用户名: 密码: 验证码:
既有钢筋混凝土剪力墙结构改造抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢筋混凝土剪力墙是一种广泛应用于高层建筑的抗侧力结构构件。由于剪力墙具有较大的抗侧刚度和良好的抗震性能,在结构体系中往往承受大部分的水平力,是一道重要的抗震防线。我国在过去的二三十年中,依据“74”系列规范建造了一批钢筋混凝土剪力墙结构,由于使用性质和使用功能的改变,需要对一部分既有剪力墙结构进行改造,改造后结构抗震性能的优劣是判断结构改造是否安全的关键所在,通常要求改造后的结构必须满足“小震不坏,中震可修,大震不倒”的抗震设防目标。本文的目的就是建立一种既有钢筋混凝土剪力墙结构改造抗震性能评估的方法,具体包括以下几部分内容:
     1)基于“74”系列规范及现行规范的不同构造要求,设计了10片剪力墙模型进行低周往复试验研究,主要参数为构造情况和洞口大小,分析了试件的破坏形态、荷载—应变关系、墙肢截面应变分布、开裂、屈服、极限和破坏等特征点、荷载—位移滞回曲线、刚度退化曲线、耗能能力等受力性能和抗震性能。
     2)通过对比上述试验结果,研究结构抗震构造、轴压比、开洞情况等参数对剪力墙的破坏形态、承载力、延性性能、刚度退化和耗能能力等各方面抗震性能的影响,分析改造前后剪力墙的结构抗震性能差异。
     3)在上述试验的基础上,引入一种纤维模型——多竖直杆单元模型,应用非线性分析平台OpenSEES进行结构试验的有限元分析。与试验结果进行对比,验证所采用的有限元模型及其参数的合理性和可靠性。进行弹簧数目、水平划分方法、竖向划分方法等参数分析,并给出实用建议。
     4)依据基于性能的抗震设计方法,提出一套针对既有建筑结构的抗震评估方法,指出在多遇地震、设防烈度地震和罕遇地震下结构构件性能目标和设计表达式,给出整体结构和不同构件在各阶段的量化性能目标。
     5)利用上述方法对一栋高层建筑剪力墙结构改造进行抗震评估分析,同时提出了一种剪力墙开洞后的加固构造措施。对比了结构改造前后抗震性能,并与现行规范要求进行对比,同时进行单片剪力墙改造前后的有限元分析,最终验证本文所提出剪力墙结构改造抗震评估方法的合理性和可行性。
As a principal structural component to resist lateral force, the reinforced concrete shear wall, which can provide much larger lateral stiffness to resist most of horizontal loads, is widely used in hide-rise buildings. In the past 30 years, an amount of reinforced concrete shear wall structures were built based on a series of Chinese specifications issued in 1974. However, due to changes of demands and functions, a part of existing shear wall structures needs retrofitting. Apparently, seismic performance of the structure after retrofitting is very essential for the safety. In other words, the structure after retrofitting should satisfy the seismic fortification criterion“no damage under frequent earthquake, repairable under moderate earthquake, and no collapse under severe earthquake”. The purpose of this paper is to establish a seismic performance evaluation method of existing reinforced concrete shear wall structures, including the following aspects:
     1) Based on different constructional details of a series of Chinese codes issued in 1974 and current Chinese codes, ten shear wall models are designed for low cyclic loading tests. Primary parameters are details and openings. The mechanical and seismic behavior such as failure modes of specimens, load-strain relationships, strain distribution of wall sections, characteristic points of cracking, yielding, limit state and failure, load-displacement hysteretic curves, stiffness degradation curves, energy dissipation capacity are analyzed.
     2) Based on experimental results mentioned above, considering the effect of parameters including design criterions, axial compression ratios and openings, the seismic performance of specimens such as failure modes, bearing capacity, ductility performance, stiffness degradation and energy dissipation capacity is analyzed. In addition, the performance of shear wall before and after retrofitting is compared.
     3) Based on test results, the finite-element analysis (FEA) is carried out using the nonlinear analysis platform OpenSEES by introducing a kind of fiber element model -- Multiple Vertical Line Element Model (MVLEM). Comparison between FEA and Test results verified that the finite-element models and parameters are reasonable and reliable. Furthermore, parameters including spring members, vertical and horizontal divisions are analyzed. As a result, a practical recommendation is provided.
