用户名: 密码: 验证码:
超临界水浸渍法制备炭基负载金属氧化物中温脱硫用吸附剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以煤气化为基础的煤基多联产将能源转化与化工产品合成相结合可以实现煤炭资源价值的梯级利用,是煤炭高效清洁经济利用的途径之一。中高温煤气脱硫是解决该技术过程中污染物危害的关键技术之一。在250-500℃的温度范围内,进行煤气中含硫(H2S, COS)气体高效脱除的研究是目前关注的重点,主要解决吸附剂在上述温区反应活性低和容易失活的问题。因此,探索新型制备方法以改善吸附剂的中温活性并保持其循环稳定性具有重要的理论意义和研究价值。
     超临界水(SCW, Supercritical Water)具有很多独特的物理和化学特性快速的化学反应速率和金属氧化物的低溶解性可促进金属氧化物的成核;超临界水极强的传质特性和几乎为零的比表面张力,有利于金属或金属氧化物微粒进入到多孔材料的内部形成复合结构材料。
     本论文利用超临界水浸渍法(SCWI, Supercritical Water Impregnation)制备了系列负载型中温煤气吸附剂。考察了载体、前驱体种类和浓度、温度、浸渍时间、浸泡时间、金属活性组分等过程参数对吸附剂脱硫性能的影响,并与常规等体积浸渍法制备的吸附剂进行比较;结合XRD、孔结构分析仪等表征结果,对吸附剂的脱硫活性与活性组分的上载量、晶型、分布状态、以及载体的孔结构等因素进行关联,揭示制备方法影响吸附剂脱硫活性的主要规律。
     得出如下主要结论:1.载体对SCWI制备吸附剂的影响
     1)以Mn(NO3)2为前驱体溶液,以疏水性活性炭为载体SCWI制备的吸附剂脱硫性能优于以亲水性γ-Al2O3为载体制备的吸附剂。
     2)炭基吸附剂的硫容和金属利用率的大小与载体的比表面积具有较高的相关性,较高比表面积的载体担载的氧化锰呈高分散状态,具有较多的反应活性位;载体的低比表面积使氧化锰在其表面发生多层覆盖,甚至聚集使部分孔堵塞,使锰利用率下降。
     3)超临界水浸渍法制备吸附剂的过程可同时对载体进行二次活化、提高比表面积,使吸附剂的脱硫活性提高。2. SCW]制备吸附剂过程参数的影响
     1) SCW]制备过程中,通过改变前驱体浓度、制备温度、浸渍时间等参数,可以调控吸附剂的比表面积、孔容、活性组分的颗粒大小及分散性。实验考察的范围内,MnOx/AC最佳的SCW]制备条件为:以0.46mol/L硝酸锰溶液为前驱体,制备温度为380℃,浸渍时间为30min,此时吸附剂具有较高的脱硫精度和硫容,而且对AC载体的物理结构影响较小
     2)以Mn(NO3)2为前驱体,SCW]制备的吸附剂中Mn呈Mn3O4晶相,常规等体积浸渍法(PVI)制备的吸附剂中Mn呈MnO晶相。当前驱体浓度较低时,SCWI制备的吸附剂中活性组分分散性较好,粒径较小,脱硫活性优于负载相同量锰PVI制备的吸附剂;当前驱体浓度较大时,吸附剂中·活性组分出现严重聚集现象,脱硫活性较PVI制备的吸附剂差。
     3)以Mn(Ac)2为前驱体SCWI制备吸附剂过程中,Mn与活性炭中的Si发生反应生成Mn2SiO4, Mn2SiO4具有极低的脱硫活性;Mn活性组分分散性较差,颗粒聚集现象严重,脱硫活性差于以Mn(NO3)2为前驱体制备的吸附剂。
     3.SCWI制备的单一及复合金属氧化物吸附剂的硫化性能
     1)超临界水浸渍法制备的Zr、MN、Cu三种吸附剂的硫容和脱硫精度的大小顺序为CuOx/AC>ZnOx/AC。
     2)锰铜复合吸附剂有效提高了脱硫精度和硫容。吸附剂的硫容随着铜所占比例的增加而增大,锰铜摩尔比为3:7时吸附剂具有最佳的脱硫能力,其穿透时间和硫容分别为1185mmin和7.34 g S/100g。
     3)活性组分铜的添加促进了氧化锰的分散,提高了吸附剂中活性组分锰的利用率;硫化后Cu的衍射峰消失或强度减弱,也显示了锰的存在提高了吸附剂中活性组分铜的利用率。
Coal-based poly-generation technology based on coal gasification is the inevitable trend of the efficient, clean and economical use of coal, which can combine the the energy conversion and chemical products to achieve the step utilization of coal resources. In this process, hot coal gas desulfurization is one of the key technology to abate the hazard of pollutants. Nowdays scholars at home and abroad are focused on development The effective remove of H2S and COS in the middle temperature range of 250-500℃is the focal point to be concerned. The main problems needed to be overcome are the low reactivity and easy deactivation of sorbents. So it has very important significance to explore a new preparation method to improve the active of sorbent at middle temperature and keep the cycle stability.
