用户名: 密码: 验证码:
金属/炭复合材料制备及羰基硫催化转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
整体煤气化联合发电(IGCC)技术由于高效率、低污染特点成为当前最有前景的洁净燃煤发电技术之一,其中煤气脱硫净化是关键环节。煤气中含硫化合物主要是无机硫H_2S(90%以上)和有机硫COS、CS_2和极少量的硫醇、噻吩等,前者通过金属氧化物可以实现精脱除,而有机硫脱除还面临困难,致使总硫脱除率不高,难以达到工艺过程对脱硫精度的要求。因此煤气化过程中有机硫(COS)的脱除成了当今关注的热点。加氢转化法脱除有机硫精度高、操作简单,而且可以直接利用煤气中的H_2而无需外加气源,是加氢脱除煤气中COS最适宜方法。
     过渡金属镍、钼是很好的加氢脱除有机硫活性组分,载体多用γ-Al_2O_3,但是γ-Al_2O_3与金属氧化物间作用力强,易形成Al-O-M相,使预硫化不完全,从而降低COS催化转化率,以活性炭做载体便能克服以上缺陷,目前炭基Ni/Mo催化剂用于加氢脱除COS的报道较少。传统催化剂通常采用浸渍金属盐溶液、干燥、高温焙烧和预硫化处理得到。该法制备的催化剂一方面并不能得到人们想要的金属活性组分高度分散的催化剂;另一方面预硫化程序操作复杂、反应条件苛刻、能耗大,而且预硫化不一定完全。基于存在的这三方面问题,本文从两方面开展:
     (1)利用成本低廉的水溶性酚醛树脂为炭原料,水溶性金属盐类为催化剂前驱体,采用前驱体均相混合法制备不同金属种类和不同担载量的Mo/酚醛树脂基活性炭,标记为(M/PAC),并将其应用于COS的加氢催化转化研究,主要解决传统催化剂中载体和金属分散性的问题;
     (2)选择商业椰壳活性炭为载体,采用自制硫化态前驱体四硫代钼酸铵(ATTM)和硝酸镍溶液对活性炭进行等体积浸渍改性,焙烧后得到催化剂,标记为(M/AC),并将其应用于COS的加氢催化转化研究,解决载体和预硫化操作过程中存在的一系列问题。
     研究结果表明,MoS_2是主要的活性组分,硫化镍主要是促进Mo在活性炭载体表面的分散,并使Ni-Mo复合基催化剂生成更多的活性中心;实验所选条件下,担载Mo和Ni-Mo的催化剂对COS都有很高的转化率;在反应过程中,M/AC催化剂最佳反应温度范围在200℃-300℃,M/PAC最佳反应温度为240℃-300℃;M/AC催化剂对COS的脱除中既存在吸附又存在转化,而M/PAC催化剂是单纯转化过程;由于催化剂活性组分是硫化物,因此有失硫现象发生,但M/AC的失硫时间比M/PAC要长,反应稳定后,前者对COS的转化率比后者高。
The removal of sulfur specises is crucial in Integrated Gasification Combined Cycle (IGCC) technology which is regarded to be the most promising technology due to the high efficiency and low pollution features. The sulfur-containing compounds in the coal gas include mainly hydrogen sulfide and organic sulfur, such as carbonyl sulfides, carbon bisulfide and neglectable thiol, thiophene. Hydrogen sulfide can be removed successfully using metal oxide. However, organic sulfur removal is not so easy, which is difficult to reach the requirements of fine desulfurization. Therefore, the removal of organic sulfur (COS) in hot coal gas become an important topic today. Hydrodesulfurization is thought of the most appropriate method on removal of carbonyl sulfide because it not only has high desulfurization precision, simple operation, but also H_2 in the gas can be used directly without additional gas source.
