用户名: 密码: 验证码:
型钢高性能混凝土剪力墙抗震性能及性能设计理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
型钢高性能混凝土(SHPC)剪力墙通过型钢与高性能混凝土的相互组合,使高性能混凝土的脆性得到较好的改善,型钢的作用得到充分发挥,构件的延性得以显著提高。目前国内外对这种构件的抗震性能研究较少,本文拟通过试验与理论分析,研究SHPC剪力墙的抗震性能及性能设计理论与方法,将基于性能的抗震设计理论应用于SHPC剪力墙的抗震设计。主要研究内容如下:
     (1)对6个SHPC剪力墙试件进行了低周反复水平加载试验,研究了这种构件在压、弯、剪共同作用下的破坏过程和破坏机理;分析了SHPC剪力墙的剪跨比、轴压比、水平分布钢筋数量等因素对其破坏形态、滞回特性、延性及耗能能力的影响。
     (2)根据对滞回曲线和骨架曲线的分析研究,提出了考虑刚度退化的SHPC剪力墙恢复力模型。用试验拟合方法,建立了SHPC剪力墙四(三)折线骨架曲线,给出了骨架曲线各个关键点的计算公式;对SHPC剪力墙的刚度退化规律以及基于试验现象的滞回规则进行了分析。研究结果表明,骨架曲线下降段的刚度主要与墙肢端部型钢的屈服应变、轴压比及约束区箍筋配箍特征值等因素有关。
     (3)运用CANNY程序提供的纤维墙元模型对SHPC剪力墙进行了数值分析,数值分析结果基本反映了试件的滞回特征,说明用CANNY程序对SHPC剪力墙进行非线性分析是可行的。同时在试验研究的基础上,借助CANNY程序对影响SHPC剪力墙抗震性能的有关参数进行了补充分析。
     (4)在SHPC剪力墙低周反复水平加载试验研究的基础上,建立了其开裂荷载计算公式、正截面受压承载力及斜截面受剪承载力计算公式,通过与试验数据的对比表明,本文建议公式的计算结果与试验结果较为符合。
     (5)利用SHPC剪力墙截面变形条件和平衡条件,建立了截面的屈服曲率与极限曲率,并根据剪力墙曲率延性系数与位移延性系数的关系,确定了SHPC剪力墙相应的位移延性系数。通过计算分析,得到了SHPC剪力墙轴压比、箍筋配箍特征值、墙体高宽比与位移延性系数之间的关系。研究结果表明,轴压比是影响SHPC剪力墙延性的主要因素,适当增加SHPC剪力墙约束区箍筋配箍特征值并控制其轴压比,可以提高SHPC剪力墙的位移延性。最后,给出了不同轴压比及箍筋配箍特征值情况下,SHPC剪力墙位移延性系数的取值,可供对SHPC剪力墙进行截面变形能力评估时参考。
     (6)在本文SHPC剪力墙试验研究的基础上,参考已有SRC剪力墙试验研究资料,将SHPC剪力墙结构的性能划分为使用良好、暂时使用、生命安全和接近倒塌四个水平;定义了各性能水平对应的构件性能状态;量化了SHPC剪力墙结构四个性能水平极限状态对应的层间位移角限值。
     (7)由SHPC剪力墙截面屈服曲率及极限曲率推算结构的目标位移,得到SHPC剪力墙的极限位移角,建立了SHPC剪力墙基于性能的变形能力设计方法,提出了SHPC剪力墙不同轴压比限值下,满足特定目标位移需求的约束钢筋数量的确定方法。
Steel high performance concrete structural wall was a combination of steel and high performance concrete.They can give full play to the advantages of steel and concrete and have better dynamic behavior,such as ductility and ability of dissipating energy than high performance concrete structural walls.However,the resrarch on the seismic behavior of SHPC structural walls is rare.The seismic behavior and performance-based seismic design method of SHPC structural walls are investigated by experiments and theoretical analysis,then the performance-based seismic design methodology is applied to the design of SHPC structural walls in this paper.The main contents covered are presented as follows.
     (1) Six specimens of steel high performance concrete structural walls are constructed and tested under low cyclic reversed lateral loading.Some parameters, shear span ratio,axial load ratio,stirrup ratio are taken into consideration.The main failure patterns as well as hysteretic curves of those walls are obtained,and influence of each of the parameters on the ductile behavior,ability of energy dissipation and law of strength degeneration are analyzed.