     The Supercritical Water (SCW) possesses the specific chemical and physical properties. At the supercritical region, a fast reaction rate and low metal oxide solubility led to an extremely high nucleation rate, which allow for the formation of nano-sized particles. The gas-liquid transport properties and very low surface tension of supercritical water have the great contribution in the effective impregnation of metal oxides on porous solid materials and the enhanced dispersion of the particles deep inside the pores.
     The SCWI (Supercritical Water Impregnation) method is used to prepare supported sorbent for removing H2S from hot coal gas in this study. The effects of the supports, precursors and loading amounts, supercritical water temperature, impregnation time, soak time and metal active component during sorbent preparation on the removal of H2S in simulated coal-derived gas were investigated. And the desulfurization experiments of sorbents prepared from the pore volume impregnation (PVI) were also comparatively carried out. The characterization results from XRD, nitrogen sorption measurements and so on were correlated the loading amounts of metal oxide, crystal form and disperse of metal oxide, pore with desulfurization activity of sorbent to explore the effects of the operation parameters in SCWI preparation on the activity of sorbent desulfurization. The main conclusions are shown in the following:
     1. Effects of support on the sorbents prepared by SCWI
     1) The sulfidation properties of sorbents prepared using hydrophobicity AC support are better than hydrophilicγ-Al2O3 by SCWI and manganese nitrate precursor.
     2) The sulfur capacity and the use rate of active component are closely correlated with the surface area of support. AC have the highest surface area which can promote the disperse of metal oxides. The lower surface areas of AC-1 and CC cause the metal oxide aggregated seriously. The sequence of desulfurization activity of three sorbents was AC> AC-2> CC.
     3) During sorbent preparation by SCWI, the carbonization carbon support can be activated and the surface area is enhanced, which will cause the improving of desulfurization activity.
     2. Effect of the main operation factors in SCWI preparation on the sorbents
     1) The micropore volume and surface area of sorbents, the particle sizes of metal oxide particles and its dispersion on the support can be adjusted by changing the precursor concentration, preparation temperature and impregnation time during SCWI. The optima] SCWI conditions for preparing Mn-based sorbents are 0.46 mol/L precursor solution concentration,380℃preparing temperature, and 30 min impregnation time.
     2) The Mn3O4 is existed in the sorbent prepared by SCWI, the MnO is existed in the sorbent preparing by PVI. The manganese oxide particles are well dispersed on the sorbents prepared by SCWI with the low precursor solution concentration, the sulfidation properties of these sorbents are also better than those obtained by PV. However, when the concentration of precursor solution is high, the metal oxide particles on AC supports is aggregated seriously and metal utilization is remarkably decreased.
     3) The sulfidation properties of sorbents prepared by SCWI in the solution of manganese nitrate precursor are better than that of manganese acetate precursor. This is because Mn2SiO4 formed from reaction of Mn in Mn(Ac)2 and Si in AC support has the very low desulfurization activity, the manganese oxide particles are seriously agglomerated and poorly dispersed on the AC support with the precursor solution of Mn(Ac)2.
     3. The single-metal and bi-metal sorbents prepared by SCWI
     1) The sequence of sulfur capacity and desulfurization precision of Zn, Mn and Cu active component sorbents prepared by SCWI was MnOx/AC CuOx/AC> ZnOx/AC
     2) The bi-metal oxides active component of copper and manganese in the sorbent can promote the removal of H2S from hot coal gas, The sulfur capacity of sorbent increases with the increase of Cu content in the sorbent. The sorbent with the 3:7 molar ratio of manganese/copper has the optimum desulfurization capacity of 1185min and 7.34 g S/100g.