     Transition metal nickel and molybdenum are both effective active components for carbonyl sulfide hydrodesulfurization reaction andγ-Al_2O_3 exclusively act as carrier. Because there is strong intercation betweenγ-Al_2O_3 and metal oxides, it is easy to form Al-O-Mo phase which is not propitious to presulfurize and. reduces the conversion of COS. This problem can be solved using activated carbon as carrier. However, the reports on research for catalytic conversion of carbonyl sulfides using (Ni)Mo/AC catalysts are few. Furthermore, traditional catalysts are prepared by incipient-wetness impregnation, dryness, calcined and presulfuration treatment using metal salts solution as modifiers. The catalysts using impregnation method have two aspects weakness. On one hand, the metal active component in the catalysts cannot be highly dispersed. On the other hand, presulfuration process is complicated to operate due to harsh conditions and energy-consuming. Moreover, the active components may not become entirely metal sulfide. The present work has been conducted focusing on three aspect problems refered.
     (1) Phenolic resin-based activated carbon desulfurized (M/PAC) containing the different kinds of metal and Mo with different loading are prepared using the mixture of low-cost water-soluble phenolic resin and metal salts as precursors and applied to the COS hydrogenation catalytic reaction to solve the problems of carrier and metal dispersing;
     (2) MAC desulfurizers are prepared by incipient-wetness impregnation method using ammonium tetrathiomolybdate (ATTM) as modifiers and commercial coconut shell activated carbon as catalyst carrier and applied to hydro-conversion behaviors study of carbonyl sulfide (COS) in hot coal gas to figure out the problems of carriers and presulfuration.
     The results show that M0S2 is the main active component. Ni sulfide specises are mainly responsible for better dispersion of Mo specises on actived carbon surface, as a result, more active centres can be formed. The catalysts with Mo and Ni-Mo both have high removal ability to COS under the experiment conditions. During reaction process, the optimal reaction temperature for M/AC and M/PAC is in the range of 200°C-300°C and 240°C-300°C, respectively. The removal of the COS includes both absorption and hydro-conversion courses using M/AC catalysts, whereas the catalytic conversion of COS is exclusively responsible for the removal of COS in M/PAC. Metal sulfide serves as active components in these catalysts, therefore both of them suffer from sulfur loss with low sulfur species in the gas system during reaction process. However, the sulfur loss time of M/AC catalysts is longer than that of M/PAC. The results also show COS conversion rate of M/AC is higher than that of M/PAC when the reaction approaches the state of equilibrium.
引文
[1]梁美生.铁酸锌高温煤气脱硫行为及气氛效应研究:(博士学位论文).山西:太原理工大学,2005.
    [2]樊惠玲.氧化铁高温煤气脱硫行为及助剂影响规律的研究:(博士学位论文).山西:太原理工大学,2004.
    [3]徐祥.IGCC和联产的系统研究:(博士学位论文).北京:中国科学院工程热物理研究所,2007.
    [4]杨直,李春虎.整体煤气化联合循环(IGCC)中高温煤气脱硫技术进展.山西化工,2001,21(2):15-17.
    [5]王芳芳,伍星亮,赵海等.干法脱除煤气中有机硫的研究现状与进展.煤化工,2007,3(总13期):28-32.
    [6]梁美生,李春虎,谢克昌.高温煤气脱硫剂的研究进展.煤炭转化,2002,25(1):13-17.
    [7]气化煤气与热解煤气共制合成气的多联产应用的基础研究(课题结题中期技术报告,无相变工艺匹配脱硫净化).山西:太原理工大学煤化工研究所.
    [8]Christopher H F.Edward S R.Integration of coal utilization and environmental control in integrated gasification combined cycle systems.Environmental Science & Technology,1992,26:1982-1990.
    [9]王祥云.合成氨气体净化技术进展(上)—脱硫技术的进展.化肥工业,2004,32(1):13-22.
    [10]Westmoreland P R.Harrion D P.Evaluation of candidate solids for high temperature desulfurization of low btu gases.Environmental Science & Technology,1976,10:659-661.
    [11]Uchida S.Koide K.Wen C Y.Gas absorption with fast reaction into a slurry case of fast gas absorption rate compared with solid dissolution rate.Chemical Engineering Science,1977,32:447-451.
