用户名: 密码: 验证码:
北大西洋典型海湾浮游异养细菌群落特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浮游异养细菌是海洋微食物网的重要组成部分,通过被高营养级生物的摄食,将可溶性有机物质转移到更高的营养级,在海洋生物地化循环中占有重要的地位。本论文以浮游异养细菌生物量和群落结构研究为切入点,利用海上现场调查结合分子生态学技术,研究了北大西洋典型海湾(Logy湾、Goose湾和Melville湖)浮游异养细菌生物量、生长率、摄食死亡率和群落结构的季节变化、空间分布特征以及春季水华期间浮游异养细菌生长和群落结构的时空变化,并进一步深入探讨了浮游异养细菌生长和群落结构变化与环境因子间的关系。该研究对于揭示浮游异养细菌生物量和群落结构的时空变化以及关键影响因素具有重要意义。
     一、研究了Logy湾海水表层浮游异养细菌生物量和群落结构季节变化特征和主
     要的环境影响因素,结果如下:
     (1) Logy湾海水表层浮游异养细菌丰度和生物量均有显著的季节变化。冬季(2月)较低,峰值出现在4月和8月。海水表层浮游异养细菌平均细胞体积在春季最大。利用荧光原位杂交技术,研究了海水表层浮游异养细菌群落结构的季节变化。结果表明,海水表层浮游异养细菌群落结构具有较明显的季节变化。各个季节Alpha-Proteobacteria和Cytophage-Flavobacter (CF) cluster是海洋异养细菌群落中的优势类群,而Beta-Proteobacteria在海洋异养细菌群落中所占比例最低。各主要类群在群落中的相对丰度较高值均出现在春季(4月-6月),而在冬季(2月),相对丰度均较低。
     (2)利用稀释法与荧光原位杂交相结合的方法,研究了海水表层浮游异养细菌及群落内主要类群的生长率和受微型浮游动物影响的摄食死亡率的季节变化。结果表明,总异养细菌及其各主要类群的生长率和摄食死亡率具有明显的季节变化,但变化趋势有所不同。总异养细菌的生长率和摄食死亡率夏季较高而冬季较低。Alpha-Proteobacteria在冬季生长率较高,其它类群的生长率和摄食死亡率则是夏季较高而冬季较低。
     (3)相关性分析和回归分析结果表明,温度对该海域异养细菌的生长有显著的影响,可以解释40-60%总异养细菌和其主要类群生长率的变化。而叶绿素a浓度和DOC浓度则是影响浮游异养细菌丰度和细菌细胞体积的主要因素。浮游异养细菌与其群落内不同类群的生长率具有显著的相关性,表明异养细菌群落结构的变化与异养细菌群落功能的改变可能有着密切的联系。
     二、研究了Goose湾和Mellive湖浮游异养细菌生物量和群落结构的分布特征和主要的环境影响因素,结果如下:
     (1)该海域浮游异养细菌丰度在空间上具有显著的分布差异。平面分布上,由河口向远海具有增加的趋势。垂直分布上,浮游异养细菌丰度表层较高,在中部和底层较低。浮游异养细菌细胞体积大小和生物量平面分布上,由河口向远海分布并无显著差异。浮游异养细菌细胞体积大小随深度的增加表现出增大的趋势。浮游异养细菌生物量的垂直分布表现为随着深度的增加,逐渐减小。在远离河口的站位,中部和底部浮游异养细菌生物量的大小并无显著差别,而距河口较近的站位中,中部浮游异养细菌生物量高于表层。
     (2)浮游异养细菌群落结构分析结果表明平面分布上Alpha-Proteobacteria和Beta-Proteobacteria表现出显著差异:距河口较近的站位Alpha-Proteobacteria在群落中相对丰度较低,而Beta-Proteobacteria在群落中相对丰度较高。距河口较远站位,Alpha-Proteobacteria在群落中相对丰度较高。垂向分布上,在距河口较近的站位,除CF cluster在中部表现出较高的相对丰度外,Alpha-,Beta-和Gamma-Proteobacteria随深度的增加,相对丰度均未表现出显著的差异。在距河口较远的站位,在垂直分布上,除Alpha-Proteobacteria以外,其他各主要类群在表层的相对丰度较高较高,而Alpha-Proteobacteria的相对丰度表现出较一致的垂直分布。
     (3)表层浮游异养细菌及其主要类群的生长率和摄食死亡率空间分布的研究结果显示,不同站位的表层总浮游异养细菌生长率和死亡率均无显著差异。不同优势类群比较,Alpha-Proteobacteria在高盐度站位生长率较高,Beta-Proteobacteria和Gamma-Proteobacteria在低盐度站位表现出较高的生长率,而CF cluster在不同站位的生长率和死亡率均无显著差异。
     (4)相关性分析和回归分析结果表明,温度、DOC和DON是影响浮游异养细菌群落丰度和生物量的主要因素,而深度和盐度的变化是影响浮游异养细菌细胞体积的主要因素。生长率与不同类群在异养细菌群落中所占比例变化具有显著的相关性,表明异养细菌对营养物质的利用是影响异养细菌群落结构的关键因素。
     三、研究了Logy湾春季水华期间浮游异养细菌生物量和群落结构的变化,并探讨了其与环境因子变化之间的关系,初步明确了该海湾春季水华期间,浮游异养细菌群落结构变化的趋势和控制因素。
     (1)浮游异养细菌群落的丰度和生物量的峰值都出现在水华的发展阶段。异养细菌细胞体积的峰值则出现在水华的消亡阶段。浮游异养细菌的群落结构的变化表现为,Alpha-Proteobacteria在水华的起始阶段相对丰度较高,而CF cluster在水华的消亡阶段表现出较高的相对丰度。
     (2)海水表层浮游异养及群落内部不同类群的生长率表现出一定的差异性:在水华消亡阶段,除Gamma-Proteobacteria外,总浮游异养细菌及群落内主要类群均在水华的消亡阶段表现出较高的生长率。海水表层总浮游异养细菌群落及其各主要类群的摄食死亡率基本一致,较大值出现在水华的消亡阶段。
     (3)相关性分析和回归分析结果表明,在水华期间,温度是调控该海域浮游异养细菌生长的关键因素。叶绿素a浓度和DOC浓度分别是控制浮游异养细菌生物量和细胞体积的关键因素。在水华过程中,环境中营养物质浓度的变化可能是控制浮游异养细菌群落结构的主要因素,而微型浮游动物的摄食则在水华的消亡时期调控着表层浮游异养细菌的群落结构。
Heterotrophic bacterioplankton plays an important role in marine biogeochemical cycles. Processes which mediate the transfer of carbon from dissolved pools to higher trophic levels are influenced by the growth and grazing losses of heterotrophic bacteria. The goals of this thesis are:to characterize seasonal and spatial variations in community structure of heterotrophic bacterioplankton in coastal (Logy Bay) and estuarine areas (Goose Bay and Lake Melville) of North Atlantic Ocean, including intensive sampling and experiments during the spring phytoplankton bloom in Logy Bay; to determine relationships among environmental factors, bacterial community structure, growth and grazing loss for bacterial population, as well as individual bacterial phylotypes; to provide insight into mechanism that lead to the observed variations at broad phylogenetic levels.
     1.Seasonal changes in heterotrophic bacterial standing stock, community structure, rates of growth and grazing mortality for bacterioplankton, as well as individual phylogenetic groups within the community, are examined in the surface layer of Logy Bay. Factors controlling seasonal changes of these parameters are investigated using Pearson correlation and regression analysis.