     4) According to the performance-based seismic design method, a seismic evaluation method of existing buildings is put forward. Also design equations under frequent earthquake, moderate earthquake and severe earthquake are presented. Furthermore, performance objectives of structures and different structural components under different seismic fortification criterions are summarized.
     5) The method proposed in this paper has been applied to seismic evaluation analysis for retrofitting a hide-rise shear wall structure. The seismic performance of original and retrofitted structure, the requirement of the method and current Chinese codes is compared. Also the finite element analysis for original and altered single shear wall is carried out. Eventually, seismic evaluation method of shear wall structures reconstructing is proved to be reliable and feasible.
引文
[1] GB50011-2001,建筑抗震设计规范[S].北京:中国建筑工业出版社, 2008
    [2] GBJ11-74,建筑抗震设计规范[S].北京:中国建筑工业出版社, 1974
    [3] GB11-89,建筑抗震设计规范[S].北京:中国建筑工业出版社, 1989
    [4] Paulay Taylor,Priestley M. J. N.钢筋混凝土和砌体结构的抗震设计[M].北京:中国建筑工业出版社, 1999
    [5]方鄂华.高层建筑钢筋混凝土结构概念设计[M].北京:机械工业出版社, 2004
    [6]贺国京,阎奇武,袁锦根.工程结构弹塑性地震反应[M].中国铁道出版社:北京, 2005
    [7]李宏男.结构多维抗震理论[M].北京:科学出版社, 2006
    [8] Adrian M. C., Nelson T. K. L. Performance-based design in earthquake engineering: A multi-disciplinary review[J]. Engineering Structures. 2001, 23: 1525-1543
    [9]钱稼茹,罗文斌.建筑结构基于位移的抗震设计[J].建筑结构. 2001, 31(4): 3-6
    [10]马宏旺,吕西林.建筑结构基于性能抗震设计的几个问题[J].同济大学学报(自然科学版). 2002, 30(12): 1429-1434
    [11]徐培福,戴国莹.超限高层建筑结构基于性能抗震设计的研究[J].土木工程学报. 2005, 38(1): 1-10
    [12]韩小雷,郑宜,季静,等.美国基于性能的高层建筑结构抗震设计规范[J].地震工程与工程振动. 2008, 27(1): 64-70
    [13]季静,雷磊,杨志强,等.基于性能的抗震设计方法在剪力墙结构中的应用[J].地震工程与工程振动. 2006, 26(3): 60-62
    [14] SEAOC Vision 2000, A framework for performance-based engineering[S]. California: 1995
    [15] ATC-40, Seismic evaluation and retrofit of concrete buildings[S]. California: 1996
    [16] FEMA 273, NEHRP guidelines for the seismic rehabilitation of buildings[S]. US: 1997
    [17] FEMA 274, NEHRP commentary on the guidelines for seismic rehabilitation of buildings[S]. US: 1997
    [18] FEMA 349, Action plan for performance based seismic design[S]. USA: 2000
    [19] FEMA 356/FEMA 357, Prestandard and commentary for the seismic rehabilitation of buildings[S]. US: 2000
    [20] FEMA 445, Next-generation performance-based seismic design guidelines: program plan for new and existing buildings[S]. US: 2006
    [21] ASCE 41, Seismic rehabilitation of existing buildings[S]. US: 2007
    [22] Update to ASCE/SEI 41Concrete, Provisions, seismic rehabilitation of existing buildings[S]. US: 2007
    [23] AIJ, Guidelines for seismic performance evaluation of reinforced concrete buildings[S]. Tokyo: 2004