     (2) On the basis of theoretic formulas and testing data,a restoring force model of reversal skeleton curve of SHPC structural walls were established with degradation of strength and stiffness taken into account.The results show that the declined strength stage of skeleton curve of specimens is related to the yielding strain of boundary steel, axial load ratio and stirrup content.
     (3) The fiber wall element model in CANNY program is used to analyze the non-linear performance of SHPC structural walls.Analysis results are very agreement with their test results and it proves that he fiber wall element model is reasonable and efficient in the nonlinear analysis of SHPC structural walls.Also,some parameters which were concered on seismic behavior of SHPC structural walls were analyzed by CANNY program.
     (4) Based on experiment of SHPC structural walls under low cyclic reversed loading, the calculating equations of crack loading,section compressive load-bearing capacity and inclined section shear load-bearing capacity were established.The comparison of calculation results and test results illustrates that those calculating procedure is feasible.
     (5) The yielding curvature and the ultimate curvature of SHPC structural walls are calculated by equilibrium and deformation condition.Then,the displacement ductility ratio of SHPC structural walls was established by the relationships between curvature ductility ratio and displacement ductility ratio.It is obtained for the relationships among the displacement ductility ratio,the axial load ratio,the characteristic value of stirrup content and the aspect ratio.It is concluded that the axial load ratio n is an important factor for deformation capacity and increasing the characteristic value of stirrup contentλv and limiting the axial load ratio n are effective means to improve ductility.The displacement-based deformation capacity design was then developed for SHPC structural walls and the conclusion can be referred by the evaluation of deformation capacity for SHPC structural walls.
     (6) On the bais of cyclic loading test of SHPC walls and SRC walls,the seismic performance of SHPC structural walls can be divided into four levels:performance continuity,performance interruption,life safety and collapse prevention.Based on the experiments and results of SHPC structural walls,the failure mode and characteristic are analyzed.Then,the limit state of the different seismic performance levels and their dominating parameters are proposed.Finally,the range of deformation limits of SHPC structural walls are developed for four different seismic performance levels.
     (7) Based on the deformation capacity of SHPC structural walls,its drift at yield and at ultimate were obtained.The performance-based seismic design method was then developed for SHPC structural walls and the transverse reinforcement characteristic value accordance with the target top displacement ratio and axial load ratio is proposed.
引文
[1]钟善桐.高层钢与混凝土组合结构[M].广州:华南理工大学出版社,2003.
    [2]赵鸿铁.钢与混凝土组合结构[M].北京:科学出版社,2001.
    [3]廖飞宇,陶忠.钢—混凝土组合剪力墙抗震性能研究初探[J].哈尔滨工业大学学报(增刊),2005,37,37-40.
    [4]郭子雄,杨勇,王妙芳.型钢混凝土结构性能设计研究展望[J].哈尔滨工业大学学报(增刊),2005,37,14-17.
    [5]PRIESTLEY,M.J.N.and KOWALSKY.M.J.Direct Displacement-Based Seismic Design of Concrete Buildings.Bulletion of the New Zealand Society for Earthquake Engineering.2000,33(4):421-444.
    [6]MEDHEKAR,M.S.and KENNEDY,D.T.L.Displacement-Based Seismic Design of Building -Theory.Engineering Structures.2000,22(3):201-209.
    [7]PAULAY,T.An estimation of displacement limits for ductile systems.Earthquake Engineering and Structural Dynamics.2002,31(3):583-599.
    [8]中国工程建设标准化协会标准.建筑工程抗震性态设计通则(试用)CECS 160:2004[S],中国计划出版社,2004.
    [9]王亚勇.我国2000年工程抗震设计模式规范基本研究问题综述[J].建筑结构学报,2000,21(1):1-4.
    [10]白亮,梁兴文,李向阳.桥梁抗震设计规范与建筑抗震设计规范的分析与比较[J].世界地震工程,2006,22(4):127-132.
    [11]王妙芳,杨勇.型钢混凝土柱抗震性态水平及极限状态的讨论[J].哈尔滨工业大学学报(增刊),2005,37:14-17.
    [12]吕西林.超限高层建筑工程抗震设计指南.上海:同济大学出版社,2005.
    [13]中国冶金部行业标准:钢骨混凝土结构设计规程YB9082-97.北京:冶金工业出版社,1998.
