用户名: 密码: 验证码:
β-内酰胺类抗生素及其杂质的质谱裂解规律研究和毒性预测与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
药品的质量安全问题不仅是各国药品监管机构和制药企业重点关注的领域,也是公众普遍关心的民生热点问题。药品的质量直接关系到临床使用时药品的不良反应,对药品中杂质的控制是保证药品质量安全的重要环节。进入新世纪以后,研究者提出了杂质谱控制的理念。杂质谱控制的理念是对药品中所有的杂质的总的描述,强调根据杂质的生理活性逐一制定质量控制限度。实现杂质谱控制的三个关键技术问题可概括为:复杂体系的分离分析、微量杂质的结构分析和杂质的毒性评价。本论文以临床上广泛应用的β-内酰胺类抗生素为研究对象,就杂质的结构分析和毒性预测与评价两方面展开研究。
     利用HPLC-MS分析药品中微量不稳定杂质是主流的研究方法,根据杂质的来源,分析主成分和杂质的质谱裂解规律,可较快地推断出杂质可能的结构。因此,开展杂质谱研究前,首先需深刻认识p-内酰胺类抗生素及其杂质的质谱裂解规律,寻找主成分与杂质在质谱裂解规律上的共同点和不同点。针对与主成分互为同分异构体的杂质,本论文探索用质谱、光谱学、计算化学等多种技术手段来研究它们的质谱裂解行为。杂质毒性预测与评价方面,本论文针对模式动物斑马鱼胚胎毒性评价平台提出的毒性功能基团理念,通过计算p-内酰胺类抗生素在水溶液中的最稳定构象,分析毒性功能基团的空间结构;通过计算药物分子的极性大小,预测药物分子被斑马鱼胚胎吸收的情况;进而预测药物在斑马鱼胚胎毒性实验中的毒性作用。本论文研究内容主要包括以下四个部分:
     1.以培南类抗生素为例,应用多级质谱和计算化学手段,研究质谱正离子模式下,p-内酰胺类抗生素共同的内酰胺环裂解机理。系统研究了培南类在质谱正离子条件下的质子化位点和离子结构,提出了四种不同的内酰胺环裂解途径。用理论计算的方法对不同裂解途径做了化学热力学研究,探讨了6个培南类化合物热力学上最有利的裂解途径。研究发现培南类抗生素7位羰基氧原子的质子亲和能决定了培南类内酰胺环裂解反应的最有利途径。
     2.以头孢菌素△-3异构体为例,研究正离子和负离子模式下,头孢菌素与△-3异构体杂质裂解行为的差异。研究发现,由于双键位置的差异,头孢菌素和△-3异构体杂质可通过特征性碎片离子区分开来。综合质谱、红外多光子解离光谱、计算化学的手段,重点研究了特征性碎片离子的结构和产生机理,对质谱裂解行为的差异给出了合理的解释。
     3.以头孢菌素反式异构体为例,研究质谱正离子模式下,头孢菌素和反式异构体杂质裂解行为的差异。对部分7位侧链含(刁-亚胺结构的头孢菌素和它们的反式异构体的质谱裂解行为的研究发现,顺反异构体的裂解行为受3位侧链的影响。当3位侧链首先发生裂解时,反式异构体更易于脱去亚胺上取代基,产生特征性碎片离子;当3位侧链不发生裂解时,顺反异构体的裂解行为基本相同。
     4.用理论计算的方法研究头孢菌素和部分杂质在水溶液中的空间构象和极性大小,并用斑马鱼胚胎毒性实验评价和验证毒性作用大小。结果表明,头孢菌素的母核结构毒性较小,3位侧链和7位侧链取代基是主要的毒性功能基团。侧链取代基的空间构象不仅决定了毒性功能基团的毒性大小,还影响了分子极性大小,并影响了头孢菌素被动吸收的过程。极性越小,分子越易透过胚胎生物膜,使胚胎内药物浓度升高,增加毒性反应的强度。
The drug quality and safety are not only the tremendous issues for drug regulation administrations and pharmaceutical companies, but also the main concerns for public. The drug quality is closely related to the adverse drug reactions found in the clinics, and the drug impurity analysis is the key process ensuring the drug quality. Therefore, the concept of impurity profiling is proposed, the definition of impurity profiling is "A description of the identified and unidentified impurities, present in a new drug substance", with the aim of detecting, identifying or elucidating the structure and quantitatively determining all the impurities in bulk drugs and pharmaceutical dosage forms. Impurity profiling is focused on the limit determination according to the biological activity of impurities. To achieve the profiling of drug impurities, three key technical issues should be considered:separation of the complex sample, structural elucidation of unknown impurities in trace amount, and toxicity evaluation of impurities. In this dissertation, the widely prescribed P-lactam antibiotics in clinics are chosen, the studies are mainly about the structural elucidation and toxicity evaluation.