     (1) Heterotrophic bacterial abundance and biomass show high values in April and minimal in February, while cell volume exhibits maximum in May. Using fluorescence in situ hybridization (FISH), variations in composition of heterotrophic bacterial community were examined. Alpha-Proteobacteria and Cytophaga-Flavobacter cluster dominate the community overall, while Beta-Proteobacteria always comprise the lowest proportion of all detected phylogenetic groups. Relative abundances of all detected individual groups are low during winter (February and March), while higher values are detected during spring (April to June).
     (2) Using FISH combined with dilution assay, seasonal changes in rates of growth and grazing mortality for bacterial community, as well as individual phylogenetic groups within the community, are determined. Growth rates for bacterial community as well as individual groups are high during summer (July and August), whereas low values are found during winter (February and March), with the exception of Alpha-Proteobacteria. Grazing mortality for bacterial community shows maximum during summer (July and August) and minimum during winter (March). However, no seasonal patterns of grazing mortality are observed among individual phylogenetic groups
     (3) Results from Pearson correlation and regression analysis suggest that temperature is the main factor controlling rates of growth for bacteria, explained 40-60% variations in rates of growth for bacterial community as well as individual phylogenetic groups. Chlorophyll a concentration and dissolved organic carbon (DOC) are the controlling factors for bacterial abundance and cell volume, respectively. Correlations between rates of growth for bacterial community and those for individual groups implied bacterial phylogentic groups may share specific ecosystem function.
     2.Spatial distributions in heterotrophic bacterial standing stock, community structure, rates of growth and grazing mortality for bacterioplankton, as well as individual phylogenetic groups within bacterial community, are examined in Goose Bay and Lake Melville. Factors related to spatial changes above are investigated using Pearson correlation and regression analysis.
     (1) Bacterial abundance show distinct spatial distributions with minimal at low salinity waters and maximal at marine end of estuary. Vertical distribution of bacterial abundance show higher values at surface compared with those in the middle and at bottom. Cell volume and bacterial biomass show similar spatial patterns with each other, with no significant differences among stations. Cell volume increases with depth. Bacterial biomass show no significant differences in the middle and bottom layers at stations where salinity are low, while higher values are observed in the middle layer at stations in high salinity area.
     (2) Analyses of heterotrophic bacterial community structure are performed at two selected sampling stations located at the low-(No. 111 station) and high-salinity (No.131 station) stations, respectively. Results indicate that relative abundance of Alpha-Proteobacteria is high at 131 station, whereas Beta-Proteobacteria is the dominant group at 111 station. Relative abundance of Alpha-, Beta-and Gamma-Proteobacteria uniformly distributed throughout the water column.
     (3) Rates of growth and grazing mortality are determined using FISH combined with dilution assays at No. 111 station and No.131 station. No significant differences are observed between rates of growth for bacterial community at No. 111 station and No.131 station. Alpha-Proteobacteria growth rates are higher at No.131 station than those of other individual groups, while growth rates for Beta-Proteobacteria, as well as Gamma-Proteobacteria, are high at low-salinity station, No.111 station. No significant differences are found between grazing mortality for bacterial community at No.111 station and No. 131 station.
     (4) Results from correlation and regression analysis indicate that dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) are controlling factors for heterotrophic bacterial abundance and biomass. Depth and salinity are primary factors regulating cell volume. Since rates of bacterial growth indicates uptake of DOM, the co-occurrence of high growth rates and high relative abundance of individual phylotypes implies the possible regulations of nutrients uptake on bacterial community structure in this area.
     3.Temporal and spatial variations in heterotrophic bacterial community structure are studied during spring phytoplankton bloom in Logy Bay to investigate possible mechanisms that lead to the observed variations in bacterial community composition during the bloom.
     (1) Abundance and biomass of heterotrophic bacterioplankton show high values during the developmental stage of the spring bloom, while the maximal of cell volume is found during the post-bloom stage. Alpha-Proteobacteria reach its maximal during the beginning of spring bloom, while Beta-, Gamma-Proteobacteria and CF cluster reach maximum during the post-bloom stage.
     (2) Using FISH combined with dilution assays, research indicate that significant differences in patterns of growth rates among bacterial community and detected phylogenetic groups, while patterns of grazing mortality are similar to each other during the study.
     (3) Results from correlation and regression analysis indicate that temperature is the controlling factor for the growth of heterotrophic bacteria during the spring bloom, while chlorophyll a and DOC concentration are responsible for the changes of bacterial biomass and cell volume, respectively. Nutrient supplies might be the main factor driving variations in bacterial community structure during the spring bloom, while predation might be a key mechanism for regulation of bacterial community composition during the senescent stage of the bloom.
引文
1. Alderkamp A C, Sintes E, Herndl G J. Abundance and activity of major groups of prokaryotic plankton in the coastal North Sea during spring and summer. Aquat Microb Ecol,2006, 45:237-246
    2. Allers E, Gomez-Consarnau L, Pinhassi J, et al. Response of Alteromonadaceae and Rhodobacteriaceae to glucose and phosphorus manipulations in marine mesocosms. Environ Microbiol,2007,9:2417-2429.
    3. Almeida MA, Cunha MA, Alcantara F. Loss of estuarine bacteria by viral infection and predation in microcosm conditions. Microb Ecol,2001,42:562-571
    4. Alonso-Gutierrez J, Lekunberri I, Teira E, et al. Bacterioplankton composition of the coastal upwelling system of 'Ria de Vigo', NW Spain. FEMS Microbiol Ecol,2009,70:493-505
    5. Alonso-Saez L, Aristegui J, Pinhassi J, et al. Bacterial assemblage structure and carbon metabolism along a productivity gradient in the NE Atlantic Ocean. Aquat Microb Ecol,2007, 46:43-53
    6. Alonso-Saez L, Unanue M, Latatu A, et al. Changes in marine prokaryotic community induced by varying types of dissolved organic matter and subsequent grazing pressure. J Plant Res,2009,31:1373-1383
    7. Alonso-Saez L, Gasol J M. Seasonal variations in the contributions of different bacterial groups to the uptake of low molecular-weight compounds in Northwestern Mediterranean coastal waters. Appl Environ Microbiol,2007,73:3528-3535.