     3) The addition of copper component can effectively promote the dispersion of manganese oxide on AC support and improve the sulfidation capacity of the sorbent. The peak intensity of Cu is weaken or disappeared to improve the utilization rate of Cu-active component.
引文
[1]倪维斗,李政,薛元.以煤气化为核心的多联产能源系统-资源/能境/环境整体优化与可持续发展[J].中国工程科学.2000,(8):59-68.
    [2]胡笑颖,顾煜炯,杨昆.浅析煤炭多联产系统[J].煤炭技术.2005,24(12):7-9.
    [3]Gupta R. Gangwa] S K, Jain S C. Development of Zinc Ferrite for Desulfurization of Hot Coal Gas in a Fluid-Bed Reactor[J]. Energy&Fuels,1992; (6):227.
    [4]Westmoreland P R, Harrison D P. Evaluation of Candidate Solids for High Temperature Desulfurization of Low-Btu gases[J]. Environ. Sci. Technol.1976.10(7):659-661.
    [5]Tseng S C. Tamhankar S S, Wen C Y. Knetic Studies on the Reactions Involved in the Hot Gas Desulfufization Using a Regenerable Iron Oxide Sorbent-Ⅰ Reactions and Sulfidation of Iron Oxide[J]. Chem. Eng. Sci.1981,36(7):1181-1191.
    [6]Schrodt J T. Hot Gas Desulfurization-Ⅰ:Use of Gasifier Ash in a Fixed-Bed Process[C]. Final Report. Department of Chemical Engineering, University of Kentucky.1980, April.
    [7]Schrodt J T. Hot Gas Desulfurization-Ⅰ:Use of Gasifier Ash in a Fluided-Bed Process[C]. Final Report. Department of Chemical Engineering, University of Kentucky.1981, Februry.
    [8]Schrodt J T. Hot-Gas Desulfurization-Ⅱ:Use of Gasifier Ash in a Fluidized-Bed Process[C]. Final Report. Department of Chemical Engineering. University of Kentucky, 1981,February.
    [9]Sasaoka E, Sakamoto M, Ichio T, etc. Reactivity and Durability of Iron Oxide High Temperature Desulfurization Sorbents[J]. Energy&Fuels,1993,7(5):632-638.
    [10]Sasaoka E, Ichio T, Kasaoka S. High-temperature Hydrogen Sulfide Removal from Coal-derived Gas by Iron Ore[J]. Energy &Fuelss,1992,6(5):603-608.
    [11]李彦旭,田青平,郭汉贤,等.氧化铁脱硫剂高温煤气脱硫行为的研究-还原及硫化动力学[J].燃料化学学报,1998,26(2):130-134.
    [12]李彦旭,李春虎,郭汉贤,等.高温氧化铁脱硫剂还原硫化的热重热磁研究[J].燃料化学学报,1998,26(4):345-350.
    [3]李彦旭,李春虎,郭汉贤,等.铁钙氧化物高温脱硫过程中H2和H2O(g)效应[J].燃料化学学报,2000,28(2):120-123.
    [4]李彦旭,宋靖,李春虎,等.铁钙混合氧化物脱硫剂的硫化与再生过程研究[J].高校化学工程学报,2001,15(2):133-137.
    [5]李彦旭,谢克昌,李春虎,等.程序升温过程铁钙氧化物高温脱硫动力学行为表征[J].环境科学学报.2001,21(2):]78-183.
    [16]樊惠玲.氧化铁高温煤气脱硫行为及助剂影响规律的研究[D].太原理工大学博士论文2004
    [7]Evangelos A,Efthmiads S,Sotirchos V.Reactivity Evolution During Sulfidation of Porous Zinc Oxides[J].Chem.Eng.Sci.1993,48(5):829-843.
    [8]James B,Glboson Ⅲ,Harrison D P.The Reaction Between Hydrogen Sulfide and Spherical Pellets of Zinc Oxide[J].Ind.Eng.Chem. Process Des.Dev.1980:19:231-237
    [9]樊惠玲,郭汉贤,李春虎,等.一氧化碳和氧对氧化锌脱硫行为的影响[J].复旦学报(自然科学版),2003,42(3):274-279.