    [12]张金昌,王树东,吴迪镛.高温煤气脱硫剂研究进展.化工环保,1998,18(3):139-145.
    [13]西北化工研究院科研处.西北化工研究院催化剂系统通过国际质量体系认证.工业催化,2001,(1):28
    [14]万晨,沙兴中,申文琴等.铜锰高温脱硫剂的研究Ⅰ.脱硫工艺条件对脱硫性能的影响.燃料化学学报,1998,26(5):400-405.
    [15]Aysel T.Atlmtay L D.Gasper-Galvln et al.Novel supported sorbent for hot gas desulfurization.Environmental Science & Technology,1993,27(7):1295-1303.
    [16]申文琴,鲁军,豆斌林等.热煤气中有机硫转化催化剂的选用.华东理工大学学报,2000,26(3):294-297.
    [17]申文琴,邢嵘,赵国靖等.热煤气中有机硫转化催化剂使用条件的探讨.煤气与热力,2000,20(5):327-330.
    [18]沙兴中,周中一.热煤气中有机硫转化催化剂使用条件的探讨.煤气与热力,2002,2(1):54-59.
    [19]梁丽彤,上官炬,李春虎等.国内外COS水解技术研究进展.天然气化工,2005,30(1):54-57.
    [20]王会娜,上官炬,王晓鹏等.羰基硫催化水解研究进展.工业催化,2007,15(2):18-21.
    [21]Huang H M,Nicola Y,Williams B P et al.High temperature COS hydrolysis catalysed by γ-Al_2O_3.Catalysis Letters,2006,110(3-4):243-246.
    [22]John W,Williams B P,Nicola Y et al.Low temperature hydrolysis of carbonyl sulfide using γ-alumina catalysts.Catalysis.Letters,2001,74:111-114.
    [23]West J,Williams B P,Nicola.Y et al.Ni- and Zn-promotion of γ-Al_2O_3 for the hydrolysis of COS under mild conditions.Catalysis Communication,2001,2:135-138.
    [24]Barry T,Williams B P,Young Z et al.Ambient temperature hydrolysis of carbonyl sulfide using γ-alumina catalysts:effect of calcination temperature and alkali doping.Catalysis Letters,2003,86(4):201-205.
    [25]上官炬,郭汉贤.氧化铝基COS、CS_2水解催化剂表面碱性和催化作用.分子催化,1997,11(5):337-342.
    [26]王兴国,渝华,王俊士等.常温有机硫水解催化剂及制备.中国,CN1069673A.1992.
    [27]陈亚宾,王富绩,俞伟民等.有机硫水解催化剂及制备.中国,CN1134312A,1996.
    [28]何文光,雒廷亮,徐耀武等.活性炭催化法脱除煤气中有机硫化合物的研究.河南化工,1991,9:17-20.
    [29]张金昌,李学令,王树东等.改性活性炭低温脱除COS的实验研究.辽宁化工,1998,27(2):102-104.
    [30]李福林,王树东,吴迪镛等.一步法羰基硫脱硫剂.中国,CN1180870C,2004.
    [31]廖欣峰.负载添加剂型活性炭脱有机硫的评价.环境污染与防治,1999,21(增刊):34-35.
    [32]王睿等.工业气体中H_2S的脱除方法发展现状与展望.天然气工业,1999,19(3):84-90.
    [33]马建新,张益群,肖忠斌等.用于羰基硫水解的稀土硫化物催化剂及其制备方法.中国,CN1151882C,2004.
    [34]张益群,肖忠斌,马建新等.O_2和SO_2对稀土氧硫化物上羰基硫水解反应的影响.复旦学报(自然科学)版,2003,42(3):379-381.
    [35]Zhang Y Q,Xiao Z B,Ma J X.Hydrolysis of carbonyl sulfide over rare earth oxysulfides.Applied Catalysis B:Environmental,2004,48:57-63.
    [36]周广林,付元胜,周红军.常温COS水解催化剂的失活与再生.石油化工,2001,30(8):602-604.
    [37]周广林,周红军,付元胜.常温COS水解催化剂失活原因与对策.大氮肥,2000,23(2):119-120.