     HPLC-MS is one of the most important tools in the drug quality control, the possible structures could be rapidly determined based on the knowledge of impurity source and fragmentation pathways in mass spectrometry. Thus, a deep understanding of the fragmentation behavior in mass spectrometry is desperately required for impurity profiling, the different fragmentation patterns in mass spectrometry, as well as the universal pathways are very useful information for structural elucidation. The differentiation of stereoisomeric impurities using mass spectrometry, infrared multiple photon dissociation (IRMPD) spectroscopy and computational chemistry is also highlighted. For toxicity prediction and evaluation, theoretical calculations were used to study the molecular conformations in aqueous solution and to confirm the concept of toxic functional groups of the C-3and C-7side chains. Molecular polarities were calculated to predict the passive absorption in Zebrafish embryo toxicity testing. The following four parts are included in this study:
     1. The universal fragmentation behaviors of the cleavage of P-lactam ring in Penems were studied by collision-induced dissociation mass spectrometry and computational chemistry in the positive ion mode. The protonation sites and structures of several Penams were explored in the gas-phase, four β-lactam ring cleavage mechanisms were proposed, the thermodynamic characteristics of these pathways were also investigated, the most favorable pathway for each compound was located. The study indicated that the protonation sites have crucial impacts on the cleavage.
     2. The differentiation of some cephalosporins and their A-3isomers were comprehensively investigated by mass spectrometry in both the positive and negative ion mode. The characteristic product ions enabled distinguish of these positional isomers. IRMPD spectroscopy and computational chemistry were applied for structural determination and fragmentation mechanism study.
     3. In the positive ion mode, cephalosporins with (Z)-imine configuration of the C-7side chain, together with their (E)-isomers were studied by electrospray tandem mass spectrometry and computational chemistry. The results suggested that the fragmentation behavior of (Z)-and (E)-isomers are significantly influence by the nature of their C-3side chain. The (Z)-and (E)-isomers could only be distinct when the cleavage of C-3side chain occurred, the (E)-isomers were more likely to lose the substituents of the imine moieties, leading to the characteristic ions for differentiation. If the C-3side chain kept intact under collision-induced dissociation, the (Z)-and (E)-isomers would have the same fragmentation pattern.
     4. The computational chemistry was applied to study the conformations and polarities of cephalosporins and their impurities in the aqueous solution, also, Zebrafish embryo toxicity testing was used to evaluate and validate the toxic effects. The results indicated that the basic structure of the cephalosporin was almost nontoxic, while the C-3and C-7side chains were the main toxic functional groups. The conformations of the side chain in the aqueous solution affected the potency of the toxic effect, moreover, they determined the polarity of the molecules. Consequently, the conformations would influence the ability of passive absorption through the embryo membrane. The decreased polarity would increase the membrane permeability and finally gave rise to more potent toxic activity.
引文
[1]胡昌勤.化学药品杂质控制的现状与展望[J].中国科学化学.2010,40(6):679-687.
    [2]Gorog S., Babjak M., Balogh G., Brlik J., Csehi A., Dravecz F., Gasdag M., Horvath P., Lauko A., Varga K. Drug impurity profiling strategies[J]. Talanta 1997, 44(9):1517-1526.
    [3]Gorog S. The importance and the challenges of impurity profiling in modern pharmaceutical analysis[J]. TrAC, Trends Anal. Chem.2006,25(8):755-757.
    [4]Nagele E., Moritz R. Structure elucidation of degradation products of the antibiotic amoxicillin with ion trap MSn and accurate mass determination by ESI TOF[J]. J. Am. Soc. Mass. Spectrom.2005,16(10):1670-1676.
    [5]Vilanova B., Munoz F., Donoso J., Frau J., Blanco F. G. Alkaline hydrolysis of cefotaxime. A HPLC and 1H NMR study[J]. J. Pharm. Sci.1994,83(3):322-327.
    [6]Okamoto Y., Kiriyama K., Namiki Y., Matsushita J., Fujioka M., Yasuda T. Degradation kinetics and isomerization of cefdinir, a new oral cephalosporin, in aqueous solution.2. Hydrolytic degradation pathway and mechanism for β-lactam ring opened lactones[J]. J. Pharm. Sci.1996,85(9):984-989.
    [7]Popa E., Huang M.-J., Brewstera M. E., Bodora N. On the mechanism of cephalosporin isomerization[J].J. Mol. Struc-THEOCHEM.1994,315:1-7.
    [8]Saab A. N., Dittert L. W., Hussain A. A. Isomerization of cephalosporin esters: implications for the prodrug ester approach to enhancing the oral bioavailabilities of cephalosporins[J]. J. Pharm. Sci.1988,77(10):906-907.
    [9]蒋煜,张哲峰,王虹.β-内酰胺类抗生素异构体杂质研究和质控进展[J].中国抗生素杂志.2010,35(8):561-566.