    [24] Eurocode 8, Design of structure for earthquake resistance[S]. Europe: 1998
    [25] GB50068-2001,建筑结构可靠度设计统一标准[S].北京:中国建筑工业出版社, 2001
    [26]王亚勇.我国2000年抗震设计模式规范展望[J].建筑结构. 1999, 29(6): 32-36
    [27] Freeman S. A., Nicoletti J. P., Tyrdl J. V. Evaluation of existing building for seismic risk-a case study of Puget sound naval shipyard[C]. Proceeding of 1st U. S. National Conference on Earthquake Engineering. Bremerton, Washington, US: EERI Berkley, 1975, 113-122
    [28] Fajfar P. Capacity spectrum method based on inelastic demand spectra[J]. Earthquake Engineering and Structural Dynamics. 1999, 28: 979-993
    [29]叶燎原,潘文.结构静力弹塑性分析(Push-over)的原理和计算实例[J].建筑结构学报. 2000, 21(1): 37-43
    [30] Chopra A. K., Goel R. K. Capacity-demand-diagram methods based on inelastic design spectrum[J]. Earthquake Spectra. 1999, 15(4): 637-656
    [31] Calvi G. M., Kingsley G. R. Displacement-based seismic design of multi-degree-of-freedom bridge structures[J]. Earthquake Engineering & Structural Dynamics., 24(9): 1247-1266
    [32]欧进萍,何政,吴斌,等.钢筋混凝土结构的地震损伤控制设计[J].建筑结构学报. 2000, 21(1): 63-70
    [33]钱稼茹,吕文,方鄂华.基于位移延性的剪力墙抗震设计[J].建筑结构学报. 1999, 20(3): 42-49
    [34]小谷俊介,叶列平.日本基于性能结构抗震设计方法的发展[J].建筑结构. 2000, 30(6): 3-9
    [35]罗文斌,钱稼茹. RC框架弹塑性位移的解构规则与构件的目标侧移角[J].工程力学. 2003, 20(5): 32-36
    [36]吕西林,郭子雄,王亚勇. RC框架梁柱组合件抗震性能试验研究[J].建筑结构学报.2001, 22(1): 2-7
    [37]周定松,吕西林.延性需求谱在基于性能的抗震设计中的应用[J].地震工程与工程振动. 2004, 24(1): 30-38
    [38]杨溥,李东,李英民,等.抗震结构静力弹塑性分析(Push-over)方法的研究进展[J].重庆建筑大学学报. 2000, 22(S1): 87-92
    [39]白晓红,白国良.基于性能的抗震设计理论的研究现状及展望[J].河南科技大学学报(自然科学版). 2005, 26(6): 74-77
    [40]吴波,熊焱.一种直接基于位移的结构抗震设计方法[J].地震工程与工程振动. 2005, 25(2): 62-67
    [41]梁兴文,邓明科,张兴虎,等.高性能混凝土剪力墙性能设计理论的试验研究[J].建筑结构学报. 2007, 28(5): 80-88
    [42]梁兴文,杨鹏辉,崔晓玲,等.带端柱高强混凝土剪力墙抗震性能试验研究[J].建筑结构学报. 2010, 31(1): 23-32
    [43]梁兴文,杨鹏辉,邓明科.无约束边缘构件混凝土剪力墙的轴压比限值研究[J].工业建筑. 2009, 39(9): 67-70
    [44] DGJ08-81-2000,现有建筑抗震鉴定与加固规程[S].上海:上海市工程建设规范, 2000
    [45] JGJ 123-2000,既有建筑地基基础加固技术规范[S].北京:中国建筑工业出版社, 2000
    [46] DG/TJ08-804-2005,既有建筑物结构检测与评定标准[S].上海:上海市工程建设规范, 2005
    [47] GB50367-2006,混凝土结构加固设计规范[S].北京:中国建筑工业出版社, 2006
    [48] JGJ 116—2009,建筑抗震加固技术规程[S].北京:中国建筑工业出版社, 2009
    [49] FEMA 306, Evaluation of earthquake damaged concrete and masonry wall buildings: Basic procedures manual[S]. US: 1998
    [50] FEMA 307, Evaluation of earthquake damaged concrete and masonry wall buildings: Technical resources[S]. US: 1998
    [51] FEMA 308, The repair of earthquake damaged concrete and masonry wall buildings[S]. US: 1999
    [52] FEMA 310, Handbook for seismic evaluation of buildings: A prestandard[S]. US: 1998
    [53]唐业清.关于既有建筑物增层改建工程的若干问题[J].铁道学报. 1989(03): 93-99