    [14]中国建设部行业标准:型钢混凝土组合结构技术规程JGJ138-2001.北京:中国建筑工业出版社,2002.
    [15]刘维亚,张兴武,姜维山等.型钢混凝土组合结构构造与计算手册.北京:中国建筑工业出版社,2004.
    [16]高层建筑混凝土结构技术规程JGJ3-2002.北京:中国建筑工业出版社.
    [17]王志浩,钱稼茹.钢骨混凝土剪力墙的抗弯性能[J].建筑结构,1998,(2):13-21.
    [18]乔彦明,钱稼茹.钢骨混凝土剪力墙抗剪性能的试验研究[J].建筑结构,1995,(8):3-7.
    [19]黄雄军,赵世春.带劲性钢筋混凝土边框低剪力墙的试验研究[J].西南交通大学学报,1998,33(5):535-539.
    [20]黄雄军,何小银,赵世春.带SRC边框剪力墙抗震性能研究[J].四川建筑科学研究,1995,(1):30-34.
    [21]黄双华,黄雄军.劲性混凝土带边框低剪力墙极限承载力的计算[J].西南交通大学学报,2001,36(04):360-364.
    [22]罗英,赵世春,带SRC边框低剪力墙的抗震性能试验研究[J],西安公路交通大学学报,1999,19(02):66-69.
    [23]刘航,蓝宗建,庞向和.劲性钢筋混凝土低剪力墙抗震性能试验研究[J].工业建筑,1997,27(5):32-37.
    [24]王曙光,蓝宗建.劲性钢筋混凝土开洞低剪力墙拟静力试验研究[J].建筑结构学报,2005,26(1):85-90.
    [25]武敏刚,吕西林.钢骨联肢剪力墙抗震性能试验研究.结构工程师,2004,20(5):52-56.
    [26]曹万林,杨兴民,黄选明,吕西林.带钢筋及钢骨暗支撑剪力墙抗震性能试验研究[J].世界地震工程,2005,21(1):1-6.
    [27]曹万林,张建伟,田宝发等,钢筋混凝土带暗支撑中高剪力墙抗震性能试验研究[J],建筑结构学报,2002,23(6):26-32.
    [28]曹万林,张建伟,崔立长等,钢筋混凝土带暗支撑双功能低矮剪力墙抗震性能试验研究[J],建筑结构学报,2003,24(1):46-53.
    [29]W.L.Cao,D.Xue,J.W.Zhang.Seismic Performance of RC Shear Walls with Concealed Bracing.Advances in Structural Engineering,vol.6 No.1 2003:1-13.
    [30]曹万林,张建伟,田宝发,带暗支撑剪力墙体系抗震研究及应用[J],工程力学,2004,21(增刊):1-12.
    [31]曹万林,张建伟等,带暗支撑低矮剪力墙抗震性能试验及承载力计算[J],土木工程学报,2004,37(3):44-51.
    [32]吕西林,董宇光,丁子文.截面中部配置型钢的混凝土剪力墙抗震性能研究[J].地震工程与工程振动,2006,26(6):101-107.
    [33]魏勇,钱稼茹等.高轴压比钢骨混凝土矮墙水平加载试验[J].工业建筑,2007,37(6):76-79.
    [34]钱稼茹等.高轴压比钢骨混凝土剪力墙的抗震性能试验研究[J].建筑结构学报,2008,(4):43-50.
    [35]Astaneh-Asl."Seismic Behavior and Design of Composite Steel Plate Shear Walls." Steel TIPS Report.Structural Steel Educational Council.Moraga,CA.2002.
    [36]Zhao Qiuhong,Abolhassan Astaneh-Asl.Cyclic Behavior of Traditional and Innovative Composite shear Walls.ASCE,Journal of Structural Engineering,2004,130(2):271-285.
    [37]Katsuhiko Emori.Compressive and shear strength of concrete filled steel box wall.Steel Structures,2002,26(2):29-40.
    [38]Link RA,Elwi A E.Composite Concrete Steel Plate Walls:Analysis and Behavior.Journal of Structural Engineering,1995,121(2):260-271.
    [39]Tong Xiangdong,Hajjar Jerome F,Arturo E.Schultz,Carol K.Shield.Cyclic behavior of steel frame structures with composite reinforced concrete infill walls and partially restrained connections.Journal of Constructional Steel Research,2005,61(4):531-552.