    [10]陈兆坤,胡昌勤.头孢菌素类抗生素的降解机制[J].国外医药(抗生素分册).2004,25(6):249-252,265.
    [11]Baertschi S. W., Dorman D. E., Spangle L. A., Collins M. W., Lorenz L. J. Formation of fluorescent pyrazine derivatives via a novel degradation pathway of the carbacephalosporin loracarbef[J]. J. Pharm. Biomed. Anal.1995,13(3): 323-328.
    [12]Hashimoto N., Hirano K. Isomerization of ceftibuten in aqueous solution[J]. J. Pharm. Sci.1998,87(9):1091-1096.
    [13]Gorog S. The changing face of pharmaceutical analysis[J]. TrAC, Trends Anal. Chem.2007,26(1):12-17.
    [14]Baertschi S. W. Analytical methodologies for discovering and profiling degradation-related impurities[J]. TrAC, Trends Anal. Chem.2006,25(8):758-767.
    [15]Singh S., Handa T., Narayanam M., Sahu A., Junwal M., Shah R. P. A critical review on the use of modern sophisticated hyphenated tools in the characterization of impurities and degradation products[J]. J. Pharm. Biomed. Anal.2012,69: 148-173.
    [16]Foti C, Alsante K., Cheng G., Zelesky T., Zell M. Tools and workflow for structure elucidation of drug degradation products[J]. TrAC, Trends Anal. Chem. 2013,49:89-99.
    [17]Wang M.-j., Li Y.-P., Wang Y., Li J., Hu C.-q., Hoogmartens J., Van Schepdael A., Adams E. Characterization of the components of meleumycin by liquid chromatography with photo-diode array detection and electrospray ionization tandem mass spectrometry[J]. J. Pharm. Biomed. Anal.2013,84:69-76.
    [18]Wang M.-j., Pendela M., Hu C.-q., Jin S.-h., Hoogmartens J., Van Schepdael A., Adams E. Impurity profiling of acetylspiramycin by liquid chromatography-ion trap mass spectrometry[J]. J. Chromatogr. A 2010,1217(42):6531-6544.
    [19]Wang M.-j., Xue J., Zou W.-b., Wang Y, Hu C.-q., Hoogmartens J., Adams E. Identification of the components of bitespiramycin by liquid chromatography-mass spectrometry[J]. J. Pharm. Biomed. Anal.2012,66:402-410.
    [20]Yuan Y.-z., Zhang M., Fan X.-L., Wang G.-H., Hu C.-Q., Jin S.-h., Van Schepdael A., Hoogmartens J., Adams E. Impurity profiling of etimicin sulfate by liquid chromatography ion-trap mass spectrometry[J]. J. Pharm. Biomed. Anal.2012,70: 212-223.
    [21]Yuan Y.-z., Zhao X., Zhang M., Fan X.-L., Hu C.-q., Jin S.-h., Van Schepdael A., Hoogmartens J., Adams E. Impurity profiling of micronomicin sulfate injection by liquid chromatography-ion trap mass spectrometry[J]. J. Pharm. Biomed. Anal. 2013,75:94-104.
    [22]陈珍珍,张斗胜,王楠,冯芳,胡昌勤.利用LC-MS和二维色谱相关光谱技术识别HPLC色谱图中杂质峰[J].药学学报.2012,47(4):492-497.
    [23]李进,张斗胜,姚尚辰,胡昌勤.LC/MS法分析头孢替坦二钠原料中的杂质[J].中国科学化学.2010,40(6):775-785.
    [24]Wu Y. The use of liquid chromatography-mass spectrometry for the identification of drug degradation products in pharmaceutical formulations[J]. Biomed. Chromatogr.2000,14(6):384-396.
    [25]Fang A. S., Miao X., Tidswell P. W., Towle M. H., Goetzinger W. K., Kyranos J. N. Mass spectrometry analysis of new chemical entities for pharmaceutical discovery[J]. Mass Spectrom. Rev.2008,27(1):20-34.
    [26]Borders D. B., Carter G. T., Hargreaves R. T., Siegel M. M. Recent applications of mass spectrometry to antibiotic research[J]. Mass Spectrom. Rev.1985,4(3): 295-367.
    [27]Kobayashi K., Sato K., Mizuno Y., Katsumata Y. Capillary high-performance liquid chromatography-fast atom bombardment mass spectrometry of 24 cephem antibiotics[J]. J. Chromatogr. B:Biomed. Sci. Appl.1996,677(2):275-290.
    [28]Li J., Zhang D.-s., Chong X.-m., Hu C.-q. Influence of substituent groups at the 3-position on the mass spectral fragmentation pathways of cephalosporins[J]. Rapid Commun. Mass Spectrom.2010,24(14):2143-2150.
    [29]Tu Y.-P., Holmes J. L. Fragmentation of substituted oxonium ions:The role of ion-neutral complexes[J].J. Am. Soc. Mass. Spectrom.1999,10(5):386-392.
