用户名: 密码: 验证码:
RC矩形截面剪力墙构件的抗震性能及其性能指标限值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
剪力墙作为高层建筑结构中重要的受力构件,其变形性能对整体结构的抗震性能有重要的影响。目前我国规范对剪力墙构件在地震作用下的变形需求主要由相关的构造措施来保证,尚未能给出剪力墙构件变形性能的量化指标,因此无法对剪力墙构件在地震作用下的性能状态作出准确的评价。本文主要对按照我国规范设计的RC矩形截面剪力墙构件的抗震性能及其在小震、中震和大震作用下的变形性能指标限值进行研究,具体包括以下几方面的内容:
     (1)利用非线性有限元方法对从已有文献中选取的27个整体剪力墙试件和2个双肢剪力墙试件进行模拟分析,并将有限元结果与试验结果进行比较,从而验证所采用的有限元模型及其参数的合理性和可靠性。
     (2)根据我国现行规范设计了一批(共626个)RC矩形截面整体剪力墙构件,利用可靠的非线性有限元方法对其受力状态及变形性能进行研究,并考察剪跨比λ、设计轴压比μ、实际配筋的弯剪比m、边缘构件的纵向配筋率ρ和体积配箍率ρv等因素的影响。
     (3)在对已有文献中72个整体剪力墙试件的试验数据及本文设计的626个整体剪力墙构件的有限元分析结果进行归纳整理的基础上,同时考虑剪跨比、实际配筋的弯剪比及边缘构件纵向配筋率的影响,提出一种更符合实际的RC矩形截面整体剪力墙构件破坏形态的判定标准。
     (4)基于整体剪力墙构件的受力、变形及破坏特点,提出了整体剪力墙构件极限状态的判定准则,并根据整体剪力墙构件的抗震设计要求,给出了对应于小震、中震及大震作用下整体剪力墙构件的变形限值要求。在对本文设计的626个整体剪力墙构件的有限元分析结果进行归纳统计的基础上,提出了基于我国规范的RC矩形截面整体剪力墙构件的变形性能指标及其限值:选取塑性位移角作为1.0≤λ<2.5的整体剪力墙构件的变形性能指标,并给出不同设置参数下1.0≤λ<2.5的RC矩形截面整体剪力墙构件在中震下的塑性位移角限值p△lim及大震下的塑性位移角限值a△lim;选取塑性区的塑性转角作为λ≥2.5的整体剪力墙构件的变形性能指标,并给出不同设置参数下λ≥2.5的RC矩形截面整体剪力墙构件在中震下的塑性转角限值pθlim及大震下的塑性转角限值aθlim。
     (5)对联肢剪力墙的受力特点及其判定方法进行了讨论,并根据连梁与墙肢的刚度比大小及其内力分布情况,给出了双肢剪力墙的构件划分方法,将双肢剪力墙划分为受力相对简单的连梁构件和墙肢构件进行分析,为双肢剪力墙的性能状态研究奠定了基础。
     (6)根据我国规范要求设计了14片五层的RC矩形截面双肢剪力墙,其整体系数均满足1≤α<10且连梁跨高比大于等于2.0,并利用可靠的非线性有限元方法对这批双肢剪力墙的受力状态及变形性能进行研究。根据有限元分析结果,对连梁构件的变形性能及其对双肢剪力墙的影响进行了初步分析;比较了墙肢构件与整体剪力墙构件受力状态与变形性能的异同,在此基础上提出了RC矩形截面墙肢构件的极限状态判定准则和基于我国规范的变形性能指标及其限值,并验证了对于λ≥2.5的墙肢构件,采用塑性转角作为其变形性能指标比层间位移角更合理,且更能反映出墙肢构件的薄弱部位和破坏情况。
     (7)比较了本文所确定的按照我国规范要求设计的RC矩形截面剪力墙构件的变形性能指标及其限值与美国规范中相应规定的差异及分析其产生的原因。本文对基于中国规范的剪力墙构件变形性能指标及其限值的研究为中国抗震规范由传统方法向基于性能方法的过渡提供了有利的依据。
As an important force-resisting component of the tall buildings, the deformation properties of the shear wall components have a greatly effect on seismic performance of the overall structure. The ductile demands of the components are ensured by corresponding structural measures and the quantitative criteria of the deformation properties for shear wall components are not given in current Chinese codes. Therefore the performance status of shear wall components under earthquakes cannot be evaluated properly. This paper mainly studies the seismic performance and the deformation performance index limits under frequent, fortified and severe earthquakes of RC shear wall components with rectangular section based on Chinese codes, including the following aspects:
     1) Nonlinear finite element method was used to simulate 27 isolated shear wall specimens and 2 coupled shear wall specimens, and their simulation results and experiments results of the specimens were compared and analyzed to verify the rationality and correctness of the finite element model and its parameters.