    8. Alonso-Saez L, Vazquez-Dominguez E, Cardelus C, et al. Factors controlling the year-round variability in carbon flux through bacteria in a coastal marine system. Ecosystems,2008, 11:397-409
    9. Amann R, Fuchs B M. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol,2008,6:339-348
    10. Amann R 1, Binder B J, Olson R J, et al. Combination of 16s Ribosomal-Rna-Targeted Oligonucleotide Probes with Flow-Cytometry for Analyzing Mixed Microbial-Populations. Appl Environ Microb,1990,56:1919-1925
    11. Arrieta J M, Weinbauer M G, Lute C, et al. Response of bacterioplankton to iron fertilization in the Southern Ocean. Limnol Oceanogr,2004,49:799-808
    12. Azam F, Fenchel T, Field J G, et al. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser,1983,10:257-263
    13. Anderson M R, Rivkin R B. Seasonal patterns in grazing mortality of bacterioplankton in polar oceans:a bipolar comparison. Aquat Microb Ecol,2001,25:195-206
    14. Apple J K, del Giorgio P A, Kemp W M. Temperature regulation of bacterial production, respiration, and growth efficiency in a temperate salt-marsh estuary. Aquat Microb Ecol, 2006,43:243-254
    15. Azam F, Malfatti F. Microbial structuring of marine ecosystems. Nat Rev Microbiol,2007, 5:782-791
    16. Baltar F, Aristegui J, Gasol J M, et al. Strong coast-ocean and surface-depth gradients in prokaryotic assemblage structure and activity in a coastal transition zone region. Aquat Microb Ecol,2007,50:63-74
    17. Bano N, Holibaugh J T. Diversity and distribution of DNA sequences with affinity to ammonia-oxidizing bacteria of the β-subdivision of the Class Proteobacteria in the Arctic Ocean. Appl Environ Microbiol,2000,66:1960-1969
    18. Beardsley C, Pernthaler J, Wosniok W, et al. Are readily culturable bacteria in coastal North Sea waters suppressed by selective grazing mortality? Appl Environ Microbiol,2003, 69:2624-2630
    19. Beja O, Aravind L, Koonin E V, et al. Bacterial rhodopsin:evidence for a new type of phototrophy in the sea. Sci,2000,289:1902-1906
    20. Beja O, Spudich E N, Spudich J L, et al. Proteorhodopsin phototrophy in the ocean. Nature, 2001,411:786-789
    21. Bell K N I, Cowley P D, Whitfield A K. Seasonality in frequency of marine access to an intermittently open estuary:implications for recruitment strategies. Estuar Coastal Shelf Sci,2001,52:327-337.
    22. Biddanda B, Benner R. Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton. Limnol Oceanogr,1997, 42:506-518
    23. Billen G, Servais P, Becquevort S. Dynamics of Bacterioplankton in Oligotrophic and Eutrophic Aquatic Environments-Bottom-up or Top-down Control. Hydrobiologia,1990, 207:37-42
    24. Boras J A, Sala M M, Vazquez-Dominguez E, et al. Annual changes of bacterial mortality due to viruses and protists in an oligotrophic coastal environment (NW Mediterranean). Environ Microbiol,2009,11:1181-1193
    25. Bouvier, T C, del Giorgio P A. Compositional changes in free-living bacterial communities along a salinity gradient in two temperate estuaries. Limnol Oceanogr,2002,47:453-470.
    26. Bouvier T del Giorgio P A. Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH):A quantitative review of published reports. Microb Ecol,2003,44:3-15
    27. Brown J H, Gillooly J F, Allen A P, et al. Toward a metabolic theory of ecology. Ecol,2004, 85:1771-1789
    28. Calbet A, Landry M. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr,2001,49:51-57.
    29. Calbet A, Landry M R, Nunnery S. Bacteria-flagellate interactions in the microbial food web of the oligotrophic subtropical North Pacific. Aquat Microb Ecol,2004,23:283-292
    30. Campbell B J, Yu L, Straza T R A, et al. Temporal changes in bacterial rRNA and rRNA genies in Delaware (USA) coastal waters. Aquat Microb Ecol,2009,57:123-135
    31. Carlson C A, Giovannoni S J, Hansell D A, et al. Effect of nutrient amendments on bacterioplankton production, community structure, and DOC utilization in the northwestern Sargasso Sea. Aquat Microb Ecol,2002,30:19-36
    32. Carlson C A, Giovannoni S J, Hansell D A. Interactions among dissolved organic carbon, microbial processes, and community structure in the mesopelagic zone of the northwestern Sargasso Sea. Limnol Oceanogr,2004,1073-1083
    33. Carlson C A, Morris R, Parsons R, et al. Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea. Nature,2009,3:283-295
    34. Caron D A, Lim E L, Sanders R W, et al. Responses of bacterioplankton and phytoplankton to organic carbon and inorganic nutrient additions in contrasting oceanic ecosystems. Aquatic Microbial Ecology,2000,22:175-184.
    35. Castillo M M, Allan J D, Sinsabaugh R. L, et al. Seasonal and interannual variation of bacterial production in lowland rivers of the Orinoco basin. Freshwater Biology,2004,49: 1400-1414.
    36. Chen B, Liu H, Landry M R, et al. Close coupling between phytoplankton growth and microzooplankton grazing in the western South China Sea. Limnol Oceanogr,2009, 54:1084-1097.
    37. Cherrier J, Bauer J E. Bacterial utilization of transient plankton-derived dissolved organic carbon and nitrogen inputs in surface ocean waters. Aquat Microb Ecol,2004,35:229-241
    38. Choi J W, Sherr B F, Sherr E B. Dead or alive? A large fraction of ETS-inactive marine bacterioplankton cells, as assessed by reduction of CTC, can become ETS-active with incubation and substrate addition. Aquat Microb Ecol,1999,18:105-115
    39. Church M J. Resource control of bacterial dynamics in the sea. In:Kirchman DL. ed. Microbial ecology of the oceans, second edition. New York:John Wiley& Sons,2008. 335-382
    40. Cole J J, Findlay S, Pace M L. Bacterial production in fresh and saltwater ecosystems:a cross-system overview. Mar Ecol Prog Ser,1988,43:1-10
    41. Cottrell M T, Kirchman D L. Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl Environ Microb,2000a,66:5116-5122
    42. Cottrell M T, Kirchman D L. Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low-and high-molecular-weight dissolved organic matter. Appl Environ Microb,2000b,66:1692-1697
    43. Cottrell M T, Kirchman D L. Contribution of major bacterial groups to bacterial biomass production (thymidine and leucine incorporation) in the Delaware estuary. Limno] Oceanogr, 2003,48:168-178
    44. Crump B C, Hopkinson C S, Sogin M, et al. Microbial biogeography along an estuarine salinity gradient:Combined influences of bacterial growth and residence time. Appl. Environ. Microbiol,2004,70:1494-1505
    45. Vaque D, Guadayol O, Peters F, et al. Differential response of grazing and bacterial heterotrophic production to experimental warming in Antarctic waters. Aquat Microb Ecol, 2009,54:101-112
    46. Davidson K, Gilpin L C, Hart M C, et al. The influence of the balance of inorganic and organic nitrogen on the trophic dynamics of microbial food webs. Limnol Oceanogr,2007, 52:2147-2163
    47. del Giorgio P A, Bouvie T C. Linking the physiologic and phylogenetic successions in free-living bacterial communities along an estuarine salinity gradient. Limnol Oceanogr, 2002,47:471-486.
    48. del Giorgio P A, Gasol J M,Mura P, et al. Protozoan-control of the proportion of metabolically active bacteria in coastal marine plankton. Limnol Oceanogr,1996, 41:1169-1179
    49. Delaney M P, Knoechel R. Turbulence effects on cold microbial communities:an enclosure study, J Mar Syst,2004,49:123-131
    50. Dery S J, Wood E F. Decreasing river discharge in northern Canada. Geophys Res Lett,2005, 32:L10401
    51. Dery S J, Hernandez-Hennquez M A, Buford J E, et al. Observational evidence of an intensifying hydrological cycle in northern Canada. Geophys Res Lett,2009,36:L13402
    52. Dolan J R, Mckeon K. The reliability of grazing rate estimates from dilution experiments: Have we over-estimated rates of organic carbon consumption by microzooplankton? Ocean Sci,2005,1:1-7
    53. Ducklow H W. Bacterial production and biomass in the oceans. In:Microbial Ecology of the Oceans, edited by:Kirchman, D. L., Wiley-Liss, Inc., New York,2000.85-120
    54. Ducklow H W, Shiah F K. Estuarine Bacterial Production. Chapter 11. In:T. Ford, Ed., Aquatic Microbiology:An ecological approach. London:Blackwell,1993.261-284
    55. Eilers H, Pernthaler J, Glockner F O, et al. Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl Environ Microb,2000,66:3044-3051
    56. Elifantz H, Dittel A I, Cottrell M T, et al. Dissolved organic matter assimilation by heterotrophic bacterial groups in the western Arctic Ocean. Aquat Microb Ecol,2007, 50:39-49
    57. Fandino L B, Riemann L, Steward G F, et al. Variations in bacterial community structure during a dinoflagellate bloom analyzed by DGGE and 16SrDNA sequencing. Aquat Microb Ecol,2001,23:119-130.