    [38]林建英,郭汉贤,谢克昌.羰基硫水解催化剂的失活行为研究.宁夏大学学报,2001,22(2):192-194.
    [39]梁美生,李春虎,郭汉贤等.红外光谱法对COS水解催化剂氧中毒行为的研究.燃料化学学报,2002.30(4):347-352.
    [40]Liu J F,Liu Y C,Xue Let al.Oxygen poisoning mechanism of catalytic hydrolysis of OCS over Al_2O_3 at room temperature.Acta Phys.-Chim.Sin.,2007,23(7):997-1002.
    [41]Colin R,Stewart A R,West J et al.The low-temperature hydrolysis of carbonyl sulfide and carbon disulfide:a review.Catalysis Today,2000,59:443-464.
    [42]范健,雷军.COS脱除技术进展.安徽化工,2007,33(4):3-5.
    [43]杜彩霞.有机硫加氢转化催化剂的使用.工业催化,2003,11(9):13-17.
    [44]邹兰,陈聚良.T_(201)催化剂上COS加氢反应动力学研究.郑州工业大学学报,1998,19(增刊):21-24.
    [45]Topsφe H,Bjerne S C,Roberto C et al.In situ Mossbauer emission spectroscopy studies of unsupported and supported sulfided Co-Mo hydrodesulfurization catalysts:Evidence for and nature of a Co-Mo-S phase.Journal of Catalysis,1981,68(2):433-452.
    [46]Okamoto Y,Ochiai K,Kawano M et al.Evaluation of the maximum potential activity of Co-Mo/Al_2O_3 catalysts for hydrodesulfurization.Journal of Catalysis,2004,222:143-151.
    [47]周中一,邢嵘.镍基多功能高温煤气净化剂.热力与煤气,2003,23(1):3-6.
    [48]李新学,刘迎新,魏雄辉.羰基硫脱除技术.现代化工,2004,24(8):19-23.
    [49]Ralph T.Y,James M C.Kinetics of desulfurization of hot fuel gas with calcium oxide,reaction between carbonyl sulfide and calcium oxide.Environmental Science & Technology.1979,13(5):549-553.
    [50]郭汉贤,王恩过,梁生兆.微量TG法研究氧化锌脱硫的催化加氢效应及动力学行为.燃料化学学报,1993,21(3):261-270.
    [51]Ye S F,Zhao R F,Kitagawa K et al.Study on utilizing zinc and lead-bearing metallurgical dust as sulfur absorbent during briquette combustion.Energy,2005,30:2251-2260.
    [52]Joong B L,Chong K R,Chang K Y et al.Screening of zinc-based sorbents for hot-gas desulfurization.Energy & fuels,2008,22:1021-1026.
    [53]王恩过,郭汉贤.等效粒子模型在氢气氛下ZnO脱硫研究中的应用.太原理工大学学报,1993,24:73-79.
    [54]Wakker J.P,Albert W G,Jacob A M.High temperature H_2S and COS removal with MnO and FeO on γ-Al_2O_3 acceptors.Industrial & Engineering Chemistry Research,1993,32:139-149.
    [55]张金昌,王树东,付桂芝.IGCC高温煤气脱硫技术研究进展.煤气与热力,1998,8(2):10-13.
    [56]张金昌,吴迪镛.高温脱除H_2S/COS热力学可行性分析.辽宁化工,1999,28(6):325-328.
    [57]Kang S H,Bae J W,Kim H T et al.Effective removal of odorants in gaseous fuel for the hydrogen station using hydrodesulfurization and adsorption.Energy & Fuels,2007,21:3537-3540.
    [58]张红霞,锌基复合脱硫剂脱硫性能的研究.燃料化学学报,2007,35(5):619-623.
    [59]赵海,王芳芳,伍星亮等.复合金属氧化物脱除羰基硫的研究.煤炭转化,2007,30(2):31-35.
    [60]陈式荣.SH-T512型脱硫剂在大型氨厂的使用.工业催化,1994,2:51-52.