     2) Reliable nonlinear finite element method was applied to analyze the stress state and deformation performance of a total of 626 isolated RC shear wall components with rectangular section designed according to current Chinese codes. And parametric studies were made of the influence of shear span ratioλ, axial compression ratioμ, ratio of flexural capacity to shear capacity m, longitudinal reinforcement ratioρand volume stirrup ratioρv of confined boundary members.
     3) Based on the summaries and analysis of the experiment data of 72 isolated shear wall specimens in existing literatures and the finite element results of 626 isolated shear wall components in the paper, the more reasonable and realistic failure mode criteria of isolated RC shear wall components with rectangular section are proposed while taking into account the influences of shear span ratio, ratio of flexural capacity to shear capacity and longitudinal reinforcement ratio of confined boundary members.
     4) The ultimate status criteria for isolated shear wall components are proposed on the basis of the stress state, deformation and failure characteristics of the components. The demands of deformation limits for isolated shear wall components under frequent, fortified and severe earthquakes are put forward according to the seismic design requirements. Then, on the basis of summing up the finite element results of the 626 isolated RC shear wall components in the paper, the deformation performance index and its limits of the isolated RC shear wall components with rectangular section based on Chinese codes are proposed. The plastic drift is selected as the deformation performance index of the isolated shear wall components with 1.0≤λ<2.5, and the limits of the plastic drift p△lim under fortified earthquakes and the corresponding value a△lim under severe earthquakes are presented for the isolated RC shear wall components with rectangular section and with 1.0≤λ<2.5 under different parameters. Meanwhile, the plastic rotation of plastic zone is selected as the deformation performance index of the isolated shear wall components withλ≥2.5, and the limits of the plastic rotation pθlim under fortified earthquakes and the corresponding value aθlim under severe earthquakes are presented for the isolated RC shear wall components with rectangular section and withλ≥2.5 under different parameters.
     5) The loading characteristics and the determination method of coupled shear walls are first discussed. The components division method for coupled shear wall is given according to the stiffness ratio of coupling beam to wall pier and their stress state. Then, the coupled shear wall is divided into relative simple coupling beam components and wall pier components, which will set up the foundation for the study of performance status of coupled shear wall.
     6) The stress state and deformation performance of 14 five-story rectangular section of RC coupled shear walls designed according to Chinese codes were studied by using reliable nonlinear finite element method. The overall coefficient of the coupled shear wall satisfies the condition of 1≤α<10 and the span-to-depth ratio of the coupling beam is greater than or equal to 2.0. Based on the finite element analysis results, the deformation performance of coupling beam components and its impact on coupled shear wall are preliminary studied. The differences and similarities of the stress state and deformation performance between wall pier components and isolated shear wall components are compared. Then the ultimate status criteria, the deformation performance index and its limits for RC wall pier components with rectangular section based on Chinese codes are proposed. For the wall pier components withλ≥2.5, the plastic rotation is more reasonable taken as the performance index than the story drift, and it can better reflect the weak parts and destruction of wall pier components.
     7) The differences of the performance index and its limits of RC shear wall components with rectangular section between the value determined by the paper based on Chinese codes and that recommended by American codes and the causes of the differences are analyzed.
     The study of the performance index and its limits of shear wall components based on Chinese codes provides a favorable basis for the transition from the traditional method to the performance-based approach of Chinese seismic codes.