    [54]戴国莹.现有建筑物抗震鉴定加固技术(四)──砖房抗震加固技术[J].建筑科学. 1995(04): 30-32
    [55]戴国莹.现有建筑物抗震鉴定加固技术(二)──砖房抗震鉴定技术[J].建筑科学. 1995(02): 97-104
    [56]吴仁友,何叔平,张英.既有建筑物墙体防潮压注施工[J].建筑技术. 1996(04): 254-255
    [57]潘泓.既有建筑物的结构安全性检验[J].四川建筑科学研究. 2006(01): 87-88
    [58]常红星,李雨阁,张新中.既有建筑物的基础隔震加固技术[J].甘肃科技. 2007(08): 134-137
    [59]董博,邹立华,郭桃明.既有建筑物的改造与抗震加固研究[J].四川建筑. 2007(02): 83-86
    [60]郭忠贤,杨志红.既有建筑物地基土压密效应的研究[J].岩土工程技术. 2000(01): 62-64
    [61]林道宏.既有建筑物增层抗震设计新途径[J].福建建筑. 2000: 30-33
    [62]邓浩,刘洪波,郭贱苟.既有建筑物地基加固的几个问题[J].重庆交通学院学报. 2002(02): 83-86
    [63]黄明开,袁继雄,王湛.沿街既有建筑物隔振体系的开发应用[J].建筑科学. 2002(06): 24-26
    [64]李广平,吴伟衡.既有建筑物楼板结构和地基基础承载力检测技术的探讨[J].建筑结构. 2002(11): 29-31
    [65]许庆仁,彭炎华,庄亮质.既有建筑物基础加固与纠偏工程实录[J].岩土工程技术. 2002(02): 100-102
    [66]周清,刘祖德.应力解除法在既有建筑物纠偏中的应用[J].土工基础. 2003(03): 1-3
    [67]王红雨,杨敏.基坑附近既有建筑物地基承载力减损的估算[J].土木工程学报. 2005(08): 95-101
    [68]魏焕卫,贾强,孙剑平,等.既有建筑物基础加固荷载计算方法[J].四川建筑科学研究. 2007(01): 184-186
    [69]黄大治,陈龙珠.旁孔透射波法检测既有建筑物桩基的三维有限元分析[J].岩土力学. 2008(06): 1569-1574
    [70]逄铁铮.全程注浆在隧道穿越既有建筑物中的试验研究[J].岩土力学. 2008(12): 3451-3458
    [71]梁发云,陈海兵,孙海,等.浅埋地铁下穿越引起既有建筑物振动治理分析[J].岩土工程学报. 2010: 83-84
    [72]黄超,季静,韩小雷,等.基于性能的既有钢筋混凝土建筑结构抗震评估与加固技术研究[J].地震工程与工程振动. 2007, 27(5): 72-79
    [73]龚炳年,方鄂华.反复荷载下联肢剪力墙结构连系梁的性能[J].建筑结构学报. 1988, 9(1): 34-41
    [74]韩小雷,梁启智.带刚性连梁的双肢剪力墙结构的试验研究[J].土木工程学报. 1994, 21(1): 21-28
    [75]韩小雷.带刚性联梁的双肢剪力墙及其结构控制性能的研究[D].广州:华南理工大学, 1991
    [76]唐兴荣,蒋永生,丁大钧.一种新型低剪力墙的试验研究[J].东南大学学报. 1994, 24(3): 53-58
    [77]钱稼茹,魏勇,赵作周,等.高轴压比钢骨混凝土剪力墙抗震性能试验研究[J].建筑结构学报. 2008, 29(2): 43-50
    [78]钱稼茹,徐福江.钢筋混凝土剪力墙基于位移的变形能力设计方法[J].清华大学学报(自然科学版). 2007, 47(3): 305-308
    [79]曹万林,周明杰,郝春森,等.带暗支撑剪力墙抗震耗能性能试验及计算分析[J].河北工业大学学报. 2000, 29(1): 57-61
    [80]刘春燕,曹万林,张建伟,等.暗支撑配筋比对剪力墙抗震性能的影响[J].世界地震工程. 2000, 16(3): 73-76
    [81]曹万林,孙天兵,杨兴民,等.双向单排配筋混凝土高剪力墙抗震性能试验研究[J].世界地震工程. 2008, 24(3): 14-19
    [82]曹万林,吴定燕,杨兴民,等.双向单排配筋混凝土低矮剪力墙抗震性能试验研究[J].世界地震工程. 2008, 24(4): 19-24
    [83]曹万林,殷伟帅,杨兴民,等.双向单排配筋中高剪力墙抗震性能试验研究[J].地震工程与工程振动. 2009, 29(1): 103-108
    [84]曹万林,张建伟,孙天兵,等.双向单排配筋高剪力墙抗震试验及计算分析[J].建筑结构学报. 2010, 31(1): 16-22
    [85]左晓宝,戴自强,李砚波.改善高强混凝土剪力墙抗震性能的试验研究[J].工业建筑. 2001, 31(6): 37-39
    [86]陈云涛,吕西林.联肢剪力墙抗震性能研究——试验和理论分析[J].建筑结构学报. 2003, 24(4): 25-34
    [87]李宏男,李兵.钢筋混凝土剪力墙抗震恢复力模型及试验研究[J].建筑结构学报. 2004, 25(5): 35-42
    [88]张彬彬,白绍良,傅剑平,等.剪力墙小跨高比连梁合理配筋的试验研究[J].建筑科学. 2005, 25(4): 10-15
    [89]张彬彬.高层建筑剪力墙连系梁抗震性能的试验研究[D].重庆:重庆大学, 2001
    [90]邓明科,梁兴文,刘清山.横向约束钢筋新配筋方案高性能混凝土剪力墙抗震性能的试验研究[J].西安建筑科技大学学报(自然科学版). 2006, 37(4): 538-543
    [91]邓明科.高性能混凝土剪力墙基于性能的抗震设计理论与试验研究[D].西安:西安建筑科技大学, 2006
    [92]龚治国,吕西林,姬守中.不同边缘构件约束剪力墙抗震性能试验研究[J].结构工程师. 2006, 22(1): 56-61
    [93]龚治国,吕西林,姬守中.不同边缘构件约束的剪力墙抗震性能[J].武汉大学学报(工学版). 2007, 40(2): 92-98
    [94]白亮,梁兴文.边缘约束构件配箍特征值对剪力墙轴压比限值影响的分析[J].工业建筑. 2009, 39(4): 44-48