    [20]金国杰,樊惠玲,李春虎,等.氧化锌脱硫中氢和氧的双气氛效应及动力学研究[J].燃料化学学报,2003,32(4):328-332.
    [2]Fan H L,Li Y X,Li C H,etc.The Apparent Kinetics of H2S Removal by Zinc Oxide in the Presence of Hydrogen[J].Fuel,2002:81:91-96.
    [22]Sasaoka E.Stablity of Zinc Oxide High-Temperature Desulfurization Sorbents for Reduction[J].Energy & Fuels,1994,8:763-769.
    [23]Patrick V,Gavalas G R, Flytzani-Stephanopoulos M, etc. High-temperature Sulfidation-regeneration of Copper(Ⅱ)Oxide-alumina Sorbents[J].Ind.Eng.Chem.Res. 1989,28(7):931-940.
    [24]Takashi K,Kawasshima H.Akira T,etc.Removal of H2S from Hot Gas in the Presencc of Cu-Containing Sorbents[J].Fule.1989, 68:74-79.
    [25]Abbasian J,Slimane R B.A Regenerable Copper-based Sorbent for H2S Removal from Coal Gas[J].Ind Eng.Chem.Res.1989,37(7):2775-2782.
    [26]Flytzano-Stephanopoulos M,Li Z.Cu-Cr-O and Cu-Ce-O Regenerable Oxide Sorbents for Hot Gas Desulfurization[J].Ind.Eng.Chem.Res.1997,36(1):187-196.
    [27]Alonso L,Palacios J M,Garcia E,etc.Characterization of Mn and Cu Oxides as Regenerable Sorbents for Hot Coal Gas Desulfurization[J]. Fuel Processing Technology. 2000,62:31-44.
    [28]Yrjas P. Lisa K, Hupa M. Limestone and Dolomite as Sulfur Absorbents Under Pressurized Gasification Conditions[J]. Fuel.1996,75(1):89-95.
    [29]Akiti Jr T T, Constant K P, Doraiswamy L K, etc. An Improved Core-in-shell Sorbents for Desulfurizing Hot Coal Gas[J]. Advances in Environmental Research.2002,6(4): 419-428.
    [30]Akiti Jr T T. Constant K P. Doraiswamy L K, etc. A Regenerable Calcium-based Core-in-shell Sorbents for Desulfurizing Hot Coal Gas[J]. Ind. Eng. Chem. Res.2002. 41(3):587-597.
    [3]Wheelock T D. Cyclic Process for Oxidation of Calcium Su]fide[P]. U.S. Patent 5433939, 1995-07-18.
    [32]Fan H L, Xie K C, Shangguan J,Shen F, Li C H. Effect of Calcium Oxide Additive on the Performance of Iron Oxide Sorbent for High-temperature Coal Gas Desulfurization[J]. Journal of Natural Gas Chemistry.2007,16:404-408.
    [33]Zeng Y, Zhang S, Groves F R, etc. High Temperature Gas Desulfurization with Elemental Sulfur Production[J]. Chem Eng. Sci.1999,54:3007-3017.
    [34]Zeng Y, Kaytakoglu S, Harrison D P. Reduced Cerium Oxide as an Efficient and Durable High Temperature Desulfurization Sorbent[J]. Chem Eng. Sci.2000:55:4893-4900.
    [35]Bakker W J W, Kapteijn F, Moulijn J A. A high Capacity Manganese-based Sorbent for Regenerative High Temperature Desulfurization with Direct Sulfur Production Conceptual Process Application to Coal Gas Cleaning[J]. Chemical Engineering Journal. 2003,96:223-35.
    [36]Garcia E, Palacios J M, Alonso L, etc. Performance of Mn and Cu Mixed Oxides as Regenerable Sorbents for Hot Coat Gas Desulfurization[J]. Energy&Fuels.2000,14: 1296-1303.
    [37]Alonso L, Palacios J M. Performance and Recovering of a Zn-Doped Manganese Oxides aS Regenerable Sorbent for Hot Coal Gas Desulfudzation[J]. Energy&Fuels.2002,16: 1550-1556.