引文
[1]马宏旺,吕西林.建筑结构基于性能抗震设计的几个问题[J].同济大学学报, 2002, 30(12): 1429-1434
    [2]孙俊,刘铮,刘永芳.工程结构基于性能的抗震设计方法研究[J].四川建筑科学研究, 2005, 31(3): 98-101
    [3]建抗字第377号,建筑地震破坏等级划分标准[S].北京:中华人民共和国建设部, 1990
    [4] SEAOC Vision 2000, A framework for performance-based engineering [S]. US: Structural Engineers Association of California, 1995
    [5]邓明科.高性能混凝土剪力墙基于性能的抗震设计理论与试验研究[D].西安:西安建筑科技大学, 2006
    [6] FEMA 273, NEHRP guidelines for the seismic rehabilitation of buildings [S]. US: Federal Emergency Management Agency, 1997
    [7] ATC-40, Seismic evaluation and retrofit of concrete buildings [S]. US: California Seismic Safety Commission, 1996
    [8] FEMA 356, Prestandard and commentary for the seismic rehabilitation of buildings [S]. US: Federal Emergency Management Agency, 2000
    [9] ASCE 41, Seismic Rehabilitation of Existing Buildings [S]. US: American Society of Civil Engineers, 2007
    [10] GB50011-2001,建筑抗震设计规范[S].北京:中国建筑工业出版社, 2001
    [11]谢俊强.钢筋混凝土框架结构基于位移的抗震设计方法研究[D].西安:西安建筑科技大学, 2005
    [12]欧进萍,何郑,吴斌等.钢筋混凝土结构基于地震损伤性能的设计[J].地震工程与工程振动, 1999, 19(1): 21-30
    [13]欧进萍,何郑,吴斌等.钢筋混凝土结构的地震损伤控制设计[J].建筑结构学报, 2000, 21(1): 63-70
    [14] Adrian M.C., Nelson T.K.L. Performance-based design in earthquake engineering: A multi-disciplinary review [J]. Engineering structures, 2001, 23:1525-1543.
    [15]叶列平,伍文杰.基于能量准则的SDOF阻尼减震结构最大地震位移[J].清华大学学报(自然科学版), 2001, 41(12): 73-75
    [16]叶建荣,杨庆丽,曾鹏.基于位移的结构抗震设计方法[J].山西建筑, 2007, 33(28): 11-12.
    [17]鲍雷(Paulay T.),普里斯特利(Priestley M. J. N.).钢筋混凝土和砌体结构的抗震设计[M].北京:中国建筑工业出版社, 1999
    [18]刁现伟.不规则框架结构抗震性能研究及基于性能的抗震设计[D].上海:同济大学, 2006
    [19] Freeman S.A., Nicoletti J.P., Tyrdl J.V. Evaluation of existing building for seismic risk-a case study of Puget sound naval shipyard[J]. Bremerton, Washington, Proc. 1st U. S. National Conf. Earthquake Engng. EERI Berkley, 1975: 113-122.
    [20] Fajfar P. Capacity spectrum method based on inelastic demand spectra[J]. Earthquake Engineering and Structural Dynamics, 1999(28): 979-993
    [21]钱稼茹,罗文斌.建筑结构基于位移的抗震设计[J].建筑结构, 2001, 31(4): 3-6
    [22]姜锐.建筑结构基于位移的抗震设计方法研究[J].太原科技大学学报, 2005, 26(2): 153-156
    [23]田颖,钱稼茹,刘凤阁.在用RC框架结构基于位移的抗震性能评估[J].建筑结构, 2001, 31(7): 53-56
    [24]叶献国,周锡元.建筑结构地震反应简化分析方法的进一步改进[J].合肥工业大学学报, 2000, (4): 149-153
    [25]李晓莉,吴敏哲,郭棣.基于性能的结构抗震设计研究[J].世界地震工程, 2004, 20(1): 153-156.
    [26] Medhekar M.S., Kennedy D.J.L. Displacement-based seismic design of buildings - theory [J]. Engineering Structures, 2000, 22(3): 201-209
    [27] Medhekar M.S., Kennedy D.J.L. Displacement-based seismic design of buildings - application [J]. Engineering Structures, 2000, 22(3): 210-221
    [28] FEMA 274, NEHRP commentary on the guidelines for seismic rehabilitation of buildings [S]. US: Federal Emergency Management Agency, 1997
    [29] FEMA 349, Action plan for performance based seismic design [S]. US: Federal Emergency Management Agency, 2000
    [30] FEMA 445, Next-generation performance-based seismic design guidelines: program plan for new and existing buildings [S]. US: Federal Emergency Management Agency, 2006
    [31] Update to ASCE/SEI 41 Concrete Provisions [S]. US: Federal Emergency Management Agency, 2007.