    58. Fernandes V, Ramaiah N, Paul J T, et al. Strong variability in bacterioplankton abundance and production in Central and Western Bay of Bengal. Mar Biol,2008,153:975-985
    59. Field C B, Behrenfeld M J, Randerson J T, et al. Primary production of the biosphere: integrating terrestrial and oceanic components. Science,1998,281:237-240
    60. Fuchs B M, Zubkov M V, Sahm K, et al. Changes in community composition during dilution cultures of marine bacterioplankton as assessed by flow cytometric and molecular biological techniques. Environ Microbiol,2000,2:191-201
    61. Fuhrman J A, Hagstrom A. Bacterial and archaeal community structure and its pattern. In: Microbial Ecology of the Oceans (2nd Ed.), edited by:Kirchman, D. L., Wiley-Liss, Inc., New York,2008.45-90
    62. Fuhrman J A, Steele J A, Hewson I, et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc Natl Acad Sci USA,2008,105:7774-7778
    63. Gallegos C L. Microzooplankton grazing on phytoplankton in the Rhode River, Maryland: nonlinear feeding kinetics. Mar Ecol Prog Ser,1989,57:23-33
    64. Gasol J M, del Giorgio P A, Massana R, et al. Active versus inactive bacteria: size-dependence in a coastal marine plankton community. Mar Ecol Prog Ser,1995, 128:91-97
    65. Gasol J M, Duarte C M. Comparative analyses in aquatic microbial ecology:how far do they go? Microb Ecol,2000,31:99-106
    66. Gasol J M, Pedros-Alio C, Vaque D. Regulation of bacterial assemblages in oligotrophic plankton systems:results from experimental and empirical approaches. Antonie Van Leeuwenhoek,2002,81:435-452
    67. Gifford D J. Impact of grazing by microzooplankton in the Northwest Arm of Halifax Harbour, Nova Scotia. Mar Ecol Prog Ser,1988,47:249-258
    68. Giovannoni S J, Britschgi T B, Moyer C L., et al. Genetic diversity in Sargasso Sea bacterioplankton. Nature,1990,345:60-63
    69. Giovannoni S J, Rappe M S. Diveristy and molecular ecology of marine prokaryotes. In: Microbial Ecology of the Oceans, edited by:Kirchman, D. L., Wiley-Liss, Inc., New York, 2000.47-84
    70. Glockner F O, Amann R, Alfreider A, et al. An in situ hybridization protocol for detection and identification of planktonic bacteria. Syst Appl Microbiol,1996,19:403-406
    71. Glockner F O, Fuchs B M, Amann R. Bacterioplankton compositions of lakes and oceans:a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol,1999, 65:3721-3726
    72. Gonzalez J M, Sherr E B, Sherr BF. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl Environ Microbiol,1990,56:583-589
    73. Gruber D F, Turoto S, Taghon G. Growth phase and elementa stoichiometry of bacterial prey influences ciliate grazing selectivity. J Euk Microb.2009,56:466-471
    74. Hahn M W, H6fle M G. Bacterial filament formation, a defense mechanism against flagellate grazing, is growth rate controlled in bacteria of different phyla. Appl Environ Microbiol, 1999,65:25-35
    75. Hahn M W, Hofle M G. Flagellate Predation on a Bacterial Model Community:Interplay of Size-Selective Grazing, Specific Bacterial Cell Size, and Bacterial Community Composition. Appl Environ Microbiol,1999,65:4863-4872
    76. Hahn M W, Hofle M G. Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiol Ecol,2001,35:113-121
    77. Hale H S, Rivkin R B, Matthews P, et al. Microbial response to a mesoscale iron enrichment in the NE subarctic Pacific:heterotrophic bacterial processes. Deep-Sea Res Ⅱ,2006, 53:2231-2247
    78. Hall E K, Cotner J B. Interactive effect of temperature and resources on carbon cycling by freshwater bacterioplankton communities. Aquat Microb Ecol,2007,49:35-45
    79. Harrison T D, Cooper J A G, Ramm A E L. State of South African estuaries:geomorphology, ichthyofauna, water quality and aesthetics of South African estuaries. State of the Environment Series:Report No.2. Department of Environmental Affairs and Tourism, Pretoria, SA.
    80. Heidelberg J F, Heidelberg K B, Colwell R R. Seasonality of Chesapeake Bay bacterioplankton species. Appl Environ Microbiol,2002,68:5488-5497
    81. Henriques I S, Alves A, Tacao M, et al. Seasonal and spatial variability of free-living bacterial community composition along an estuarine gradient (Ria de Aveiro, Portugal). Estuar Coast Shelf Sci,2006,68:139-148
    82. Hitchcock J N, Mitrovic S M, Kobayashi T, et al. Responses of estuarine bacterioplankton, phytoplankton and zooplankton to dissolved organic carbon (DOC) and inorganic nutrient additions. Estuar Coasts,2010,33:78-91
    83. Hobbie J E, Daley R J, Jasper S. Use of Nucleopore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol,1977,37:207-217.
    84. Hoikkala L, Aamos H, Lignell R. Changes in Nutrient and Carbon Availability and Temperature as Factors Controlling bacterial growth in the Northern Baltic Sea. Estuar Coasts,2009,32:720-733
    85. Hornak K, Jezbera J, Nedoma J, et al. Effects of resource availability and bacterivory on leucine incorporation in different groups of freshwater bacterioplankton, assessed using microautoradiography. Aquat Microb Ecol,2006,45:277-289
    86. Hornak K, Jezbera J, Simek K. Effects of a Microcystis aeruginosa bloom and bacterivory on bacterial abundance and activity in a eutrophic reservoir. Aquat Microb Ecol,2008, 52:107-117
    87. Imai I, Ishida Y, Sakaguchi K, et al. Algicidal marine bacteria isolated from northern Hiroshima Bay,1995, Japan Fish Sci,61:628-636.
    88. Ivars-Martinez A B, Rodriguez-Valera F, Moreira D, et al. Hindsight in the relative abundance,metabolic potential and genome dynamics of uncultivated marine archaea from comparative metagenomic analyses of bathypelagic plankton of different oceanic regions. The ISME Journal,2008,865-886
    89. Jasti S, Sieracki M E, Poulton N G, et al. Phylogenetic diversity and specificity of bacteria closely associated with Alexandrium spp. and other phytoplankton. Appl Environ Microbiol, 2005,71:3483-3494
    90. Jezbera J, Hornak K, Simek K. Food selection by bacterivorous protists:insight from the analysis of the food vacuole content by means of fluorescence in situ hybridization. Microb Ecol,2005,52:351-363
    91. Jochem F J, Lavrentyev P J, First M R. Growth and grazing rates of bacteria groups with different apparent DNA content in the Gulf of Mexico. Mar Biol,2004,145:1213-1225
    92. Jones D R, Karl D M, Laws E A. Growth rates and production of heterotrophic bacteria and phytoplankton in the North Pacific subtropical gyre. Deep-Sea Res Ⅰ,1996,43:1567-1580
    93. Jiirgens K, Gasol J M, Vaque D. Bacteria-flagellate coupling in microcosm experiments in the Central Atlantic Ocean. J Exp Mar Biol Ecol,2000,245:127-147
    94. Jurgens K, Gude H. The potential importance of grazing-resistant bacteria in planktonic systems. Mar Ecol Prog Ser.1994,112:169-188
    95. Jurgens K, Matz C. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Anton Leeuw Int J G,2002,81:413-434
    96. Jiirgens K, Pernthaler J, Schalla S, Amann R. Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing. Appl Environ Microbiol,1999,65:1241-1250.