    [30]Lanucara F., Chiavarino B., Scuderi D., Maitre P., Fornarini S., Crestoni M. E. Kinetic control in the CID-induced elimination of H3PO4 from phosphorylated serine probed using IRMPD spectroscopy[J]. Chem. Commun.2014,50(29): 3845-3848.
    [31]Lieschke G. J., Currie P. D. Animal models of human disease:zebrafish swim into view[J]. Nat. Rev. Genet.2007,8(5):353-367.
    [32]Zhang J., Meng J., Li Y., Hu C. Investigation of the toxic functional group of cephalosporins by zebrafish embryo toxicity test[J]. Arch. Pharm.2010,343(10): 553-560.
    [33]Merlot C. Computational toxicology-a tool for early safety evaluation[J]. Drug Discovery Today 2010,15(1):16-22.
    [34]Ford K. A. Role of Electrostatic Potential in the in Silico Prediction of Molecular Bioactivation and Mutagenesis[J]. Mol. Pharm.2013,10(4):1171-1182.
    [35]Solimeo R., Zhang J., Kim M., Sedykh A., Zhu H. Predicting chemical ocular toxicity using a combinatorial QSAR approach[J]. Chem. Res. Toxicol.2012, 25(12):2763-2769.
    [36]Polishchuk P. G., Muratov E. N., Artemenko A. G., Kolumbin O. G., Muratov N. N., Kuz'min V. E. Application of random forest approach to QSAR prediction of aquatic toxicity[J]. J. Chem. Inf. Model.2009,49(11):2481-2488.
    [37]董耘婷,张永信.碳青霉烯类抗生素的发展与展望[J].上海医药.2011,32(7):316-319.
    [38]Papp-Wallace K. M., Endimiani A., Taracila M. A., Bonomo R. A. Carbapenems: past, present, and future[J]. Antimicrob. Agents Chemother.2011,55(11): 4943-4960.
    [39]I El-Gamal M., Oh C.-H. Current status of carbapenem antibiotics[J]. Curr. Top. Med. Chem.2010,10(18):1882-1897.
    [40]Triolo A., Bonelli F. Structural characterization of a new class of penem β-lactam antibiotics by triple quadrupole tandem mass spectrometry[J]. Rapid Commun. Mass Spectrom.1995,9(8):707-711.
    [41]Moseley M. A., Deterding L. J., Tomer K. B., Jorgenson J. W. Nanoscale packed-capillary liquid chromatography coupled with mass spectrometry using a coaxial continuous-flow fast atom bombardment interface[J]. Anal. Chem.1991, 63(14):1467-1473.
    [42]Straub R. F., Voyksner R. D. Determination of penicillin G, ampicillin, amoxicillin, cloxacillin and cephapirin by high-performance liquid chromatography-electrospray mass spectrometry[J]. J. Chromatogr. A 1993,647(1): 167-181.
    [43]Tenconi S., De Filippo L., Da Col M., Gioacchini A. M., Traldi P. Electrospray mass spectrometry in the structural characterization of cephalosporins[J]. J. Mass Spectrom.1999,34(4):268-275.
    [44]Voyksner R. D., Tyczkowska K. L., Aronson A. L. Development of analytical methods for some penicillins in bovine milk by ion-paired chromatography and confirmation by thermospray mass spectrometry[J]. J. Chromatogr. B:Biomed. Sci. Appl.1991,567(2):389-404.
    [45]Mitscher L. A., Showalter H., Shirahata K., Foltz R. Chemical-ionization mass spectrometry of beta-lactam antibiotics[J]. J. Antibiot.1975,28(9):668-675.
    [46]Rabbolini S., Verardo E., Da Col M., Gioacchini A. M., Traldi P. Negative ion electrospray ionization tandem mass spectrometry in the structural characterization of penicillins[J]. Rapid Commun. Mass Spectrom.1998,12(22):1820-1826.
    [47]Hu N., Tu Y.-P., Liu Y., Jiang K., Pan Y. Dissociative protonation and proton transfers:fragmentation of a, β-unsaturated aromatic ketones in mass spectrometry[J].J. Org. Chem.2008,73(9):3369-3376.
    [48]Tu Y.-P. Dissociative protonation sites:reactive centers in protonated molecules leading to fragmentation in mass spectrometry[J]. J. Org. Chem,2006,71(15): 5482-5488.
    [49]Cheng C., Gross M. L. Applications and mechanisms of charge-remote fragmentation[J]. Mass Spectrom. Rev.2000,19(6):398-420.
    [50]Gross M. L. Charge-remote fragmentation:an account of research on mechanisms and applications[J]. Int. J. Mass spectrom.2000,200(1):611-624.
    [51]Gross M. L. Charge-remote fragmentations:method, mechanism and applications [J]. Int. J. Mass Spectrom. Ion Processes 1992,118:137-165.