    [40]SaariWilliam K,Hajja Jerome F,Schultz Arturo E,et al.Shield.Behavior of shear studs in steel frames with reinforced concrete infill walls.Journal of Constructional Steel Research.2004(60):1453-1480.
    [41]SOON,H.C.,BRYCE,T.and WILLIAM D,C.Structural steel boundary elements for ductile concrete walls.Journal of Structural Engineering,ASCE,2004,130(5),763-768.
    [42]梁兴文,邓明科,张兴虎等.高性能混凝土剪力墙性能设计理论的试验研究[J].建筑结构学报,2007,28(5):80-88.
    [43]Oh Y H,Han SW,Lee L H.Effect of boundary element details on the seismic Deformation capacity of structural walls.Earthquake Engineering and Structural Dynamics,2002,31(8):1583-1602.
    [44]左晓宝,戴自强,李砚波.改善高强混凝土剪力墙抗震性能的试验研究[J].工业建筑,2001,31(6):37-39.
    [45]孙香花,左晓宝.低周反复荷载作用下带竖缝高强混凝土剪力墙承载力研究[J].工业建筑,,2006,36(7):53-56.
    [46]李奎明,孙春毅,李杰.高性能混凝土双连梁短肢剪力墙试验研究[J].地震工程与工程振动,2006,26(3):121-123.
    [47]蒋东红,王连广等.高强钢骨混凝土框架柱的抗震性能.东北大学学报.2002,23(1):67-70.
    [48]李斌,李云云,薛刚.钢骨高强混凝土柱轴压力系数限值的研究。包头钢铁学院学学报,2004,23(2):166-170.
    [49]贾金青,徐世琅.钢骨高强混凝土短柱轴压力系数限值的试验研究,建筑结构学报,2003,24(1):14-18.
    [50]李俊华.低周反复荷载下型钢高强混凝土柱受力性能研究.西安建筑科技大学博士论文,2005.
    [51]李惠,刘克敏,吴波.钢骨高强混凝土叠合柱抗震性能试验研究.土木工程学报,2001,34(4):56-60.
    [1]陈肇元.高强与高性能混凝土的发展及应用[J].土木工程学报,1997,30(5):3-11.
    [2]周履.高性能混凝土(HPC)发展的综合评述[J].建筑结构,2004,34(6):65-72.
    [3]冯乃谦.高性能混凝土结构[M].机械工业出版社.2004.
    [4]赵鸿铁.钢与混凝土组合结构[M].北京:科学出版社,2001.
    [5]钟善桐.高层钢与混凝土组合结构[M].广州:华南理工大学出版社,2001.
    [6]吴中伟,廉慧珍.高性能混凝土[M].中国铁道出版社,1999.
    [7]Honggun Park et al.Moment-curvature relation-ship of flexure-dominated walls with partially confined end-zones[J].Engineering Structures,2007,29:33-45
    [8]吕西林,董宇光,丁子文.截面中部配置型钢的混凝土剪力墙抗震性能研究[J].地震工程与工程振动,2006,26(6):101-107.
    [9]白亮,梁兴文.边缘约束构件配箍特征值对剪力墙轴压比限值影响的分析[J].工业建筑,2009,39(4):47-51.
    [10]白亮,梁兴文.型钢剪力墙结构基于位移的变形能力设计方法[J].建筑结构(已录用).
    [11]建筑抗震试验方法规程(JGJ101-96)[S].
    [12]Emrah Erduran,Ahmet Yakut.Component Damage Functions For Reinforced Concrete Frame Structures[J].Engineering Structures,2007,29:2242-2253.
    [1]沈聚敏等.抗震工程学[M].北京:中国建筑工业出版社,2000.
    [2]郭子雄,杨勇.恢复力模型研究现状及存在问题[J].世界地震工程,2004,20(4):47-51.
    [3]廖飞宇,陶忠,韩林海.钢—混凝土组合剪力墙抗震性能研究简述[J].地震工程与工程振动,2006,26(5)129-135.
    [4]Youssef Belmouen and Pierino Lestuzzi.Analytical mode for predicting nonlinear reversed cyclic behavior of reinforced concrete structural walls.Engineering Structures.2007,29:1263-1276.
    [5]朱伯龙,张琨联.矩形及环形截面压弯构件恢复力特性的研究[J].同济大学学报,1981,9(2):1-10.
    [6]成文山,邹银生,等.钢筋混凝土压弯构件恢复力特性的研究[J].湖南大学学报,1983,10(4):13-22.