    97. Karner M, Fuhrman J A. Determination of active marine bacterioplankton:A comparison of universal 16S rRNA probes, autoradiography, and nucleoid staining. Appl Environ Microb, 1997,63:1208-1213
    98. Kelly C A, Pakulski J D, Sandvik S L H, et al. Phytoplanktonic and Bacterial Carbon Pools and Productivities in the Gerlache Strait, Antarctica, during Early Austral Spring. Microb Ecol,1999,38:296-305
    99. Kelly K M, Chistoserdov A Y. Phylogenetic analysis of the succession of bacterial communities in the Great South Bay (Long Island). FEMS Microb Ecol,2001,35:85-95
    100. Kirchman D L. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microb Ecol,2002,39:91-100
    101. Kirchman D L. New light on an important microbe in the ocean. Proc Natl Acad Sci USA, 2008,105:8487-8488
    102. Kirchman D L, Dittel A I, Malmstrom R R, et al. Biogeography of major bacterial groups in the Delaware Estuary. Limnol Oceanogr,2005,50:1697-1706
    103. Kirchman D L, Ducklow H W. Estimating conversion factors for the thymidine and leucine methods for measuring bacterial production. In:P. Kemp, et al. Eds, Handbook of Methods in Microbial Ecology. Boca Raton:Lewis Publishers,1993.513-518
    104. Kirchman D L, Rich J H, Barber R T. Biomass and biomass production of heterotrophic bacteria along 140° W in the equatorial Pacific:Effect of temperature on themicrobial loop. Deep-Sea Res II,1995,42:603-619
    105. Kirchman D L, Yu L, Cottrell M T. Diversity and Abundance of Uncultured Cytophaga-like bacteria in the Delaware Estuary. Appl Environ Microb,2003,69:6587-6596
    106. Kirchman D L, Malmstrom R R, Cottrell M T. Control of bacterial growth by temperature and organic matter in the Western Arctic. Deep-Sea Res Ⅱ,2005,52:3386-3395
    107. Kirchman D L, Moran X A, Ducklow H. Microbial growth in the polar oceans-role of temperature and potential impact of climate change. Nat Rev Microbiol,2009,7:451-459
    108. Lamy D, Obernosterer I, Laghdass M, et al. Temporal changes of major bacterial groups and bacterial heterotrophic activity during a Phaeocystis globosa bloom in the eastern English Channel. Aquat Microb Ecol,2009,58:95-107
    109. Landry M R, Calbet A. Microzooplankton production in the oceans. Ices J Mar Sci,2004, 61:501-507
    110. Landry M R, Constantinou J, Latasa M, et al. Biological response to iron fertilization in the eastern equatorial Pacific (IronEx Ⅱ). Ⅲ. Dynamics of phytoplankton growth and microzooplankton grazing. Mar Ecol Prog Ser,2000,201:57-72
    111. Eandry M-R, Hassett R P. Estimating the Grazing Impact of Marine Micro-Zooplankton. Mar Biol,1982,67:283-288
    112. Langenheder S, Jurgens K. Regulation of bacterial biomass and community structure by metazoan and protozoan predation. Limnol Oceanogr,2001,46:121-134
    113. Larsen A, Castberg T, Sandaa R A, et al. Population dynamics and diversity of phytoplankton, bacteria and viruses in a seawater enclosure. Mar Ecol Prog Ser,2001,221:47-57
    114. Lavrentyev P J, McCarthy M J, Klarer D M, et al. Estuarine microbial food web patterns in a Lake Erie coastal wetland. Microb Ecol,2004,48:567-577.2004
    115. Legendre L, Le Fevre J. Microbial food webs and the export of biogenic carbon in oceans. Aquat Microb Ecol,1995,9:69-77
    116. Legendre L, Rassoulzadegan F. Food-web mediated export of biogenic carbon in oceans: hydrodynamic control. Mar Ecol Prog Ser,1996,145:179-193
    117. Legendre L, Rivkin R. How do the very small-sized aquatic microbes influence the very large-scale biogeochemical cycles? In:Influence of Climate Change on the Changing Arctic and Sub-Arctic Conditions (NATO Science for Peace and Security Series C:Environmental Security), edited by Nihoul J C and Kostianoy A G. Springer, Netherlands; 2009,191-207
    118. Legendre L. The significance of microalgal blooms for fisheries and for the export of
    119. Levsky J M, Singer R H. Fluorescence in situ hybridization:past, present and future. J Cell Sci,2003,116:2833-2838
    120. Li W K W. Annual Average Abundance of Heterotrophic Bacteria and Synechococcus in Surface Ocean Waters. Limnol Oceanogr,1998,43:1746-1753
    121. Li W K W, Head E J H, Harrison W G. Macroecological limits of heterotrophic bacterial abundance in the ocean. Deep-Sea Res Ⅰ,2004,51:1529-1540
    122. Lindstrom E S, Kamst-Van Agterveld M P, Zwart G. Distribution of Typical Freshwater Bacterial Groups Is Associated with pH, Temperature, and Lake Water Retention Time. Appl Environ Microbiol,2005,71:8201-8206
    123. Llewellyn C A, Tarran G A, Galliene C P, et al.Microbial dynamics during the decline of a spring diatom bloom in the Northeast Atlantic. J Plant Res,2008,30:261-273
    124. Llobet-Brossa E, Rossello-Mora R, Amann R. Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Appl Environ Microbiol, 1998,64:2691-2696
    125. Loebl M, Van Beusekom J E E. Seasonality of microzooplankton grazing in the northern Wadden Sea. J Sea Res,2008,59:203-216
    126. Lonborg C, Davidson K, Alvarez-Salgado X A, et al. Bioavailability and bacterial degradation rates of dissolved organic matter in a temperate coastal area during an annual cycle. Mar Chem,2009,113:219-226
    127. Longnecker K W M, Sherr E B, Sherr B F. Effect of top-down control on cell-specific activity and diversity of active marine bacterioplankton Aquat Microb Ecol,2010, 58:153-165
    128. Lopez-Urrutia A, Moran X A G. Resource limitation of bacterial production distorts the temperature dependence of oceanic carbon cycling. Ecology,2007,88:817-822
    129. Malmstrom R R, Cotrell M T, Elifantz H, et al. Biomass production and assimilation of dissolved organic matter by SARI 1 bacteria in the Northwest Atlantic Ocean. Appl Environ Microbiol,2005,71:2979-2986
    130. Malmstrom R R, Kiene R P, Kirchman D L. Identification and enumeration of bacteria assimilating dimethylsulfoniopropionate (DMSP) in the North Atlantic and Gulf of Mexico. Limnol Oceanogr,2004,49:597-606
    131. Manz W, Amann R, Ludwig W, et al. Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiol-UK,1996, 142:1097-1106
    132. Manz W, Amann R, Ludwig W, et al. Phylogenetic Oligodeoxynucleotide Probes for the Major Subclasses of Proteobacteria-Problems and Solutions. Syst Appl Microbiol,1992, 15:593-600
    133. Mary 1, Cummings D G, Biegala I C, et al. Seasonal dynamics of bacterioplankton community structure at a coastal station in the western English Channel. Aquat Microb Ecol, 2006,42:119-126
    134. Massana R, Jurgens K. Composition and population dynamics of planktonic bacteria and bacterivorous flagellates in seawater chemostat cultures. Aquat Microb Ecol,2003,32:11-22
    135. Matz C, Kjelleberg S. Off the hook-how bacteria survive protozoan grazing. Trends Microb, 2005,13:302-307
    136. McCarthy J, LeDrew B R, LeDrew L J. A Framework for Aquatic Habitat Classification and Quantification for Large Northern Ecosystems:Application to the Proposed Churchill River Power Project, Churchill River, Labrador, Canada. AM Fish S S,2008,49:1041-1057
    137. McKenzie C H, Deibel D, Thompson, et al. Distribution and abundance of choanoflagellates (Acanthoecidae) in the coastal cold ocean of Newfoundland, Canada. Mar Biol,1997, 129:407-416
    138. Meire P, Ysebaert T, Van Damme S, et al. The Scheldt estuary:a description of a changing ecosystem. Hydrobiologia,2005,540:1-11.