    [52]Alcaide B., Almendros P., Aragoncillo C. Exploiting [2+2] cycloaddition chemistry:achievements with allenes[J]. Chem. Soc. Rev.2010,39(2):783-816.
    [53]Schmidt M. W., Baldridge K. K., Boatz J. A., Elbert S. T., Gordon M. S., Jensen J. H., Koseki S., Matsunaga N., Nguyen K. A., Su S. General atomic and molecular electronic structure system[J]. J. Comput. Chem.1993,14(11):1347-1363.
    [54]Zhao Y, Truhlar D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements:two new functionals and systematic testing of four M06-class functionals and 12 other functionals[J]. Theor. Chem. Acc.2008, 120(1-3):215-241.
    [55]Schafer A., Huber C., Ahlrichs R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr[J]. J. Chem. Phys.1994,100(8): 5829-5835.
    [56]Wheeler S. E., Houk K. Integration grid errors for meta-GGA-predicted reaction energies:Origin of grid errors for the M06 suite of functionals[J]. J. Chem. Theory Comput.2010,6(2):395-404.
    [57]Range K., Riccardi D., Cui Q., Elstner M., York D. M. Benchmark calculations of proton affinities and gas-phase basicities of molecules important in the study of biological phosphoryl transfer[J]. Phys. Chem. Chem. Phys.2005,7(16): 3070-3079.
    [58]Yalcin T., Csizmadia I. G., Peterson M. R., Harrison A. G. The structure and fragmentation of B n (n≥3) ions in peptide spectra[J]. J. Am. Soc. Mass. Spectrom. 1996,7(3):233-242.
    [59]Yalcin T., Khouw C., Csizmadia I. G., Peterson M. R., Harrison A. G. Why are B ions stable species in peptide spectra?[J].J. Am. Soc. Mass. Spectrom.1995,6(12): 1165-1174.
    [60]Zhao Y., Truhlar D. G. Density functionals with broad applicability in chemistry[J]. Acc. Chem. Res.2008,41(2):157-167.
    [61]Cossio F. P., Arrieta A., Sierra M. A. The Mechanism of the Ketene-Imine (Staudinger) Reaction in Its Centennial:Still an Unsolved Problem?[J]. Acc. Chem. Res.2008,41(8):925-936.
    [62]Venturini A., Gonzalez J. Mechanistic aspects of the ketene-imine cycloaddition reactions[J].Mini-Rev. Org. Chem.2006,3(3):185-194.
    [63]Liang Y., Jiao L., Zhang S., Yu Z.-X., Xu J. New insights into the torquoselectivity of the Staudinger reaction[J].J.Am. Chem. Soc.2009,131(4):1542-1549.
    [64]Banik B. K., Lecea B., Arrieta A., de Cozar A., Cossio F. P. On the stereodivergent behavior observed in the Staudinger reaction between methoxyketene and (E)-N-benzylidenearylamines[J].Angew. Chem.2007,119(17):3088-3092.
    [65]Qi H., Li X., Xu J. Stereoselective control in the Staudinger reactions involving monosubstituted ketenes with electron acceptor substituents:experimental investigation and theoretical rationalization[J]. Org. Biomol. Chem.2011,9(8): 2702-2714.
    [66]Truong T. N. Solvent effects on structure and reaction mechanism:a theoretical study of [2+2] polar cycloaddition between ketene and imine[J]. J. Phys. Chem. B 1998,102(40):7877-7881.
    [67]Assfeld X., Ruiz-lopez M. F., Gonzalez J., Lopez R., Sordo J. A., Sordo T. Theoretical analysis of the role of the solvent on the reaction mechanisms: One-step versus two-step ketene-imine cycloaddition[J]. J. Comput. Chem.1994, 15(5):479-487.
    [68]Accurso A. A., Cho S.-H., Amin A., Potapov V. A., Amosova S. V., Finn M. Thia-, aza-, and selena [3.3.1] bicyclononane dichlorides:Rates vs internal nucleophile in anchimeric assistance[J]. J. Org. Chem.2011,76(11):4392-4395.
    [69]Cossy J., Blanchard N., Meyer C. Stereoselective oxymercuration of cyclopropylcarbinols with anchimeric assistance by aromatic groups[J]. Tetrahedron Lett.2002,43(10):1801-1805.
    [70]Guiotto A., Canevari M., Pozzobon M., Moro S., Orsolini P., Veronese F. M. Anchimeric assistance effect on regioselective hydrolysis of branched PEGs:a mechanistic investigation[J].Biorg. Med. Chem.2004,12(19):5031-5037.
    [71]Salin A. V, Fatkhutdinov A. R., Il'in A. V., Galkin V. I. Effect of Anchimeric Assistance in the Reaction of Triphenylphosphine with a, β-Unsaturated Carboxylic Acids[J]. Int. J. Chem. Kinet.2014.