    [7]杜修力,欧进萍.钢筋混凝土结构低周疲劳效应对地震累积破坏的影响[J].建筑结构学报,1991,12(3).
    [8]郭子雄,童岳生,钱国芳.RC低矮抗震墙恢复力模型研究[J].西安建筑科技大学学报,1998,30(1):25-28.
    [9]郭子雄,吕西林.高轴压比下.RC框架柱恢复力模型试验研究[J].土木工程学报,2004,37(5):32-38.
    [10]周颖,吕西林.空腹式劲性钢筋混凝土柱的恢复力模型研究[J].结构工程师,2004,Vol.20(6):59-65.
    [11]张国军,吕西林,刘伯权.高强混凝土框架柱的恢复力模型研究[J].工程力学,2004,Vol.24(3):83-90.
    [12]吕西林,董宇光,丁子文.截面中部配置型钢的混凝土剪力墙抗震性能研究[J].地震工程与工程振动,2006,26(6):101-107.
    [13]李国强,崔大光.钢骨混凝土梁柱框支剪力墙试验与恢复力模型研究[J].建筑结构学报,2008,29(4):73-80.
    [1]GB 50011-2001,建筑抗震设计规范[S].
    [2]李兵,李宏男.钢筋混凝土剪力墙弹塑性分析方法[J].地震工程与工程振动,Vol.24,No.1,2004,(2):76-81.
    [3]蒋欢军,吕西林,用一种墙体单元模型分析剪力墙结构[J].地震工程与工程振动,Vol.18,No.3,1998,(9):40-48.
    [4]Kabeyasawa,S.T.H,Otanl S.U.S-Japan cooperative Research on RC Full-scale Building Test.Proc.of 8th WCEE,1984,6:627-634.
    [5]李国强,周向明,丁翔.钢筋混凝土剪力墙非线性动力分析模型[J].世界地震工程,2000.6,16(2):13-18.
    [6]张令心,孙景江,江近仁.钢筋混凝土剪力墙结构基于自平衡力的非线性地震反应分析[J].地震工程与工程振动,2001,121(4):29-34.
    [7]宋亚新.考虑土-桩-结构相互作用的框剪结构弹塑性地震反应分析[D].同济大学博士论文,1998.
    [8]孙景江,江近仁.高层建筑抗震墙非线性分析的扩展铁木辛哥分层梁单元[J].世界地震工程,2001,21(2):78-83.
    [9]Milev J I.Two dimensional analytical model of reinforced concrete shear walls[A].Proc.of 11 thWCEE,1996.
    [10]李宏男,李兵.钢筋混凝土剪力墙抗震恢复力模型及试验研究[J].建筑结构学报,2004,25(5):35-42.
    [11]Kabeyasawa,S.T.H,Otanl S.U.S-Japan cooperative Research on RC Full-scale Building Test.Proc.of 8th WCEE,1984,6:627-634.
    [12]Ghobarah A.,Youssef M..Modeling of Reinforced Concrete structural Walls[J].Engineering Structures,1999,21(10):912-923.
    [13]蒋欢军,吕西林.一种宏观剪力墙单元模型应用研究[J].地震工程与工程振动,2003,23(1):38-43.
    [14]Hwang H M,Jaw J W.Probability damage analysis of structure[J].Joumal of Structural Engineering,ASCE,1990,116(7):19-22.
    [15]吕西林,卢文生.纤维墙元模型在剪力墙结构非线性分析中的应用[J].力学季刊,2005,26(1):72-80.
    [16]龚治国,吕西林,姬守中.不同边缘构件约束的剪力墙抗震性能[J].武汉大学学报(工学版),2007,40(2):92-98.
    [17]Kangning Li.Canny Users' Manual:Technical Manual.Canny Consultant Pte Ltd,2004.
    [18]Hoshikuma J,Kawashima K,Nagaya K,Taylor AW.Stress-strain model for confined reinforced concrete in bridge piers[J].Journal of Structural Engineering,ASCE,1997,123(5):624-633.
    [1]陈肇元,朱金铨,吴佩刚.高强混凝土及其应用[M].清华大学出版社,1992
    [2]冯乃谦.高性能混凝土结构[M].机械工业出版社,2004
    [3]王连广著.钢与混凝土组合结构理论与计算.北京:科学出版社,2005.