    139. Merzouk A, Levasseur M, Scarratt M, et al. Bacterial DMSP metabolism during the senescence of the spring diatom bloom in the Northwest Atlantic. Mar Ecol Prog Ser,2008, 369:1-11
    140. Mevel G, Vernet M, Ghiglione J F. Short-term temporal variations of heterotrophic bacterial abundance and production in the open NW Mediterranean Sea. Biogeosciences Discuss,2008, 5:1899-1932
    141. Molina V, Ulloa O, Farias L,et al. Ammonia-oxidizing beta-Proteobacteria from the oxygen minimum zone off northern Chile. Appl Environ Microb,2007,73:3547-3555
    142. Mφller E F. Sloppy feeding in marine copepods:prey-size-dependent production of dissolved organic carbon. J Plant Res,2005,27:27-35
    143. Moran X A G, Calvo-Diaz A, Ducklow H W. Total and phytoplankton mediated bottom-up control of bacterioplankton change with temperature in NE Atlantic shelf waters. Aquat Microb Ecol,2010,58:229-239
    144. Morris R M, Rappe M S, Connon S A. et al. SAR11 clade dominates ocean surface bacterioplankton communities. Nature,2002,420:806-810
    145. Morris R M, Vergin K L, Cho J C, et al. Temporal and spatial response of bacterioplankton lineages to annual convective overturn at the Bermuda Atlantic time-series study site. Limnol Oceanogr,2005,50:1687-1696
    146. Moter A, Gobel U B. Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol methods,2000,41:85-112
    147. Murrell M C, Stanley R S, Lores E M, et al. Linkage between microzooplankton grazing and phytoplankton growth in a Gulf of Mexico estuary. Estuaries,2002,25:19-29
    148. Nagata T. Production mechanisms of dissolved organic carbon. In:Microbial Ecology of the Oceans, edited by:Kirchman, D. L., Wiley-Liss, Inc., New York,2000.121-152.
    149. Nagata T. Organic matter-bacteria interactions in seawater. In:Microbial Ecology of the Oceans (2nd ed.), edited by:Kirchman, D. L., Wiley-Liss, Inc., New York,2008.207-241
    150. Navarra J M, Thompson R J. Seasonal fluctuations in the size spectra, biochemical composition and nutritive value of the seston available to a suspension-feeding bivalve in a subarctic environment. Mar Ecol Pro Ser,1995,125:95-106
    151. Norland S. The relationship between biomass and volume of bacteria. In:Kemp P F, Sherr B F, Sherr E B, Cole J J (eds) Aquatic microbial ecology. Lewis Publishers, Boca Raton,1993. 303-307
    152. Obernosterer I, Christaki U, Lefevre D, et al. Rapid bacterial mineralization of organic carbon produced during a phytoplankton bloom induced by natural iron fertilization in the Southern Ocean. Deep-Sea Res Ⅱ,2008,55:777-789
    153. Obernosterer I, Lami R, Larcher M, et al. Linkage Between Bacterial Carbon Processing and the Structure of the Active Bacterial Community at a Coastal Site in the NW Mediterranean Sea. Microb Ecol,2009,112-124
    154. Pace M L, Cole J J. Comparative and eperimental aproaches top-down and bottom-up regulation of bacteria. Microb Ecol,1994,28:181-193
    155. Painchaud J, LeFavre D, Legendre L. Physical processes controlling bacterial distribution and variability in the upper St. Lawrence estuary. Estuar,1995,3:433-444
    156. Pearce I, Davidson A T, Thomson P G, et al. Marine microbial ecology off East Antarctica (30-80°E):Rates of bacterial and phytoplankton growth and grazing by heterotrophic protists. Deep-Sea Res Ⅱ, (in press)
    157. Pelegri S P, Christaki U, Dolan J, et al. Particulate and Dissolved Organic Carbon Production by the Heterotrophic Nanoflagellate Pteridomonas danica Patterson and Fenchel. Microb Ecol,1999,37:276-284
    158. Pernthaler J. Predation on prokaryotes in the water column and its ecological implications. Nat,2005,3:537-546
    159. Pernthaler J, Glockner F O, Unterholzner S, et al. Seasonal community and population dynamics of pelagic bacteria and archaea in a high mountain lake. Appl Environ Microb, 1998,64:4299-4306
    160. Pernthaler J, Posch T, Simek K, et al. Contrasting bacterial strategies to coexist with a flagellate predator in an experimental microbial assemblage. Appl Environ Microb,1997, 63:596-601
    161. Pernthaler J, Sattlerl B, Simek K, et al. Top-down effects on the size-biomass distribution of a freshwater bacterioplankton community. Aquat Microb Ecol,1996,10:255-263
    162. Pinhassi J, Berman T. Differential growth response of colony-forming and y-Proteobacteria in dilution culture and nutrient addition experiments from Lake Kinneret (Israel), the Eastern Mediterranean Sea, and the Gulf of Eilat. Appl Environ Microbiol,2003,199-211
    163. Pinhassi J, Gomez-Consarnau J, Alonso-Saez L, et al. Seasonal changes in bacterioplankton nutrient limitation and their effects on bacterial community composition in the NW Mediterranean Sea. Aquat Microb Ecol,2006,44:241-252
    164. Pinhassi J, Hagstrom A. Seasonal succession in marine bacterioplankton. Aquat Microb Ecol, 2000,21:245-256
    165. Pinhassi J, Sala M M, Havskum H, et al. Changes in bacterioplankton composition under different phytoplankton regimens. Appl Environ Microbiol,2004,70:6753-6766
    166. Pomroy A, Joint I. Bacterioplankton activity in the surface waters of the Arabian sea during and after the 1994 SW Monsoon. Deep sea Res Part Ⅱ,1999,46:767-794
    167. Pomeroy L R. The ocean's food web, a changing paradigm. Biosci,1974,24:499-504
    168. Pomeroy L R, Deibel D. Temperature regulation of bacterial activity during the spring bloom in Newfoundland Coastal Waters. Sci,1986,233:359-361
    169. Pomeroy L R, Wiebe W J. Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquat Microb Ecol,2001,23:187-204
    170. Pomeroy L R, Wiebe W J, Deibel D, et al. Bacterial Responses to Temperature and Substrate Concentration During the Newfoundland Spring Bloom. Mar Ecol Prog Ser,1991,75: 143-159
    171.Posch T, Loferer-Krossbacher M, Gao G, et al. Precision of bacterioplankton biomass determination:a comparison of two fluorescent dyes, and of allometric and linear volume-to-carbon conversion factors. Aquat Microb Ecol,2001,25:55-63
    172. Posch T, Simek K, Vrba J, et al. Predator-induced chancres of bacterial size structure and productivity studied on an experimental microbial community. Aquat Microb Ecol,1999, 18:235-246
    173.Putland J N. Microzooplankton herbivory and bacterivory in Newfoundland coastal waters during spring, summer and winter. J Plank Res,2000,22:253-277