    [32]小谷俊介(叶列平译).日本基于性能结构抗震设计方法的发展.建筑结构, 2000, 30(6): 3-9
    [33]程斌.高性能混凝土框架抗震及性能设计研究[D].上海:同济大学, 2003
    [34]徐培福,戴国莹.超限高层建筑结构基于性能抗震设计的研究[J].土木工程学报, 2005, 38(1): 1-10
    [35]白绍良译.钢筋混凝土建筑结构基于位移的抗震设计[R].国际结构混凝土联合会(FIB) (原欧洲混凝土学会CEB)综合报告, 2003
    [36]王亚勇.我国2000年抗震设计模式规范展望[J].建筑结构, 1999, 29(6): 32-36
    [37]李应斌,刘伯权,史庆轩.基于结构性能的抗震设计理论研究与展望[J].地震工程与工程振动, 2001, 21(4): 73-79
    [38]白晓红,白国良.基于性能的抗震设计理论的研究现状及展望[J].河南科技大学学报(自然科学版), 2005, 26(6): 74-77
    [39]吴波,熊焱.一种直接基于位移的结构抗震设计方法[J].地震工程与工程振动, 2005, 25(2): 62-67
    [40]郭磊,李建中,范立础.直接基于位移的结构抗震设计理论研究进展[J].世界地震工程, 2005, 21(4): 157-164
    [41]雷磊,韩小雷,郑宜.直接基于位移的抗震设计方法的研究[J].华南地震, 2007, 27(2): 26-32.
    [42]韩小雷,戴金华,何伟球等.广州花园酒店“白金五星级酒店”结构改造基于性能的可行性研究[J].地震工程与工程振动, 2007, 27(5): 88-94
    [43]韩小雷,郑宜,季静,黄艺燕.美国基于性能的高层建筑结构抗震设计规范[J].地震工程与工程振动. 2008, 28(1): 64-70
    [44]吴继伟.建筑结构性能设计方法与常规设计方法的比较[J].工程抗震与加固改造, 2009, 31(5): 70-73
    [45]吕文,钱稼茹,方鄂华.钢筋混凝土剪力墙延性的试验和计算[J].清华大学学报(自然科学版), 1999, 39(4): 88-91
    [46]钱稼茹,吕文,方鄂华.基于位移延性的剪力墙抗震设计[J].建筑结构学报, 1999, 20(3): 42-49
    [47]钱稼茹,徐福江.钢筋混凝土剪力墙基于位移的变形能力设计方法[J].清华大学学报(自然科学版), 2007, 47(3): 305-308.
    [48]钱稼茹,魏勇,赵作周等.高轴压比钢骨混凝土剪力墙抗震性能试验研究[J].建筑结构学报, 2008, 29(4): 43-50.
    [49]赵军,钱稼茹. RC剪力墙宏单元模型中抗剪弹簧的处理方法[J].工程抗震, 2003, (2): 13-19
    [50]陈勤,钱稼茹,李耕勤.剪力墙受力性能的宏模型静力弹塑性分析[J].土木工程学报, 2004, 37(3): 35-43
    [51]邓明科,梁兴文,刘清山.横向约束钢筋新配筋方案高性能混凝土剪力墙抗震性能的试验研究[J].西安建筑科技大学学报(自然科学版), 2006, 38(4): 538-543
    [52]梁兴文,邓明科,张兴虎等.高性能混凝土剪力墙性能设计理论的试验研究[J].建筑结构学报, 2007, 28(5): 80-88
    [53]梁兴文,杨鹏辉,崔晓玲等.带端柱高强混凝土剪力墙抗震性能试验研究[J].建筑结构学报, 2010, 31(1): 23-32
    [54]白亮,梁兴文.边缘约束构件配箍特征值对剪力墙轴压比限值影响的分析[J].工业建筑, 2009, 39(4): 44-48
    [55]梁兴文,杨鹏辉,邓明科.无约束边缘构件混凝土剪力墙的轴压比限值研究[J].工业建筑, 2009, 39(9): 67-70
    [56]辛力,梁兴文,邓明科.基于塑性铰转角需求的剪力墙边缘构件设计方法[J].工业建筑, 2009, 39(6): 50-54, 64
    [57]马恺泽,梁兴文,邓明科.基于性能的钢筋混凝土剪力墙变形能力分析研究[J].西安建筑科技大学学报(自然科学版), 2010, 42(2): 241-245
    [58]邓明科,梁兴文,辛力.剪力墙结构基于性能抗震设计的目标层间位移确定方法[J].工程力学, 2008, 25(11): 141-148
    [59]李萍,梁兴文,刘清山.小跨高比连梁新配筋方案的受力性能研究[J].工业建筑, 2008, 38(增刊): 159-164
    [60]刘清山,梁兴文,李萍.新配筋方案小跨高比连梁有效性的有限元验证[J].四川建筑科学研究, 2008, 34(5): 44-46
    [61]龚治国,吕西林,姬守中.不同边缘构件约束剪力墙抗震性能试验研究[J].结构工程师, 2006, 22(1): 56-61
    [62]章红梅,吕西林,鲁亮等.边缘约束构件对钢筋混凝土剪力墙抗震性能的影响[J].地震工程与工程振动, 2007, 27(1): 92-98
    [63]章红梅,吕西林,杨雪平等.边缘构件配箍对钢筋混凝土剪力墙抗震性能的影响[J].结构工程师, 2008, 24(5): 100-104, 118
    [64]龚治国,吕西林,姬守中.不同边缘构件约束的剪力墙抗震性能[J].武汉大学学报(工学版), 2007, 40(2): 92-98
    [65]黄志华,吕西林,周颖.钢筋混凝土剪力墙的变形能力及基于性能的抗震设计[J].地震工程与工程振动, 2009, 29(5): 86-93
