工字形截面延性剪力墙肢抗震抗剪性能试验[J].重庆大学学报(自然科学版),2004,27(12):53-55.
    [6-13]陈怀亮,卢中强,张大长等.基于抗剪机构和破坏模式的RC剪力墙极限承载力分析[J].南京工业大学学报,2006,28(3):68-69.
    [6-14]林伟民,金云霄.预应力剪力墙抗剪性能试验研究[J].洛阳大学学报,2005,20(2):72-74.
    [6-15]王社良,赵祥,孟和等.带边框柱中高剪力墙非线性有限元分析[J].西安建筑科技大学学报(自然科学版),2007,39(3):303-306.
    [6-16]赵祥,王社良,刘瑞杰等.带边框柱剪力墙模型抗震性能试验研究[J].西安建筑科技大学学报(自然科学版),2004,36(3):277-278.
    [6-17]李宏男,李兵.钢筋混凝土剪力墙抗震恢复力模型及试验研究[J].建筑结构学报,2004,25(5):36-39.
    [6-18]杜静.钢筋混凝土剪力墙的抗震抗剪性能研究及有限元模拟[D].重庆大学硕士论文,2005.
    [6-19]张展,周客容.变高宽比高性能混凝土剪力墙抗震性能的试验研究[J].结构工程师,2004,(2):63-66.
    [6-20]张大长,陈怀亮,卢中强.基于抗剪抵抗机构的无开洞RC剪力墙的极限承载力分析模型的探讨[J].工程力学,2007,24(7):137-139.
    [6-21]黄雄军,何小银,赵世春.带SRC边框剪力墙抗震性能研究[J].四川建筑科学研究,1995,7(1):30-31.
    [6-22]剪力墙结构的性能与截面设计.中国建筑科学研究院建筑结构研究所.1985.
    [6-23]陶鹤进,于庆荣,史新亚.钢筋粉煤灰陶粒硷剪力墙受力性能的试验研究[J].建筑结构学报.1994.15(4):20-30.
    [6-24]刘翠兰,祁学任.陶粒混凝土剪力墙的试验研究[J].建筑结构学报.1991.12:62-71.
    [7-1]建筑抗震设计规范GB 50011-2001[S].北京:中国建筑工业出版社,2001.
    [7-2]高层建筑混凝土结构技术规程 JGJ3-2002[S].北京:中国建筑工业出版社,2002.
    [7-3]Priestley M J N.Aspect of drift and ductility capacity of rectangular cantilever structural walls[J].Bulletin of New Zealand Society for Earthquake Engineering,1998,31(2):73 -85.
    [7-4]Thomsen J H,Wallace J.Displacement-based design of slender reinforced concrete walls-Experimental verification[J].Journal of Structural Engineering.2004,130(4):618-630.
    [7-5]钱稼茹,吕文,方鄂华.基于位移延性的剪力墙抗震设计[J].建筑结构学报,1999,20(3):42-48.
    [7-6]钱稼茹,徐福江.钢筋混凝土剪力墙基于位移的变形能力设计方法[J].清华大学学报,2007,47(3):1-4.
    [7-7]范立础,卓卫东.桥梁延性抗震[M].北京:人民交通出版社,2001.
    [7-8]Eurocode8,Design of Structures for Earthquake Resistance[S].European Committee for Standardization,2003.
    [7-9]钱稼茹,程丽荣,周栋梁.普通箍筋约束混凝土柱的中心受压性能[J].清华大学学报,2002,42(10):1369-1373.
    [7-10]梁兴文,邓明科,张兴虎等.高性能混凝土剪力墙性能设计理论的试验研究[J].建筑结构学报,2007,28(5):80-88.
    [7-11]李宏男,李兵.钢筋混凝土剪力墙抗震恢复力模型及试验研究[J].建筑结构学报,2004,25(5):35-42
    [7-12]陈勤,李耕勤,钱稼茹,顾万黎.HRB400级钢筋焊接网剪力墙试验研究[J].混凝土,2002(7):18-22.
    [7-13]李耕勤,钱稼茹,顾万黎.采用冷轧带肋钢筋焊接网剪力墙的抗震性能研究[J].建筑结构,2002,32(10):29-33.
    [7-14]章红梅,吕西林,鲁亮,等.边缘约束构件对钢筋混凝土剪力墙抗震性能的影响[J].地震工程与工程动,2007,27(1):92-98.
    [7-15]吕文,钱稼茹,方鄂华.钢筋混凝土剪力墙延性的试验和计算[J].清华大学学报,1999,39(4):88-91.
    [8-1]ETABS中文版使用指南[M].中国建筑工业出版社,2004.
    [8-2]罗文斌,钱稼茹.钢筋混凝土框架基于位移的抗震设计[J].土木工程学报,2003,(5):22-29.
    [8-3]杨溥,李英民等.能力曲线折线简化方法对比研究[J].重庆建筑大学学报,2005,27(4):59-63.
    [8-4]Kangning Li.Canny Users' Manual:Technical Manual.Canny Consultant Pte Ltd,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700