    174. Reinthaler T, Winter C, Herndl G J. Relationship between bacterioplankton richness, respiration, and production in the Southern North Sea. Appl Environ Microbiol,2005, 2260-2266
    175.Ribalet F, Wichard T, Pohnert G, et al. Age and nutrient limitation enhance polyunsaturated aldehyde production in marine diatoms. Phytochemistry,2007,68:2059-2067
    176. Rivkin R B, Anderson M R. Inorganic nutrient limitation of oceanic bacterioplankton. Limnol Oceanogr,1997,42:730-740
    177. Rivkin R B, Anderson M R, Lajzerowicz C. Microbial processes in cold oceans.1. Relationship between temperature and bacterial growth rate. Aquat Microb Ecol,1996, 10:243-254
    178. Rivkin R B, Legendre L. Biogenic carbon cycling in the upper ocean:effects of microbial respiration. Sci,2001,291:2398-2400
    179. Rivkin R B, Legendre L. Roles of food web and heterotrophic microbial processes in upper ocean biogeochemistry:Global patterns and processes. Ecol Res,2002,17:151-159
    180. Rivkin R B, Putland J N, Anderson M R, et al. Microzooplankton bacterivory and herbivory in the NE subarctic Pacific. Deep-Sea Res 11,1999,46:2579-2618
    181.Rohwer F, Thurber R V. Viruses manipulate the marine environment. Nature.2009, 459:207-212
    182. Roland F, Cole J J. Regulation of bacterial growth efficiency in a large turbid estuary. Aquat Microb Ecol,1999,20:31-38
    183. Romera-Castillo C, Sarmento H, Alvarez-Salgado X A, et al. roduction of chromophoric dissolved organic matter by marine phytoplankton. Limnol Oceanogr,2010,55:446-454
    184. Rose J M, Caron D A. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol Oceanogr,2007, 52:886-895
    185. Sabehi G, Massana R, Bielawski J P, et al. Novel Proteorhodopsin variants from the Mediterranean and Red Seas. Environ Microbiol,2003,5:842-849
    186. Sala M M, Balague V, Pedros-Alio C, et al. Phylogenetic and functional diversity of bacterioplankton during Alexandrium spp. blooms. Microb Ecol,2005,54:257-267
    187. Sanders R W, Caron D A, Berninger U G. Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters:inter-ecosystem comparison. Mar Ecol Prog Ser, 1992,86:1-14
    188. Sanders R W, Berninger U G, Lim E L, et al. Heterotrophic and mixotrophic nanoplankton predation on picoplankton in the Sargasso Sea and on Georges Bank. Mar Ecol Prog Ser, 2000,192:103-118
    189. Sanderson M P, Bronk D A, Nejstgaard J C, et al. Phytoplankton and bacterial uptake of inorganic and organic nitrogen during an induced bloom of Phaeocystis pouchetii. Aquat Microb Ecol,2008,51:153-168
    190. Scharek R, Latasa M. Growth, grazing and carbon flux of high and low nucleic acid bacteria differ in surface and deep chlorophyll maximum layers in the NW Mediterranean Sea. Aquat Microb Ecol,2007,46:153-161
    191. Schauer M, Balague V, Pedros-Alio C, et al. Seasonal changes in the taxonomic composition of bacterioplankton in a coastal oligotrophic system. Aquat Microb Ecol,2003,31:163-174
    192. Schultz Jr., White III E D, Ducklow H W. Bacterioplankton dynamics in the York River estuary:primary influence of temperature and freshwater inputs. Aquat Microb Ecol,2003, 30:135-148
    193. Selje N, Simon M, Brinkhoff T. A newly discovered Roseobacter cluster in temperate and polar oceans. Nat,2004,427:445-448
    194. Sharp J H. Estuarine oxygen dynamics:What can we learn about hypoxia from long-time records in the Delaware Estuary? Limnol Oceanogr,2010,55:535-548
    195. Sherr E B, Sherr B F. Capacity of herbivorous protists to control initiation and development of mass phytoplankton blooms. Aquat Microb Ecol,2009,57:253-262
    196. Sherr B F, Sherr E B. Marine Microbes:an Overview, In:Kirchman DL. ed. Microbial ecology of the oceans, first edition. New York:John Wiley& Sons,2000.13-46
    197. Sherr B F, Sherr E B, McDaniel J Effect of protistan grazing on the frequency of dividing cells in bacterioplankton assemblages. Appl Environ Microbio.1992,58:2381-2385
    198. Sherr E B, Sherr B F, Hartz A J. Microzooplankton grazing impact in the Western Arctic Ocean. Deep-sea Res Ⅱ,2009,56:1264-1273
    199. Shiah F K, Ducklow H W. Temperature regulation of heterotrophic bacterioplankton abundance, production, and specific growth rate in Chesapeake Bay. Limn and Oceano,1994, 39:1243-1258
    200. Shiah F K, Wu T H, Li K Y, et al. Thermal effects on heterotrophic processes in a coastal ecosystem adjacent to a nuclear power plant. Mar Ecol Pro Ser,2006,309:55-65
    201.Simek K, et al. Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir. Appl Environ Microb,2001,67:2723-2733
    202. Simek K, Hornak K, Jezbera J, et al. Influence of top-down and bottom-up manipulations on the R-BT065 subcluster of beta-proteobacteria, an abundant group in bacterioplankton of a freshwater reservoir. Appl Environ Microb,2005,71:2381-2390
    203. Simo R, Archer S D, Pedros-Alio C, et al. Coupled dynamics of dimethylsulfoniopropionate and dimethylsulfide cycling and the microbial food web in surface waters of the North Atlantic. Limn and Oceano,2002,47:53-61
    204. Smith M C, Bowman J P, Scott F J, et al. Sublithic bacteria associated with Antarctic quartz stones. Antarctic Science,2000,12:177-184
    205. Sokal R R, Rohlf, F J. Biometry:the principles and practice of statistics in biological research. 3rd end. W. H. Freeman and Company, New York,1995.133-197
    206. Stepanauskas R, Moran M A, Bergamaschi B A, et al. Covariance of bacterioplankton composition and environmental variables in a temperate delta system. Aquat Microb Ecol, 2003,31:85-98
    207. Strom S L, Benner R, Ziegler S, et al. Planktonic grazers are a potentially important source of marine dissolved organic carbon. Limnol Oceanogr,1997,42:1364-1374
    208. Suffrian K, Simonelli P, Nejstgaard JC, et al. Microzooplankton grazing and phytoplankton growth in marine mesocosms with increased CO2 levels. Biogeosciences,2008,5:1145-1156
    209. Suttle C A. Marine viruses—major players in the global ecosystem. Nature.2007:801-812
    210. Suzuki M T, Delong E F. Marine prokaryotic diversity. In:Staley J T, Reysenbach A L. eds. Biodiversity of microbial life, New York:John Wiley& Sons,2004,209-234
    211. Taira Y, Uchimiya M, Kudo I. Simultaneous estimation of viral lysis and protozoan grazing on bacterial mortality using a modified virus-dilution method. Mar Ecol Pro Ser,2009, 379:23-32
    212. Taylor R L, Abrahamsson K, Godhe A, et al. Seasonal Variability in Polyunsaturated Aldehyde Production Potential among Strains of Skeletonema Marinoi (Bacillariophyceae). J Phycol,2009,45:46-53