    [95]章红梅,吕西林,鲁亮,等.边缘约束构件对钢筋混凝土剪力墙抗震性能的影响[J].地震工程与工程振动. 2007, 27(1): 92-98
    [96]黄志华,吕西林,周颖.钢筋混凝土剪力墙的变形能力及基于性能的抗震设计[J].地震工程与工程振动. 2009, 29(5): 86-93
    [97]李兵,李宏男,曹敬党.钢筋混凝土高剪力墙拟静力试验[J].沈阳建筑大学学报(自然科学版). 2009, 25(2): 230-234
    [98]周广强,孙恒军,周德源.钢筋混凝土剪力墙抗震性能试验研究[J].山东建筑大学学报. 2010, 25(1): 41-45
    [99] Tasnimi A. A. Strength and deformation of mid-rise shear walls under load reversal[J]. Engineering Structures. 2000, 22(4): 311-322
    [100] Lopes M. S. Experimental shear-dominated response of RC walls - Part I: Objectives, methodology and results[J]. Engineering Structures. 2001, 23(3): 229-239
    [101] Thomsen IV J. H., Wallace J. W. Displacement-based design of slender reinforced concrete structural walls - experimental verification[J]. Journal of StructuralEngineering. 2004, 130(4): 618-630
    [102] Thomsen IV J. H. Displacement based design of reinforced concrete structural walls: an experimental investigation walls with rectangular and T-shaped cross-sections[D]. US: Clarkson University, 1995
    [103] Salonikios T. N. Shear strength and deformation patterns of R/C walls with aspect ratio 1.0 and 1.5 designed to Eurocode 8 (EC8)[J]. Engineering Structures. 2002, 24(1): 39-49
    [104] Oh Y. H., Han S. W., Lee L. H. Effect of boundary element details on the seismic capacity of structural walls[J]. Earthquake Engineering and Structural Dynamics. 2002, 31(8): 1583-1602
    [105] Riva P., Meda A., Giuriani E. Cyclic behaviour of a full scale RC structural wall[J]. Engineering Structures. 2003, 25(6): 835-845
    [106] Dazio A., Beyer K., H Bachmann, et al. Quasi-static cyclic tests and plastic hinge analysis of RC structural walls[J]. Engineering Structures. 2009, 31(7): 1556-1571
    [107] Kotronis P., Mazars J., Nguyen X. H., et al. The seismic behavior of reinforced concrete structural walls: experiments and modeling[J]. Geotechnical, Geological, and Earthquake Engineering. 2009, 7(6): 363-376
    [108]陈勤,钱稼茹,李耕勤.剪力墙受力性能的宏模型静力弹塑性分析[J].土木工程学报. 2004, 37(3): 35-43
    [109] Kwak H. G., Y Kim D. Material nonlinear analysis of RC shear walls subject to monotonic loadings[J]. Engineering Structures. 2004, 26 (11): 1517-1533
    [110] Kwak H. G., Y Kim D. Material nonlinear analysis of RC shear walls subject to cyclic loadings[J]. Engineering Structures. 2004, 26(10): 1423-1436
    [111] Hemsas M., Elachachi S. M., Breysse D. Modeling of non linear behaviour of reinforced concrete shear walls by macro-elements[J]. EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING. 2009, 13(5): 615-640
    [112] GB 50152-92,混凝土结构试验方法标准[S].北京:中国建筑工业出版社, 1992
    [113]过镇海.混凝土的强度与本构关系——原理与应用[M].北京: 2004