    [72]Tu Y.-P., Harrison A. G. Fragmentation of protonated amides through intermediate ion-neutral complexes:Neighboring group participation[J]. J. Am. Soc. Mass. Spectrom.1998,9(5):454-462.
    [73]Wu R., McMahon T. B. Infrared multiple photon dissociation spectroscopy as structural confirmation for GlyGlyGlyH+and AlaAlaAlaH+in the gas phase. Evidence for amide oxygen as the protonation site[J]. J. Am. Chem. Soc.2007, 129(37):11312-11313.
    [74]Csonka I. P., Paizs B., Lendvay G., Suhai S. Proton mobility in protonated peptides:a joint molecular orbital and RRKM study[J]. Rapid Commun. Mass Spectrom.2000,14(6):417-431.
    [75]Rao K., Rani A., Reddy A., Bharathi C., Dandala R., Naidu A. Isolation, structural elucidation and characterization of impurities in Cefdinir[J]. J. Pharm. Biomed. Anal.2007,43(4):1476-1482.
    [76]Rao K. V. V. P., Dandala R., Sivakumaran M., Rani A., Naidu A. Novel compounds for the synthesis of cefdinir[J].J. Heterocycl. Chem.2007,44(2): 309-314.
    [77]Baertschi S. W., Dorman D. E., Occolowitz J. L., Collins M. W., Spangle L. A., Stephenson G. A., Lorenz L. J. Isolation and structure elucidation of the major degradation products of cefaclor formed under aqueous acidic conditions[J]. J. Pharm. Sci.1997,86(5):526-539.
    [78]Cohen N. C., Ernest I., Scartazzini R., Wirz P., Fritz H., Fuhrer H., Rihs G. Are the known A2-cephems inactive as antibiotics because of an unfavourable steric orientation of their 4a-carboxylic group? Synthesis and biology of two A2-cephem-4β-carboxylic acids[J].Helv. Chim. Acta 1987,70(7):1967-1979.
    [79]Van Heyningen E., Ahern L. K. Chemistry of cephalosporins.Ⅻ. Configuration of the carboxyl group in. DELTA.2-cephalosporins[J]. J. Med. Chem.1968,11(5): 933-936.
    [80]Vilanova B., Munoz F., Donoso J., Blanco F. G. HPLC and 1H-NMR Studies of Alkaline Hydrolysis of Some 7-(Oxyiminoacyl) cephalosporins[J]. Helv. Chim. Acta 1993,76(8):2789-2802.
    [81]Farina A., Porra R., Cotichini V., Doldo A. Stability of reconstituted solutions of ceftazidime for injections:an HPLC and CE approach[J].J. Pharm. Biomed. Anal. 1999,20(3):521-530.
    [82]Porra R., Farina A., Cotichini V., Lecce R. Analysis of ceftazidime and related compounds by micellar electrokinetic chromatography[J]. J. Pharm. Biomed. Anal. 1998,18(1):241-248.
    [83]赵玲,郭继芬,张爱军,赵毅民.利用LC-MS/MS法快速鉴定盐酸头孢吡肟中的同分异构体杂质[J].药学学报.2005,40(4):361-364.
    [84]Hejazi L., Ebrahimi D., Guilhaus M., Hibbert D. B. Discrimination among geometrical isomers of a-linolenic acid methyl ester using low energy electron ionization mass spectrometry[J]. J. Am. Soc. Mass. Spectrom.2009,20(7): 1272-1280.
    [85]Hsu F.-F., Turk J. Elucidation of the double-bond position of long-chain unsaturated Fatty acids by multiple-stage linear ion-trap mass spectrometry with electrospray ionization[J]. J. Am. Soc. Mass. Spectrom.2008,19(11):1673-1680.
    [86]Sun C, Zhu P., Hu N., Wang D., Pan Y. Differentiation of lisinopril and its RSS diastereomer by liquid chromatography combined with collision-induced dissociation mass spectrometry[J]. J. Mass Spectrom.2010,45(1):89-96.
    [87]Dorman D. E., Lorenz L. J., Occolowitz J. L., Spangle L. A., Collins M. W., Bashore F. N., Baertschi S. W. Isolation and structure elucidation of the major degradation products of cefaclor in the solid state[J].J. Pharm. Sci.1997,86(5): 540-549.
    [88]Vilanova B., Munoz F., Donoso J., Garcia-Blanco F. Degradation of cephaloridine on alkaline hydrolysis[J]. Helv. Chim. Acta 1993,76(4):1619-1625.
    [89]Sugioka T., Asano T., Chikaraishi Y., Suzuki E., Sano A., Kuriki T., Shirotsuka M., Saito K. Stability and degradation pattern of cefpirome (HR 810) in aqueous solution[J]. Chem. Pharm. Bull. (Tokyo) 1990,38(7):1998-2002.