    [66]张松,吕西林,章红梅.钢筋混凝土剪力墙配箍参数设计方法试验研究[J].结构工程师, 2009, 25(1): 83-89
    [67]张松,吕西林,章红梅.钢筋混凝土剪力墙构件极限位移的计算方法及试验研究[J].土木工程学报, 2009, 42(4): 10-16
    [68]陈云涛,吕西林.联肢剪力墙抗震性能研究——试验和理论分析[J].建筑结构学报, 2003, 24(4): 25-34
    [69]曹万林,孙天兵,杨兴民等.双向单排配筋混凝土高剪力墙抗震性能试验研究[J].世界地震工程, 2008, 24(3): 14-19
    [70]曹万林,吴定燕,杨兴民等.双向单排配筋混凝土低矮剪力墙抗震性能试验研究[J].世界地震工程, 2008, 24(4): 19-24
    [71]张建伟,杨兴民,曹万林等.单排配筋剪力墙结构抗震性能及设计研究[J].世界地震工程, 2009, 25(1): 77-81
    [72]曹万林,殷伟帅,杨兴民等.双向单排配筋中高剪力墙抗震性能试验研究[J].地震工程与工程振动, 2009, 29(1): 103-108
    [73]张建伟,曹万林,吴定燕等.单排配筋低矮剪力墙抗震试验及承载力模型[J].北京工业大学学报, 2010, 36(2): 179-186
    [74]曹万林,张建伟,孙天兵等.双向单排配筋高剪力墙抗震试验及计算分析[J].建筑结构学报, 2010, 31(1): 16-22
    [75]曹万林,刘强,张建伟等.再生混凝土低矮剪力墙抗震性能试验研究[J].世界地震工程, 2009, 25(1): 1-5
    [76]曹万林,徐泰光,刘强等.再生混凝土高剪力墙抗震性能试验研究[J].世界地震工程, 2009, 25(2): 18-23
    [77]刘春燕,曹万林,张建伟等.暗支撑配筋比对剪力墙抗震性能的影响[J].世界地震工程, 2000, 16(3): 73-76
    [78]曹万林,周明杰,郝春森等.带暗支撑剪力墙抗震耗能性能试验及计算分析[J].河北工业大学学报, 2000, 29(1): 57-61
    [79]董宏英,崔立长,曹万林等.暗支撑配筋比例对剪力墙抗震性能的影响[J].世界地震工程, 2001, 17(3): 75-79
    [80]董宏英,曹万林,霍达等.钢筋混凝土带暗支撑低矮剪力墙非线性有限元分析[J].地震工程与工程振动, 2002, 22(5): 66-70
    [81]曹万林,张建伟,田宝发等.钢筋混凝土带暗支撑中高剪力墙抗震性能试验研究[J].建筑结构学报, 2002, 23(6): 26-32, 55
    [82]张建伟,曹万林,赵长军等.带暗支撑中高剪力墙弹塑性有限元分析[J].北京工业大学学报, 2008, 34(1): 53-58
    [83]陶军平,曹万林,张静娜等.内藏钢桁架混凝土组合低剪力墙抗震性能试验研究[J].世界地震工程, 2006, 22(2): 131-137
    [84]郑同亮,曹万林,张静娜等.内藏钢桁架混凝土组合高剪力墙抗震性能试验研究[J].世界地震工程, 2006, 22(2): 77-83
    [85]张静娜,曹万林,郑同亮等.内藏钢桁架混凝土组合中高剪力墙抗震性能试验研究[J].地震工程与工程振动, 2006, 26(4): 108-113
    [86]张建伟,曹万林,王志惠等.高轴压比下内藏桁架的混凝土组合中高剪力墙抗震性能研究[J].工程力学, 2008, 25(增刊Ⅱ): 158-163
    [87]曹万林,董宏英,胡国振等.钢筋混凝土带暗支撑双肢剪力墙抗震性能试验研究[J].建筑结构学报, 2004, 25(3): 22-28
    [88]曹万林,董宏英,胡国振等.不同暗支撑型式的带暗支撑双肢剪力墙抗震性能试验研究[J].土木工程学报, 2005, 38(8): 18-25
    [89]董宏英,曹万林,胡国振等.不同连梁跨高比带暗支撑双肢剪力墙抗震性能试验研究[J].地震工程与工程振动, 2005, 25(1): 92-96
    [90]孙超.双向单排配筋带洞口混凝土剪力墙抗震性能试验与分析[D].北京:北京工业大学, 2008
    [91]张亚齐,曹万林,张建伟等.上部再生混凝土双肢剪力墙抗震性能试验研究[J].地震工程与工程振动, 2010, 30(1): 98-103
    [92]李宏男,李兵.钢筋混凝土剪力墙抗震恢复力模型及试验研究[J].建筑结构学报, 2004, 25(5): 35-42
    [93]李兵,李宏男,曹敬党.钢筋混凝土高剪力墙拟静力试验[J].沈阳建筑大学学报(自然科学版), 2009, 25(2): 230-234
    [94]王立长,李凡璘,朱维平等.设置暗支撑钢筋混凝土剪力墙的抗震性能试验研究[J].建筑结构学报, 2005(增刊): 51-58
    [95]季静,李首方,韩小雷等.无边缘约束构件剪力墙的对比试验研究[J].建筑科学, 2007, 23(11): 41-45
    [96]季静,雷磊,杨志强等.基于性能的抗震设计方法在剪力墙结构中的应用[J].地震工程与工程振动, 2006, 26(3): 60-62
    [97]司林军,李国强,孙飞飞.钢筋混凝土剪力墙的延性计算方法[J].河北工程大学学报(自然科学版), 2010, 27(1): 7-11
    [98]周广强,孙恒军,周德源.钢筋混凝土剪力墙抗震性能试验研究[J].山东建筑大学学报, 2010, 25(1): 41-45, 50
    [99]韩小雷,梁启智.带刚性连梁的双肢剪力墙结构的试验研究[J].土木工程学报, 1994, 27(1): 21-28