    [61]Kinya S,Wu Z H,Akimitsu M et al.Simultaneous removal of H_2S and COS using activated carbons and their supported catalysts.Catalysis Today,2005,104:94-100.
    [62]江霞,蒋文举,朱晓帆等.改性活性炭脱硫剂的研究进展.环境污染治理技术与设备,2003,4(11):12-15.
    [63]王国兴,黄新伟,叶敬东等.活性炭精脱硫剂的开发及应用.洁净煤技术,1997,3(3):25-27.
    [64]魏昭彬,辛勤,盛世善等.炭担载Mo和CoMo加氢脱硫催化剂.催化学报,1995,16(5):359-364.
    [65]Farag H,Whitehrust D D,Sakanishi K et al.Carbon versus alumina as a support for Co-Mo catalysts reactivity towards HDS of dibenuothiophenes and diesel fuel.Catalysis Today,1999,50(1):9-17.
    [66]陈学刚,宋怀河,陈晓红等.纳米金属粒子/炭复合材料及其研究进展.炭素技术,2000,(5):16-21.
    [67]Vannice M A,R L.The influence of the support on the catalytic behavior of ruthenium in CO/H_2synthesis reactions.Journal of Catalysis,1980,63:255-260.
    [68]Aika K,Hod H,Ozaki A.Activation of nitrogen by alkali metal promoted transition metal I.Ammonia synthesis over ruthenium promoted by alkali metal.Journal of Catalysis,1980,27:424-431.
    [69]尾崎等著.催化剂手册.北京:化学工业出版社,1982:150.
    [70]Guerrero A R,Rodriguez I R,Rodriguez F R et al.The role of nitrogen and oxygen surface groups in the behavior of carbon-supported iron and ruthenium catalysts.Carbon,1988,26:417-423.
    [71]Beer V H J,Derbyshire F J,Groot C K et al.Hydrodesulphurization activity and coking propensity of carbon and alumina supported catalysts.Fuel,1984,63:1095-1100.
    [72]Topsoe H.Preparation of catalysts Ⅱ Amsterdam.Elsevier,1979,479.
    [73]刘志.金属-炭材料的合成、表征和催化应用研究:(博士学位论文).大连:中国科学院大连化学物理研究所,2007.
    [74]Stephanie J S,Kathryn A L,Daniel R V W et al.Thiophene hydrodesulfurization over nickel phosphide catalysts:effect of the precursor composition and support.Journal of catalysis,2005,231:300-313.
    [75]Farag H,Whitehrust D D and Mochida I.Synthesis of active hydrodesulfurization carbon-supported Co-Mo catalysts.Relationships between preparation methods and activity/selectivity.Industrial &Engineering Chemistry Research,1998,37:3533-3539.
    [76]Ludek K,Miroslav Z.Carbon-supported Mo catalysts prepared by a new impregnation method using a MoO_3/water slurry:saturated loading,hydrodesulfurization activity and promotion by Co.Carbon,2001,39:2023-2034.
    [77]Hillerova E,Zdrazil M.Effect of loading on hydrodesulfurization activity of Mo/Al_2O_3 and Mo/C sulfide catalysts prepared by slurry impregnation with molybdic acid.Applied Catalysis A,1996,138:13-26.
    [78]Robert H,Jonathan A,Alain R et al.Characterization and HDS activies of mixed Fe-Mo sulphides supported on alumina and carbon.Fuel,2007,86:743-749.
    [79]Severino F,Laine J,Lopez-Agudo A.Compensation effect and dual promotion effect in activated carbon-supported CoNiMo hydrodesulfurization catalysts.Journal of Catalysis,2000,188:244-246.
    [80]Laine J,Labady M,Sevedno F et al.Sink effect in activated carbon-supported hydrodesulfurization catalysts.Journal of Catalysis,1997,166:384-387.
    [81]Solar J M,Derbyshire F J,Beer V H J et al.Effects of surface and structural properties of carbons on the behavior of carbon-supported molybdenum catalysts.Journal of Catalysis,1991,129(2):330-342.