    [90]Bakker J. M., Besson T., Lemaire J., Scuderi D., Maitre P. Gas-phase structure of a π-allyl-palladium complex:efficient infrared spectroscopy in a 7 T fourier transform mass spectrometer[J]. J. Phys. Chem. A 2007,111(51):13415-13424.
    [91]MacAleese L., Maitre P. Infrared spectroscopy of organometallic ions in the gas phase:From model to real world complexes[J]. Mass Spectrom. Rev.2007,26(4): 583-605.
    [92]Chai J.-D., Head-Gordon M. Systematic optimization of long-range corrected hybrid density functionals [J]. J. Chem. Phys.2008,128(8):084106.
    [93]Granovsky A. A. Firefly 8.0[EB/OL]. http://classic.chem.msu.su/gran/firefly/index.html.
    [94]Goerigk L., Grimme S. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions [J]. Phys. Chem. Chem. Phys.2011,13(14):6670-6688.
    [95]Grimme S., Antony J., Ehrlich S., Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. J. Chem. Phys.2010,132(15):154104.
    [96]Bythell B. J., Maitre P., Paizs B. Cyclization and rearrangement reactions of an fragment ions of protonated peptides[J]. J. Am. Chem. Soc.2010,132(42): 14766-14779.
    [97]Zhao Y., Truhlar D. G. Density functional theory for reaction energies:test of meta and hybrid meta functionals, range-separated functionals, and other high-performance functionals[J]. J. Chem. Theory Comput.2011,7(3):669-676.
    [98]Raju B., Ramesh V., Sudhakar A., Ramesh M., Sarma V., Chandrasekhar S., Srinivas R. Diastereomeric differentiation of norbornene amino acid peptides by electrospray ionization tandem mass spectrometry[J]. Rapid Commun. Mass Spectrom.2009,23(18):2965-2974.
    [99]Sleno L., Windust A. J., Volmer D. A. Structural study of spirolide marine toxins by mass spectrometry[J]. Anal. Bioanal. Chem.2004,378(4):969-976.
    [100]Madhusudanan K., Singh C. Collisional activation of metal cationized and deprotonated triterpenoids:charge remote fragmentations [J]. Org. Mass Spectrom. 1992,27(11):1329-1334.
    [101]Grimme S., Diedrich C., Korth M. The importance of inter-and intramolecular van der Waals interactions in organic reactions:the dimerization of anthracene revisited[J]. Angew. Chem. Int. Ed.2006,45(4):625-629.
    [102]Bryskier A. Cephems:fifty years of continuous research[J]. J. Antibiot.2000, 53(10):1028-1037.
    [103]Iorio M., Nicoletti M. Syn/anti isomerization of cefuroxime by ultraviolet light[J]. Farmaco. Sci.1986,41(10):801-807.
    [104]Lerner D., Bonnefond G., Fabre H., Mandrou B., Buochberg S., De M. Photodegradation paths of cefotaxime[J]. J. Pharm. Sci.1988,77(8):699-703.
    [105]Signoretti E. C., Valvo L., Fattibene P., Onori S., Pantaloni M. Gamma radiation induced effects on cefuroxime and cefotaxime. Investigation on degradation and syn-anti isomerization[J]. Drug Dev. Ind. Pharm.1994,20(16):2493-2508.
    [106]Bryskier A., Chantot J. Cefpirome (HR 810). Une nouvelle cephalosporine a large spectre[J]. Pathol. Biol.1985,33:447-481.
    [107]Vairamani M., Saraswathi M. Mass spectral study of geometrical (E)-and (Z)-isomers[J]. Mass Spectrom. Rev.1991,10(6):491-517.
    [108]Jensen N., Lam K., Cody R. B., Tamura J. Evidence for distinction of cis and trans isomers of mono-unsaturated fatty acids by fast-atom bombardment tandem mass spectrometric analysis[J]. Rapid Commun. Mass Spectrom.1990,4(7): 239-241.
    [109]Voinov V. G, Claeys M. Charge-remote fragmentation characteristics of monounsaturated fatty acids in resonance electron capture:differentiation between cis and trans isomers[J]. Int. J. Mass spectrom.2001,205(1):57-64.
    [110]Brum J., Hannah R. Differentiation of Two Geometric Isomers of the Pharmaceutical Eprosartan Using Atmospheric Pressure Chemical Ionization[J]. Rapid Commun. Mass Spectrom.1997,11(13):1430-1434.
    [111]王少敏,邹大鹏,张建业,李华雨,刘宏民.高效液相色谱/串联质谱法快速鉴定Z/E盐酸头孢吡肟异构体[J].分析化学.2006,34(9):1278-1282.
    [112]Lopez M. A., Rodriguez Z., Gonzalez M., Tolon B., Avila R., Rodriguez J. C., Velez-Castro H., Fini A.13C NMR spectroscopy of some third-generation cephalosporins, their synthetic intermediaries and reaction byproducts [J]. Magn. Reson. Chem.2007,45(3):236-239.