    [114] Mazzoni M., McKenna F., Scott H. M., et al. Open system for earthquake engineering simulation user command-language manual[M]. Berkeley, California, US: Pacific Earthquake Engineering Research Center , 2010
    [115] Kabeyasawa T., Shiohara H., Otani S., et al. Research on R/C full-scale building test,Part 5: Disscussion of dynamic response system[C]. Proceedings of 8th World Conference on Earthquake Engineering. San Francisco, US: 1984, 627-634
    [116] Linde P., Bachmann H. Dynamic modeling and design of earthquake resistant walls [J]. Earthquake Engineering & Structural Dynamics. 1994, 23(12): 1331-1350
    [117] Vulcano A., Bertero V. V. Analytical model for predicating the lateral response of RC shear wall: evaluation of their reliability[R]. Berkeley, California, US: Earthquake Engineering Research Center, 1987
    [118] Fajfar P., Fischinger M. Mathematical modeling of reinforced concrete structural Walls for nonlinear seismic concrete[C]. European Conference on Structure. Germany: 1990, 471-478
    [119]孙景江,江近仁.框架—剪力墙结构的非线性随机地震反应和可靠度分析[J].地震工程与工程振动. 1992, 12(2)
    [120]蒋欢军,吕西林.一种耗能剪力墙结构地震反应的简化计算方法[J].力学季刊. 2002, 23(1)
    [121] Orakcal K., Massone L. M., Wallace J. W. Analytical Modeling of Reinforced Concrete Walls for Predicting Flexural and Coupled-Shear-Flexural Responses [R].PEER, University of California, 2006[R]. Berkeley, US: Pacific Earthquake Engineering Research Center, 2006
    [122] Fischinger M., Isakovic T., Kante P. Implementation of a macro model to predict seismic response of RC structural walls[J]. Computers and Concrete. 2004, 1(2): 211-226
    [123] Kanaan A. E., Powell G. H. DRAIN-2D– A general purpose computer program for dynamic analysis of planar structures[R]. University of California, Berkeley: Earthquake Engineering Research Center, 1973
    [124] Kent D. C., Park R. Flexural members with confined concrete[J]. Journal of the Structural Division-ASCE. 1971, 97(7): 1969-1990
    [125] Scott B. D., Park R., Priestley M. J. N. Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates[J]. ACI Journal Proceedings. 1982, 84(4): 13-27
    [126] Menegotto M., Pinto P. E. Method of analysis for cyclically loaded R.C. plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending[C]. Proc. of IABSE Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads. 1973, 15-22
    [127] GB50010-2002,钢筋混凝土结构设计规范[S].北京:中国建筑工业出版社, 2001
    [128] GB50223-2008,建筑抗震设防分类标准[S].北京:中国建筑工业出版社, 2008
    [129] GB50023-2009,建筑抗震鉴定标准[S].北京:中国建筑工业出版社, 2009
    [130] CECS160:2004,建筑工程抗震性态设计通则[S].北京:中国计划出版社, 2004
    [131] GB50009-2001,建筑结构荷载规范[S].北京:中国建筑工业出版社, 2008
    [132] Reinhorn A. M. IDARC 2D Version 6.0 USER’S GUIDE[R]. Buffalo, New York: the State University of New York, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700