    [4]李惠.高强混凝土及其组合结构[M].科学出版社,2004
    [5]吕西林,董宇光,丁子文.截面中部配置型钢的混凝土剪力墙抗震性能研究[J].地震工程与工程振动,2006,26(6):101-107.
    [6]乔彦明,钱稼茹.钢骨混凝土剪力墙抗剪性能的试验研究[J].建筑结构,1995,(8):3-7.
    [7]王志浩,钱稼茹.钢骨混凝土剪力墙的抗弯性能[J].建筑结构,1998,(2):13-21.
    [8]Bing Li,R.Park.Confining Reinforcement for High-Strengyh Concrete Columns.ACI Structural Journal.2004,101(3):314-324.
    [9]SOON,H.C.,BRYCE,T.and WILLIAM D,C.Structural steel boundary elements for ductile concrete walls.Journal of Structural Engineering,ASCE,2004,130(5),763-768.
    [10]魏勇,钱稼茹等.高轴压比钢骨混凝土矮墙水平加载试验[J].工业建筑,2007,37(6):76-79.
    [11]GB 500l 1-2001,建筑抗震设计规范[S].
    [12]过镇海.钢筋混凝土原理[J].北京:清华大学山版社,2003.
    [13]钱稼茹等.高轴压比钢骨混凝土剪力墙的抗震性能试验研究[J].建筑结构学报,2008,(4):43-50.
    [14]GB50010-2002,混凝土结构设计规范[S].
    [15]JGJ138-2001,型钢混凝土组合结构技术规程[S].
    [16]ACI Committee 318 Structural Building Code,ACI 318M-05,BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE AND COMMENTARY,American Concrete institute.
    [17]BRITISH STANDARD,BS8110-1:1997,Structural use of concrete,BRITISH.Authority of the Standards Board.
    [18]EUROPEAN STANDARD,Eurocode 2,Design of concrete structures,the Technical Committee CEN/TC 250.
    [19]EUROPEAN STANDARD,Eurocode 8,Design of structures for earthquake resistance,the Technical Committee CEN/TC 250.
    [20]CSA Standard,A23.3-04,Design of concrete structures,Canadian Standards Association.
    [21]Australian Standard,AS 3600-2001,Concrete structures,Committee BD-002.
    [1]范立础,卓卫东.桥梁延性抗震设计.北京:人民交通出版社,2001
    [2]范立础,胡世德等.大跨度桥梁抗震设计.北京:人民交通出版社,2001
    [3]GB50010-2002,混凝土结构设计规范[S].
    [4]过镇海.钢筋混凝土原理[J].北京:清华大学出版社,2003
    [5]钱稼茹等.高轴压比钢骨混凝土剪力墙的抗震性能试验研究[J].建筑结构学报,2008,(4):43-50.
    [6]Paulay,T.and Priesiey,M.J.N.(1992),Seismic Design of Reinforced Concrete and Masonry Buildings,New York:John Wiley & Sons,Inc.
    [7]王志浩,钱稼茹.钢骨混凝土剪力墙的抗弯性能[J].建筑结构,1998,(2):13-21.
    [8]吕西林,董宁光,丁子文.截面中部配置型钢的混凝土剪力墙抗震性能研究[J].地震工程与工程振动,2006,26(6):101-107.
    [1]钟善桐.高层钢与混凝土组合结构[M].广州:华南理工大学出版社,2003.
    [2]郭子雄,杨勇,王妙芳.型钢混凝土结构性能设计研究展望[J].哈尔滨工业大学学报(增刊),2005,37,14-17.
    [3]廖飞宇,陶忠.钢—混凝土组合剪力墙抗震性能研究初探[J].哈尔滨工业大学学报(增刊),2005,37,37-40.
    [4]PRIESTLEY,M.J.N.and KOWALSKY.M.J.Direct Displacement-Based Seismic Design of Concrete Buildings.Bulletion of the New Zealand Society for Earthquake Engineering2000,33(4):421-444.
    [5]MEDHEKAR,M.S.and KENNEDY,D.T.L.Displacement-Based Seismic Design of Building-Theory[J].Engineering Structures.2000,22(3):201-209.
    [6]PAULAY,T.An estimation of displacement limits for ductile systems[J].Earthquake Engineering and Structural Dynamics.2002,31(3):583-599.
    [7]中国工程建设标准化协会标准.建筑工程抗震性态设计通则(试用)CECS 160:2004[S],中国计划出版社,2004
    [8]王亚勇.我国2000年工程抗震设计模式规范基本研究问题综述[J].建筑结构学报,2000,21(1):1-4.