    [38]任秀蓉.铁锰基吸附剂中温脱硫性能及气氛效应的研究[D]太原:太原理工大学,2010.
    [39]Grindley T,Steinfeld G.Development and Testing of Regenerable Hot Coal Gas Desulfurizatioon Sorbents[C].DOE/MC/16545-1125,1981.
    [40]Grindley T. Zinc Ferrite Hydrogen Sulfide Absorbent.In Third Annual Contaminant Control in Hot Coal-derived Gas Streams Contractors' Meeting Proceedings[C].Science Applications,Inc.DOE/METC/184-6.NTlS/DE84000216.December,1983:145-172.
    [4]Gridley T,Goldmith H.Development of Zinc Ferrite Desulfurization Sorbents for Large Scale Testing[C].Presented at the AICHE Annual Meeting,Session 114d,Ney York, November,1987:15-20.
    [42]Akyurtlu J F,Akyurtlu A.Hot Gas Desulfurization with Vanadium-Promoted Zinc Ferrrite Sorbents[J].Gas.Sep.Purif.1995.9(1):17-25.
    [43]Focht G D,Ranade P V,Harrison D P.High-Temperature Desulfurization Using Zinc Ferrite:Reduction and Sulfidation Kinetics[J].Chem Eng.Sci.1988,43:3005-3013.
    [44]Sa L A,Focht G D,Ranade P V And Harrison D P.High-Temperature Desulfurization Using Zinc Ferrite:Solid Structural Property Changes[J].Chem Eng. Sci.1989,44(2): 215-224.
    [45]Lew S,Kandaswami J,Flytzani-Stephampoulos M.High-Temperature H2S Renouval from Fuel Gases by Regenerable Zinc Oxide-Titanlum Dioxide Sorbents[J].Ind.Eng.Chem. Res.]989:28(5):535-54].
    [46]Lew S,Sarofim A F,Flytzani-Stephanopoulos M.The Reduction of Zinc Titanate and Zinc Oxide Solids[J].Chem Eng.Sci.1992,47(6):1421-1431.
    [47]Jun H K,Koo J H.A Study of Zn Ti based H2S Removal Sorbents Promoted with Cobalt and Nickel O×ides[J].Energy &Fuels.2004,18:41-48.
    (48]Ko T H,Chu H,Chaung L K,etc.High Temperature Removal of Hydrogen Sulfinde Using an N-150 Sorbent[J].Journal of Hazardous Materials.2004,114:145-142.
    [49]卢朝阳,沙兴中,鲁军,等.高温煤气脱硫:Ⅰ.铁锌基吸附剂脱硫工艺条件及硫化动力学[J].燃料化学学报.1996,24(6):492-497
    [50]樊惠玲,郭红生,郭汉贤,等.氧化锌脱硫中氢的气氛效应及动力学表征[J].燃料 化学学报.]998,26(5):440-445.
    [5]Akyurtlu J F, Akyurtlu A. Fuel Gas Desulfurization[J]. Ind. Eng. Chem.1994:33(4): 234-243.
    [52]黄戒介,赵建涛,陈富艳,等.氧化钙脱硫逆反应过程的研究[J].燃料化学学报.2005,33(2):]46-149.
    [53]Tamhankar S S, Hasatani M, Wen C Y. Knetic Studies on the Reactions Involved in the Hot Gas Desulfurization Using a Regenerable Iron Oxide Sorbent-Ⅱ Reactions of the Sulfided Sorbent with Oxygen and Sulfur Dioxide[J]. Chem. Eng. Sci.1981, (36): 1287-1294.
    [54]White J D, Groves E R, Harrison D P. Element Sulfur Production During the Regeneration of Iron Oxide High-temperature Desulfurization Sorbent[J]. Catalysis Today.1998,4:47-57.
    [55]Tamhankar S S, Hasatani M, Wen C Y. Kinetic Study on the Reactions Involved in the Hot Gas Desulfurization Using a Regenerable Iron Oxide Sorbent-Ⅲ Reactions of the Sulfided Sorbent with Steam and Steam-air mixture[J]. Chem. Eng. Sci.1985,40(6): 1019-1025.