    [100]杜赞华,宋骥.连梁对RC双肢剪力墙抗震性能影响初探[J].石家庄铁道学院学报, 2000, 13(1): 49-51
    [101]王刚,王琼梅.双肢剪力墙中连梁延性的研究[J].四川建筑科学研究, 2007, 33(6): 41-44
    [102]杜宏彪,姜晶,管民生.不同跨高比连梁的联肢剪力墙的Pushover分析[J].工程抗震与加固改造, 2008, 30(3): 21-27, 45
    [103]委旭,史庆轩.钢筋混凝土双肢剪力墙非线性静力有限元分析[J].建筑科学与工程学报, 2008, 25(4): 53-57
    [104]马志林,史庆轩,王伟.钢筋混凝土联肢剪力墙弹塑性分析[J].建筑科学与工程学报, 2010, 27(1): 60-64, 72
    [105]王世平,张玲,金永华等.联肢墙的墙肢和连梁的刚度关系分析[J].建筑技术,2009, 40(9): 827-829
    [106]吴波,刘志强,林少书等.香港现役钢筋混凝土连梁的抗震性能试验研究[J].世界地震工程, 2002, 18(2): 9-16
    [107]刘志强,吴波,林少书.钢筋混凝土连梁的抗震性能研究[J].地震工程与工程振动, 2003, 23(5): 117-124
    [108]张彬彬.高层建筑剪力墙连系梁抗震性能的试验研究[D].重庆:重庆大学, 2001
    [109]张成林.剪力墙连梁在循环荷载下的受力性能研究[D].西安:西安科技大学, 2008
    [110] Thomsen IV J.H. Displacement based design of reinforced concrete structural walls: an experimental investigation walls with rectangular and T-shaped cross-sections [D]. US: Clarkson University, 1995
    [111] Thomsen IV J.H., Wallace J.W. Displacement-based design of slender reinforced concrete structural walls - experimental verification [J]. Journal of Structural Engineering, 2004, 130(4): 618-630
    [112] Vallenas J.M., Bertero V.V., Popov E.P. Hysteretic behavior of reinforced concrete structural walls [R]. US: University of California, Berkeley, 1979
    [113] Tasnimi A.A. Strength and deformation of mid-rise shear walls under load reversal [J]. Engineering Structures, 2000, 22(4): 311-322
    [114] Liu H. Effect of concrete strength on the response of ductile shear walls [D]. Canada: McGill University, 2004
    [115] Cho S.H., Tupper B., Cook W.D. Structural steel boundary elements for ductile concrete walls [J]. Journal of Structural Engineering, 2004, 130(5): 762-768
    [116] Chen X.Y. Effect of confinement on the response of ductile shear walls [D]. Canada: McGill University, 2005
    [117] Su R.K.L., Wong S.M. Seismic behaviour of slender reinforced concrete shear walls under high axial load ratio [J]. Engineering Structures, 2007, 29(8): 1957-1965
    [118] Dazio A., Beyer K., Bachmann H., et al. Quasi-static cyclic tests and plastic hinge analysis of RC structural walls [J]. Engineering Structures, 2009, 31(7): 1556-1571
    [119] Ghobarah A., Youssef M. Modelling of reinforced concrete structural walls [J]. Engineering Structures, 1999, 21(10): 912-923
    [120] Kwan A.K.H., He X.G. Finite element analysis of effect of concrete confinement onbehavior of shear walls [J]. Computers and Structures, 2001, 79(19): 1799-1810