    213.Teira E, Gasol J M, Aranguren-Gassis M, et al. Linkages between bacterioplankton community composition, heterotrophic carbon cycling and environmental conditions in a highly dynamic coastal ecosystem. Environ Microbiol,2008,10:906-917
    214. Teira E, Martinez-Garcia S, Lφnborg C, et al. Growth rates of different phylogenetic bacterioplankton groups in a coastal upwelling system. Environ Microbiol Rep,2009, 1:545-554
    215. Teira E, Nieto-Cid M, Alvarez-Salgado X A. Bacterial community composition and colored dissolved organic matter in a coastal upwelling ecosystem. Aquat Microb Ecol,2009, 55:131-142
    216. Thelaus J, Forsman M, Andersson A. Role of productivity and protozoan abundance for the occurrence of predation-resistant bacteria in aquatic systems. Microb Ecol,2008,56.18-28
    217. Thelaus J, Haecky P, Forsman M, et al. Predation pressure on bacteria increases along aquatic productivity gradients. Aquat Microb Ecol,2008,52:45-55
    218. Thingstad T F. Elements of a Theory for the Mechanisms Controlling Abundance, Diversity, and Biogeochemical Role of Lytic Bacterial Viruses in Aquatic Systems. Limn and Oceano, 2000,45:1320-1328
    219. Thompson R J, Deibel D, Redden A M, et al. Vertical flux and fate of particulate matter in a Newfoundland fjord at sub-zero water temperatures during spring. Mar Ecol Mar Ser,2008, 357:33-49
    220. Tibbles B J. Effects of temperature on the relative incorporation of leucine and thymidine by bacterioplankton and bacterial isolates. Aquat Microb Ecol,1997,11:239-250
    221. Tsuda A,Kwaguchi S. Microzooplankton grazing in the surface water of the Southern Ocean during an austral summer. Polar Biol,1997,18:240-245
    222. Van Hannen E J, Veninga M, Bloem J, et al. Genetic changes in the bacterial community structure associated with protistan grazers. Archiv fur Hydrob,1999,145:25-38
    223. Van Wambeke F, Ghiglione J F, Nedoma J, et al. Bottom up effects on bacterioplankton growth and composition during summer-autumn transition in the open NW Mediterranean Sea. Biogeosciences,2009,6:705-720
    224. Vaque D, Casamayor E O, Gasol J M. Dynamics of whole community bacterial production and grazing losses in seawater incubations as related to the changes in the proportions of bacteria with different DNA content. Aquat Microb Ecol,2001,25:163-177
    225. Vaque D, Guadayol O, Peters F, et al. Differential response of grazing and bacterial heterotrophic production to experimental warming in Antarctic waters. Aquat Microb Ecol, 2009,54:101-112
    226. Vazquez-Dominguez E, Duarte C M, Agusti S, et al. Microbial plankton abundance and heterotrophic activity across the Central Atlantic Ocean. Prog Oceanogr,2008,79:83-94
    227. Vila M, Simo R, Kiene R P, et al. Use of microautoradiography combined with fluorescence in situ hybridization to determine dimethylsulfoniopropionate incorporation by marine bacterioplankton taxa. Appl Environ Microb,2004,70:4648-4657
    228. Wallner G, Amann R, Beisker W. Optimizing fluorescent in situ-hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry,1993,14:136-143
    229. Wagner M, Horn M, Daims H. Fluorescence in situ hybridisation for the identification and characterisation of prokaryotes. Curr Opin Microbiol,2003,6:302-309
    230. Wells L E, Deming J W. Abundance of Bacteria, the Cytophaga-Flavobacterium cluster and Archaea in cold oligotrophic waters and nepheloid layers of the Northwest Passage, Canadian Archipelago. Aquat Microb Ecol,2003,31:19-31
    231. White P A, Kalff J, Rasmussen J B, et al. The efect of tmperature and agal biomass on bacterial poduction and specific growth rate in freshwater and marine habitats. Microb Ecol, 1991,21:99-118
    232. Williams C J, Lavrentyev P J, Jochem F J. Bottom-up and top-down control of heterotrophic bacterioplankton growth in a phosphorus-depleted subtropical estuary, Florida Bay, USA. Mar Ecol Prog Ser,2008,372:7-18
    233. Wilson C, Qiu X. Global distribution of summer chlorophyll blooms in the oligotrophic gyres. Prog Oceanogr,2008,78:107-134
    234. Worden A Z, Binder B J. Application of dilution experiments for measuring growth and mortality rates among Prochlorococcus and Synechococcus populations in oligotrophic environments. Aquat Microb Ecol,2000,30:159-174
    235. Wu Y S, Peterson I K, Tang C L, et al. The impact of sea ice on the initiation of the spring bloom on the Newfoundland and Labrador Shelves. J Plank Res,2007,29:509-514
    236. Yannarell A C, Triplett E W.-Geographic and environmental sources of variation in lake bacterial community composition. Appl Environ Microbiol,2005,71:227-239
    237. Yoch D C. Dimethylsulfoniopropionate:its sources, role in the marine food web, and biological degradation to dimethylsulfide. Appl Environ Microbiol,2002,68:5804-5815
    238. Yokokawa T, Nagata T. Growth and grazing mortality rates of phylogenetic groups of bacterioplankton in coastal marine environments. Appl Environ Microb,2005,71:6799-6807
    239. Yokokawa T, Nagata T, Cottrell M T, et al. Growth rate of the major phylogenetic bacterial groups in the Delaware estuary. Limnol Oceanogr,2004,49:1620-1629
    240. Yoshimura T, Nishioka J, Suzuki T, et al. Impacts of elevated CO2 on phytoplankton community composition and organic carbon dynamics in nutrient-depleted Okhotsk Sea surface waters. Biogeosci Discuss,2009,6:4143-4163
    241. Young K D. The selective value of bacterial shape. Microbiol Mol Biol R,2006,70:660-703
    242. Zollner E, Hoppe H G, Sommer U, et al. Effect of zooplankton-mediated trophic cascades on marine microbial food web components (bacteria, nanoflagellates, ciliates). Limnol Oceanogr, 2009,54:262-275
    243. Zubkov M V, Linn L J, Amann R, et al. Temporal patterns of biological dimethylsulfide (DMS) consumption during laborary-induced phytoplankton bloom cycles. Mar Ecol Prog Ser,2004,271:77-86
    244. Zubkov M V, Fuchs B M, Archer S D, et al. Rapid turnover of dissolved DMS and DMSP by defined bacterioplankton communities in the stratified euphotic zone of the North Sea. Deep-Sea Res Part 11,2002,49:3017-3038
    245. Zubkov M V, Sleigh M A, Burkill P H, et al. Bacterial growth and grazing loss in contrasting areas of North and South Atlantic. J Plank Res,2000,22:685-711

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700