    [56]朴玲钰,李春虎,李彦旭.ZnFe2O4高温煤气脱硫剂的再生[J].高校化学工程学报.2002,16(1):89-92.
    [57]王尚弟,孙俊全.催化剂工程导论[M].北京,化学工业出版社,2001,38-60.
    [58]张密林,张红霞,陈野.ZnO型复合脱硫剂的制备研究[J].应用科技.2004,31(]2)58-60
    [59]Untea], Dancila M,Vasile E, etc. Structmal, Morphological and Tcxtural Modications of ZnO-TiO2 HTGD Based Sorbents Induced by Al2O3 Addition, Thermal Treatment and Sulfurizing Process[J]. Powder Technology.2009,191:27-33.
    [60]王海堂,靳庆麦,廖俊杰,等.制备方法对中高温煤气脱硫剂性能的影响[J].现代化工,29(]):216-218
    [6]Wakker J P. Development of a High Temperature Steam Regenerative H2S Removal Process Based on Alumina Supported MnO and FeO[D]. Delft:Delft University of Technology,1985.
    [62]Liang B, Korbee R, Gerritsen AW, etc. Effect of manganese content on the properties of high temperature regenerative H2S acceptor[J].Fuel.]999,78:319-325.
    [63]Zhang R J,Huang J J,Zhao J T.Sol-gel Auto-combustion Synthesis of Zinc Ferrite for Moderate Temperature Desulfurization[J].Energy & Fuels.2007:21(5):2682-2687.
    [64]杨馗,徐明仙,林春绵.超临界水的物理化学性质[J].浙江工业大学学报.2001,29(4):386-390.
    [65]张丽莉,陈丽,赵雪峰,等.超临界水的特性及应用[J].化学工业与工程.2003,20(1):33-39.
    [66]Hassan T G,Ali M.Structure and Property Prediction of Sub- and Supercritical Water[J]. Fluid Phase Equi]ibria.1998,9:459-468.
    [67]Kalinichev A G,Heinzinger K.Molecular of Supercritical Water:A Computer Simulation of Vibrational Spectra With the Flexible BJH Potential[J].Geochimica et Cosmochinica Acta.1995,59(4):641-650.
    [68]周健,陆小华,王延儒,等.超临界水的分子动力学模拟[J].物理化学学报.1999,]5(]1):10]7-1022.
    [69]田宜灵,冯季军,秦颖,等.SCW的性质及其在化学反应中的应用[J].化学通报.2002,6:396-402.
    [70]Connolly J F.Solubility of Hydrocarbons in Water Near the Critical Solution Temperatures[J].J.Chem.Eng.Data]966,11(1):13-16.
    [7]Okitsugu K.Solvation in Supercritical Fluids:Its Effects on Energy Transfer and Chemical Reactiins[J].Chem.Rev.1999,99(2):355-389.
    [72]Shin H Y,Matsumoto K,Higashi H,etc.Development of a Solution Model to Correlate Solubilities of Inorganic Compounds in Water Vapor Under High Temperatures and Pressures[J].J.of Supercritical Fluids.2001,21(2):105-110.
    [73]Hakuta Y,Onai S,Terayama H,etc.Production of Ultra fine Ceria Particles by Hydrothelrmal Synthesis Under Supercritical Conditions[J].Journal of materials science letters.]998,17:1211-1213.
    [74]Aimable A,Muhr H,Gentric C,etc.Continuos Hydrothermal Synthesis of lnorganic Nanopowders in Supercritical Water:Towards a Bettcr Control of the Process[J].Powder Technology.2009,190:99-106.
    [75]Viswanathan R,Gupta R B.Formation of Zinc Oxide Nanoparticles in Supercritical Water[J]. Journal of Supercritical Fluids.2003:27:187-193.
    [76]Savage P E. A Perspective on Catalysis in Sub- and Supercritical Water[J]. The Journal of Supercritical Fluids.2009:47:407-414.
    [77]王晓娟,刘学武,夏远景,等.超临界水热合成制备纳米微粒材料[J].化学工业与工程.2007,28(2):]8-20.
    [78]Yukita Hakuta, Haruo Ura. Effects of Hydrothermal Synthesis Conditions on the Particle Size of γ-AlO(OH) in Sub and Supercritical Water Using a Flow Reaction System[J]. Materials Chemistry and Physics.2005,93:466-472.