    [82]Bouwens S M A M,Veen J A R,Koningsberger D C et al.Extended X-ray absorption fine structure determination of the structure of cobalt in carbon-supported Co and Co-Mo sulfide hydrodesulfurization catalysts.The Journal of Physical Chemistry,1991,95:123-134.
    [83]Eijsbouts S,Van Gestel J N M,Van Veen J A R et al.The effect of phosphate on the hydrodenitrogenation activity and selectivity of alumina-supported sulfided Mo,Ni and Ni-Mo catalysts.Journal of Catalysis,1991,131:412-432.
    [84]Duchet J C,van Oers E M,Beer V H J,et al.Carbon-supported sulfide catalysts.Journal of Catalysis,1983,80(2):386-402.
    [85]商红岩,刘晨光,徐永强等.活性炭负载的Co-Mo催化剂的加氢脱硫性能Ⅰ.活性炭载体与γ-Al_2O_3的对比.催化学报,2004,25(5):363-368.
    [86]Lshihara A,Dumeignil F,Wang D H et al.Investigation of sulfur behavior on CoMo-based HDS catalysts supported on high surface area TiO_2 by ~(35)S radioisotope tracer method.Applied Catalysis A,2005,292(1):50-60.
    [87]商红岩,刘晨光,徐永强等.Ni含量及预硫化对NiW/γ-Al_2O_3催化剂上噻吩加氢脱硫反应活性的影响.催化学报,2002,23(2):153-156.
    [88]Hengel T D,Walker P L.Catalysis of lignite char gasification by exchangeable calcium and magnesium.Fuel,1984,63:1214-1220.
    [89]Radovic L R,Walker P L,Jenkins R G.Importance of catalyst dispersion in the gasification of lignite chars.Journal of Catalysis,1983,82:382-394.
    [90]DeGroot W F,Richards G N.The effects of ion-exchanged cobalt catalysts on the gasification of wood chars in carbon dioxide.Fuel,1988,67:345-351.
    [91]Ehrburger P.Dispersion of small particles on carbon surfaces.Advances in Colloid and Interface Science,1984,21:275-302.
    [92]Richard D,Gallezol P.Preparation of catalysis Ⅳ,Amsterdam.Elsevier,1987,71.
    [93]Moreno C C,Maldonado F J H.Carbon aerogels for catalysis applications:An overview.Carbon,2005,43:455-465.
    [94]Nolan P E,Lynch D C.Catalytic disproportionation of CO in the absence of hydrogen:Encapsulating shell carbon formation.Carbon,1994,32(3):477-483.
    [95]Liu B H,Ding J,Zhong Z Y et al.Large-scale preparation of carbon-encapsulated cobalt nanoparticles by the catalytic method.Chemical Physics Letters,2002,358(1-2):96-102.
    [96]Teunissen W,De G F,Geus J et al.The structure of carbon encapsulated NiFe nanoparticles.Journal Of Catalysis,2001,204(1):169-174.
    [97]Rao C N,Sen R,Satishkumar B C et al.Large aligned-nanotube bundles from ferrocene pyrolysis.Chemical Communications,1998,(15):1525-1526.
    [98]Fu R W,Dresselhaus M S,Dresselhaus G et al.The growth of carbon nanostructures oncobalt-doped carbon aerogels.Journal of Non-Crystalline Solids,2003,318:223-232.
    [99]Maldonado-Hodar F J,Moreno-Castilla C,Rivera-Utrilla J et al.Catalytic graphitization of carbon aerogels by transition metals.Langmuir,2000,16:4367-4373.
    [100]Maldonado-Hodar F J,Perez-Cadenas A F,Moreno-Castilla C.Morphology of heat-treated tunsgten doped monolithic carbon aerogels.Carbon,2003,41:1291-1299.
    [101]Moreno-Castilla C,Maldonado-Hodar F J,Rivera-Utrilla J et al.Group 6 metal oxide-carbon aerogels.Their synthesis,characterization and catalytic activity in the skeletal isomerization of 1-butene.Applied Catalysis A:General,1999,183:345-356.