    [121] Kwak H.G., Kim D.Y. Material nonlinear analysis of RC shear walls subject to monotonic loadings [J]. Engineering Structures, 2004, 26(11): 1517-1533
    [122] Kwak H.G., Kim D.Y. Material nonlinear analysis of RC shear walls subject to cyclic loadings [J]. Engineering Structures, 2004, 26(10): 1423-1436
    [123] Belmouden Y., Lestuzzi P. Analytical model for predicting nonlinear reversed cyclic behaviour of reinforced concrete structural walls [J]. Engineering Structures, 2007, 29(7): 1263-1276
    [124] Lopes M.S. Experimental shear-dominated response of RC walls - Part I: Objectives, methodology and results [J]. Engineering Structures, 2001, 23(3): 229-239
    [125] Salonikios T. N. Shear strength and deformation patterns of R/C walls with aspect ratio 1.0 and 1.5 designed to Eurocode 8 (EC8) [J]. Engineering Structures, 2002, 24(1): 39-49
    [126] Brueggen B., Waugh J., Aaleti S. Tests of structural walls to determine deformation contributions of interest for performance-based design [J]. Structural Engineering Research Frontiers, 2007, 249(6): 1-16
    [127] Riva P., Meda A., Giuriani E. Cyclic behaviour of a full scale RC structural wall [J]. Engineering Structures, 2003, 25(6):835-845
    [128] Kotronis P., Mazars J., Nguyen X.H., et al. The seismic behavior of reinforced concrete structural walls: experiments and modeling [J]. Geotechnical, Geological, and Earthquake Engineering, 2009, 7(6): 363-376
    [129] FEMA 306, Evaluation Of Earthquake Damaged Concrete and Masonry Wall Buildings [S]. US: Federal Emergency Management Agency, 1998
    [130]黄超,季静,韩小雷等.基于性能的既有钢筋混凝土建筑结构抗震评估与加固技术研究[J].地震工程与工程振动, 2008, 27(5): 72-79
    [131] JGJ 3-2002,高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社, 2002
    [132]江见鲸,陆新征,叶列平等.混凝土结构有限元分析[M].北京:清华大学出版社, 2005
    [133]孙景江,江近仁.高层建筑抗震墙非线性分析的扩展铁木辛哥分层梁单元[J].地震工程与工程振动, 2001, 21(2): 78-83
    [134]吕西林,卢文生.纤维墙元模型在剪力墙结构非线性分析中的应用[J].力学季刊, 2005, 26(1): 72-80
    [135]饶国祥.钢筋混凝土低剪力墙非线性分析及性能研究[D].长沙:湖南大学, 2005
    [136]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M].上海:同济大学出版社, 1997
    [137]李兵,李宏男.钢筋混凝土剪力墙弹塑性分析方法[J].地震工程与工程振动, 2004, 24(1): 76-81
    [138]过镇海.混凝土的强度和本构关系[M].北京:中国建筑工业出版社, 2004
    [139]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社, 2003
    [140] Inc ABAQUS. ABAQUS user manual, version 6.8[M]. 2008