    [79]Kiwamu S, Kazuhito K, Kunio A. Hydrothermal Synthesis of ZnO Nanocrystals Using Microreactor[J]. Materials Letters.2004,58(25):3229-3231.
    [80]Yukiya H, Tadafumi A. Chemical Equilibria and Particle Morphology of Boehmite (A1OOH) in Sub and Supercritical Water[J]. Fluid Phase Eqilibria.1999,:733-742
    [8]Yukiya H. Tsukasa H, Kiwamu S, etc. Continuous Production of Phosphor YAG:Tb Nanoparticles by Hydrothermal Synthesis in Supercritical Water[J]. Materials Research Bulletin.2003,38:1257-1265.
    [82]Adschiri T. Takami S. Hydrothermal Synthesis at Supercritical conditions:Experiments and Simulation[C]. Process 6th Int Symp Supercrit Fluid.2003.2:1237-1240.
    [83]王晓娟,胡施俊,刘学武,等.超临界流体制备纳米催化剂的方法[J].石油与天然气化工.36(5):362-369
    [84]Otsu J, Oshima Y. New Approaches to the Preparation of Metal or Metal Oxide Particles on the Surface of Porous Materials Using Supercritical Water:Development of Supercritical Water Impregnation Method[J]. The Journal of Supercritical Fluids.2005. 33:61-67.
    [85]Osamu S, Yoshito O. Deposition of Silver Nano-particles on Activated Carbon Using Supercritical Water[J]. The Journal of Supercritical Fluids.2008.47:240-246.
    [86]Xu C B, Teja A S. Supercritical Water Synthesis and Deposition of Iron Oxide (α-Fe2O3) Nanoparticles in Activated Carbon[J]. The Journal of Supercritical Fluids.2006.39: 135-141.
    [87]Xu C B, Teja A S. Characteristics of Iron Oxide/Activated Carbon Nanocomposites Prepared Using Supercritical Water[J]. Applied Catalysis A:General.2008,348: 251-256.
    [88]Salvador F;Sanchez M J,Martin A,etc.Preparation of Active Carbon from Charcoal by Activation with Supercritical water[P].European Patent:EP 98500258.3:US Patent:US 09/209439;Spmn Patent:SP 9801552.
    [89]Cai Q,Huang Z H,Kang F Y,etc Preparation of Activated Carbon Mi crospheres from Phenolic-resin by Supercritical Water Activation[J].Carbon.2004,42:775-783.
    [90]蔡琼,黄正宏,康飞字.超临界水和水蒸气活化制备酚醛树脂基活性炭的对比研究[J].新型炭材料.2005,20(2):122-]28.
    [9]程乐明,姜炜,张荣,等超临界水活化褐煤制取活性炭[J].新型炭材料.2007,22(3):264-270.
    [92]Kapteijn F,Dick van Langeveld A,Moulijn J A,etc.Alumina-support Manganese Oxide Catalysts 1.Characterization:Effect of Precursor and Loading[J].Journal of catalysis. 1994,150:94-104.
    [93]朱炳辰.化学反应工程[M].北京:化学工业出版社,2011:75.
    [94]谭小耀,李秀贞:吴迪墉,等.改性活性炭低温催化氧化脱除H2S的研究[J].石油化工.]995,24:7]6-72].
    [95]Zhao D,Wu X,Guan H,etc.Study on Supercritical Hydrothernal Synthesis of CoFe2O4 Nanoparticles[J].The.Journal of Supercritical Fluids 2007,42:226-33.
    [96]Ma Y,Wang S G,Fan M H.etc.Characteristics and Defluoridation Performance of Granular Activated Carbons Coated with Manganese O×ides[J].Journal of Hazardous Materials.2009.168:1140-1146.
    [97]Kapteijn F,Dick van L A.Moulijin J A.etc.Alumina-support Manganese Oxide Catalysts 1 Characterization:Effect of Precursor and Loading[J].Journal of catalysis.1994.150: 94-104.
    [98]Tang Q H,Huang X N,Chen Y T,etc.Charaeterization and Catalytic Application of Highly Dispersed Manganese Oxides Supported on Activated Carbor[J].Journal of Molecular Catalysi s A:Chemical.2009.301:24-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700