    [102]Perez-Cadenas A F,Maldonado-Hodar F J,Moreno-Castilla C.Molybdenum carbide formation in molybdenum-doped organic and carbon aerogels.Langrnuir,2005,21:10850-10855.
    [103]陈学刚,宋怀河,陈晓红等.纳米Fe/C复合材料的原位合成.材料研究学报,2002,16(2):146-150.
    [104]陈学刚,宋怀河,陈晓红等.萘和二茂铁共炭化制备纳米Fe/C材料的研究.新型炭材料,2000,15(4):5-8.
    [105]智林杰,赵彤,余云照.一种酚醛树脂纳米复合材料的制法及由其制备的产品.中国,CN1491984A.2004.
    [106]邵美秀,吴福盛,袁新华等.酚醛树脂改性研究进展.中国塑料,2005,19(7):7-11.
    [107]王勇,万涛,吴承思等.高性能酚醛树脂基活性炭的制备和应用.材料导报,2004,18(6):55-57.
    [108]Jagtoyen M,Derbyshire F.Activated carbons from yellow poplar and white oak by H_3 PO_4activation.Carbon,1998,36:1085
    [109]杨骏兵,凌立成,刘朗.固化和炭化条件对酚醛树脂基球形活性炭机械强度与吸附性能的影响.炭素技术,1999,4(总102期):10-14.
    [110]王勇,万涛,吴承思等.高性能酚醛树脂基活性炭的制备和应用.材料导报,2004,18(6):55-57.
    [111]Sing K S W,Everett D H,Haul R A W et al.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity.Pure & Applied Chemistry,1985,57(4):603-619.
    [112]Rouquerol J,Avnir D,Fairbridge C W et al.Recommendations for the characterization of porous solids.Pure & Applied Chemistry,1994,66(8):1739-1758.
    [113]杨骏兵,凌立成,吕春祥等.二茂铁的添加对酚醛树脂基球形活性炭活化特性以及孔分布的影响.离子交换与吸附,2000,16(2):155-161.
    [114]李步广,刘洪波,张琳等.酚醛树脂基高比表面积活性炭的制备及其电容特性的初步研究.炭素,2004,14(总120期):15-19.
    [115]甘琦,周昕,赵斌元等.成型活性炭的制备研究进展.材料导报,2006,20(1):61-63.
    [116]杨骏兵,凌立成,刘朗.酚醛树脂基球形炭活化特性的研究.新型炭材料,1999,14(4):11-16.
    [117]彭怡,古昌红,傅敏.活性炭改性的研究进展.重庆工商大学学报(自然科学版),2007,24(6):577-580.
    [118]黄伟,贾艳秋,孙盛凯.活性炭及其改性研究进展.化学工业与工程技术,2006,27(5):39-44.
    [119]程淑云.活性炭的改性及应用进展.河北化工,2007,30(6):48-49.
    [120]李毅鹏.活性炭的表面化学与表面改性.西北煤炭,2004,2(4):9-10.
    [121]蒋文举,金燕,朱晓帆等.活性炭材料的活化与改性.环境污染治理技术与设备,2002,3(12):25-27.
    [122]谢志刚,刘成伦.活性炭的制备及其应用进展.工业水处理,2005,25(7):10-12.
    [123]韩严和,全燮,薛大明等.活性炭改性研究进展.环境污染治理技术与设备,2003,4(1):33-37.
    [124]刘晨光,柴永明,赵会吉等.四硫代钼酸铵的制备方法.中国,CN1557697A.2004.
    [125]秦慧芳,张成芳,陆岗等.(NH_4)_2MoS_4在活性炭上浸渍过程的研究Ⅱ.干燥机理及模型.催化学报,1994,15(2):143-147.
    [126]秦慧芳,张成芳,陆岗等.(NH_4)_2MoS_4在活性炭上浸渍过程的研究Ⅰ.浸渍参数对(NH_4)_2MoS_4在活性炭上分布的影响.催化学报,1994,15(2):138-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700