    [9]白亮,梁兴文,李向阳.桥梁抗震设计规范与建筑抗震设计规范的分析与比较[J].世界地震工程,2006,22(4):127-132.
    [10]王妙芳,杨勇.型钢混凝土柱抗震性态水平及极限状态的讨论[J].哈尔滨工业大学学报(增刊),2005,37,14-17.
    [11]SEAOC Vision 2000 a Framework for Performance2based Engineering[R].Structural Engineering Association of California,1995.
    [12]Krawinkler H.A Few Basic Concepts For Performance Based Seismic Design[C].11th World Conference on Earthquake Engineering.No.1133,No.2121,San Francisco,California,USA,1996.
    [13]Hamburger R O.Implementing Performane Based Seismic Design In Structural Engineering Practice[C].11th World Conference on Earthquake Engineering.No.2121,San Francisco,California,USA,1996.
    [14]白绍良译.钢筋混凝土建筑结构基于位移的抗震设计[R].国际结构混凝土联合会综合报告,2003.)
    [15]GB 50011-2001,建筑抗震设计规范[S].
    [16]武敏刚,吕西林.钢骨联肢剪力墙抗震性能试验研究.结构工程师,2004,20(5):52-56.
    [17]吕西林,董宇光,丁子文.截面中部配置型钢的混凝土剪力墙抗震性能研究[J].地震工程与工程振动,2006,26(6):101-107.
    [18]Qiuhong ZHAO and Abolhassan ASTANEH-ASL.Cyclic Behavior Of Traditional And Innovative Composite Shear Walls[C].13th World Conference on Earthquake Engineering.No.2578,Vancouver,B.C.,Canad,2004.
    [19]SOON,H.C.,BRYCE,T.and WILLIAM D,C.Structural steel boundary elements for ductile concrete walls.Journal of Structural Engineering,ASCE,2004,130(5),763-768.
    [20]Thomsen J H,Wallace J W.Displacement-based design of slender reinforced concrete walls-Experimental verification.Journal of Structural Engineering,2004,130(4):618-630.
    [21]乔彦明,钱稼茹.钢骨混凝土剪力墙抗剪性能的试验研究[J].建筑结构,1995,(8):3-7.
    [22]王志浩,钱稼茹.钢骨混凝土剪力墙的抗弯性能[J].建筑结构,1998,(2):13-21.
    [23]魏勇,钱稼茹等.高轴压比钢骨混凝土矮墙水平加载试验[J].工业建筑,2007,37(6):76-79.
    [24]钱稼茹等.高轴压比钢骨混凝土剪力墙的抗震性能试验研究[J].建筑结构学报,2008,(4):43-50.
    [25]Timothy White,Perry Adebar.Estimating rotational demands in high-rise concrete wall buildings[C].13th World Conference on Earthquake Engineering No.0935,Vancouver,B.C.,Canad,2004.
    [26]Thomsen N.Salonikios,Andreas J.Kappos et al.Cyclic Load Behavior Of Low-Slenderness Reinforced Concrete Walls:Design Basis And Test Result[J].ACI Structural Journal.1999,96(4):649-660.
    [27]Thomsen N.Salonikios,Andreas J.Kappos et al.Cyclic Load Behavior Of Low-Slenderness Reinforced Concrete Walls:Failure Modes,Strength and deformation analysis,and design implications.ACI Structural Journal.2000,97(1):132-141.
    [28]郭子雄.基于变形的抗震设计理论及应用研究[D].同济大学申请博士学位论文,2000.6.
    [29]周定松.钢筋混凝土框架结构基于性能的抗震设计方法[D].同济大学博士学位论文,2004.6.
    [30]梁兴文,邓明科,张兴虎等.高性能混凝土剪力墙性能设计理论的试验研究.建筑结构学报,2007,2(5):80-88
    [31]白亮,梁兴文.型钢剪力墙结构基于位移的变形能力设计方法[J].建筑结构(已录用).
    [32]白亮,梁兴文.边缘约束构件配箍特征值对剪力墙轴压比限值影响的分析[J].工业建筑,2009,39(4):47-51.
    [33]Honggun Park et al.Moment-curvature relation-ship of flexure-dominated walls with partially confined end-zones.Engineering Structures,2007,29:33-45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700