    [141] Lubliner J., Oliver J., Oller S., et al. A Plastic-damage model for concrete [J]. International Journal of Solids and Structures. 1989, 25(3): 299-326
    [142] Lee J., Fenves G. L. Plastic-damage model for cyclic loading of concrete structures [J]. Journal of Engineering Mechanics. 1998, 124(8): 892-900
    [143]王金昌,陈页开. ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社, 2006
    [144]曹万林,杨兴民,黄选明等.带钢筋及钢骨暗支撑剪力墙抗震性能试验研究[J].世界地震工程, 2005, 21(1): 1-6
    [145]陈勤,李耕勤,钱稼茹. HRB400级钢筋焊接网剪力墙试验研究[J].混凝土, 2002, (7): 18-22
    [146]邱计划.钢纤维增强部分混凝土剪力墙受力性能试验研究[J].郑州:郑州大学, 2007
    [147]刘翠兰,祁学仁.陶粒砼剪力墙的试验研究[J].建筑结构学报, 1991, 12(6): 62-71
    [148] GB50010-2002,混凝土结构设计规范[S].北京:中国建筑工业出版社, 2002
    [149]沈聚敏,翁义军,冯世平.周期反复荷载下钢筋混凝土压弯构件的性能[J].土木工程学报, 1982, 15(2): 53-64
    [150]张展,周克荣.变高宽比高性能混凝土剪力墙抗震性能的试验研究[J].结构工程师, 2004, (2): 62-68
    [151]过镇海.钢筋混凝土原理[M].北京:清华大学出版社, 1999
    [152]刘志伟.高性能混凝土剪力墙抗震性能研究[D].上海:同济大学, 2003
    [153]郑万仁,张展,刘志伟等.轴压比对高性能混凝土剪力墙性能影响的试验研究[J].结构工程师, 2003, (增刊): 459-463
    [154]张展.高性能混凝土剪力墙平面内承载力分析[D].上海:同济大学, 2004
    [155]刘伯权,钱国芳,童岳生.高层剪力墙的强度及变形性能的研究[J].西安冶金建筑学院学报, 1989, 21(1): 10-18
    [156]蒋欢军,吕西林.沿竖向耗能剪力墙的低周反复荷载试验研究[J].工程力学, 1997, (增刊): 649-654
    [157]唐兴荣,蒋永生,丁大钧.一种新型低剪力墙的试验研究[J].东南大学学报, 1994, 24(3): 53-58
    [158]左晓宝,戴自强,李砚波.改善高强混凝土剪力墙抗震性能的试验研究[J].工业建筑, 2001, 31(6): 37-39
    [159]刘春燕.钢筋混凝土带暗支撑剪力墙抗震性能试验研究[J].北京:北京工业大学, 2000
    [160]董宏英.带暗支撑双肢剪力墙抗震性能试验及设计理论研究[J].北京:北京工业大学, 2002
    [161]李淑春,刁波,苏幼坡等.轻钢骨混凝土剪力墙结构抗震性能的试验[J].工业建筑, 2007, 37(2): 89-92
    [162]陶鹤进,于庆荣,史新亚.钢筋粉煤灰陶粒砼剪力墙受力性能的试验研究[J].建筑结构学报, 1994, 15(4): 20-30
    [163]张誉.混凝土结构基本原理[M].北京:中国建筑工业出版社, 2000
    [164] CECS 43: 92,钢筋混凝土装配整体式框架节点与连接设计规程[S].北京:中国建筑工业出版社, 1992
    [165] GB 1499.1-2008,钢筋混凝土用钢第1部分:热轧光圆钢筋[S].北京:中国标准出版社, 2008
    [166] GB 1499.2-2007,钢筋混凝土用钢第2部分:热轧带肋钢筋[S].北京:中国标准出版社, 2007
    [167]张秀琴,过镇海,王传志.反复荷载下箍筋约束混凝土的应力-应变全曲线方程[J].工业建筑, 1985, (12): 16-20
    [168]钱稼茹,程丽荣,周栋梁.普通箍筋约束混凝土柱的中心受压性能[J].清华大学学报(自然科学版), 2002, 42(10): 1369-1373
    [169]孙林柱.钢筋混凝土异形柱轴心受压性能的试验研究[D].天津:天津大学, 2006
    [170]姜锐,苏小卒.塑性铰长度经验公式的比较研究[J].工业建筑, 2008, 38(增刊): 425-430
    [171]霍达.高层建筑结构设计[M].北京:高等教育出版社, 2004
    [172]周林聪,陈龙珠,陈晓宝.连梁破坏模式与安全状态的简化判断[J].工业建筑, 2006, 36(3): 30-40, 119
    [173]龚炳年,方鄂华.反复荷载下联肢剪力墙结构连系梁的性能[J].建筑结构学报, 1988, 9(1): 34-40
    [174] ASTM A 706, Standard specification for low-alloy steel deformed and plain bars for concrete reinforcement [S]. US: ASTM Committee A01 on Steel, Stainless Steel, and Related Alloys, 2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700