    [113]Rajadurai R., B.Sivakumar, Murugan R., Anantham V., Naidu P. Y. Identification of E and Z isomers of some cephalosporins by NMR[J]. Anal. Chem.:Indian J. 2010,9(2).
    [114]Kami M., Mandelbaum A. The'even-electron rule'[J]. Org. Mass Spectrom.1980, 15(2):53-64.
    [115]Thurman E. M., Ferrer I., Pozo O. J., Sancho J. V., Hernandez F. The even-electron rule in electrospray mass spectra of pesticides[J]. Rapid Commun. Mass Spectrom.2007,21(23):3855-3868.
    [116]Vessecchi R., M Crotti A., Guaratini T., Colepicolo P., Galembeck S., Lopes N. Radical ion generation processes of organic compounds in electrospray ionization mass spectrometry[J]. Mini-Rev. Org. Chem.2007,4(1):75-87.
    [117]Xu G., Huang T., Zhang J., Huang J. K., Carlson T., Miao S. Investigation of collision-induced dissociations involving odd-electron ion formation under positive electrospray ionization conditions using accurate mass[J]. Rapid Commun. Mass Spectrom.2010,24(3):321-327.
    [118]Cai Y., Mo Z., Rannulu N. S., Guan B., Kannupal S., Gibb B. C, Cole R. B. Characterization of an exception to the'even-electron rule'upon low-energy collision induced decomposition in negative ion electrospray tandem mass spectrometry[J]. J. Mass Spectrom.2010,45(3):235-240.
    [119]Hou X., Yuan W. C., Fang D. M., Luo S. W., Wu Z. J. Unexpected [M-H+Na]+ radical ions in 3-isothiocyanato oxindoles detected by electrospray mass spectrometry[J]. J. Mass Spectrom.2013,48(3):344-347.
    [120]Xia B., Li J., Mei W., Ding L., Xu H., Zhou Y. Tandem mass spectrometry fragmentation of the protonated 2-(-phenylethyl) chromones from Agarwood: radical ions versus non-radical ions[J]. J. Mass Spectrom.2013,48(8):979-982.
    [121]Denekamp C., Tenetov E., Horev Y. Homolytic cleavages in pyridinium ions, an excited state process [J].J. Am. Soc. Mass. Spectrom.2003,14(7):790-801.
    [122]Vessecchi R., Carollo C. A., Lopes J. N., Crotti A. E., Lopes N. P., Galembeck S. E. Gas-phase dissociation of 1,4-naphthoquinone derivative anions by electrospray ionization tandem mass spectrometry[J]. J. Mass Spectrom.2009,44(8): 1224-1233.
    [123]Bajpai L., Varshney M., Seubert C. N., Stevens Jr S. M., Johnson J. V., Yost R. A., Dennis D. M. Mass spectral fragmentation of the intravenous anesthetic propofol and structurally related phenols[J]. J. Am. Soc. Mass. Spectrom.2005, 16(6):814-824.
    [124]Vessecchi R., Emery F. S., Galembeck S. E., Lopes N. P. Fragmentation studies and electrospray ionization mass spectrometry of lapachol:protonated, deprotonated and cationized species[J]. Rapid Commun. Mass Spectrom.2010, 24(14):2101-2108.
    [125]Chen K., Rannulu N. S., Cai Y., Lane P., Liebl A. L., Rees B. B., Corre C., Challis G. L., Cole R. B. Unusual odd-electron fragments from even-electron protonated prodiginine precursors using positive-ion electrospray tandem mass spectrometry[J]. J. Am. Soc. Mass. Spectrom.2008,19(12):1856-1866.
    [126]Zhang X., Li F., Lv H., Wu Y., Bian G., Jiang K. On the Origin of the Methyl Radical Loss from Deprotonated Ferulic and Isoferulic Acids:Electronic Excitation of a Transient Structure[J]. J. Am. Soc. Mass. Spectrom.2013,24(6):941-948.
    [127]Hu N., Tu Y.-P., Jiang K., Pan Y. Intramolecular charge transfer in the gas phase: fragmentation of protonated sulfonamides in mass spectrometry[J]. J. Org. Chem. 2010,75(12):4244-4250.
    [128]Love C. B., Tan L., Francisco J. S., Xia Y. Competition of charge-versus radical-directed fragmentation of gas-phase protonated cysteine sulfinyl radicals [J]. J. Am. Chem. Soc.2013,135(16):6226-6233.
    [129]Lau J. K.-C., Lo S., Zhao J., Siu K. M., Hopkinson A. C. Fragmentation Chemistry of [Met-Gly]·+,[Gly-Met]·+, and [Met-Met]·+Radical Cations[J]. J. Am. Soc. Mass. Spectrom.2013,24(4):543-553.
    [130]Chai Y., Sun H., Pan Y., Sun C. N-centered odd-electron ions formation from collision-induced dissociation of electrospray ionization generated even-electron ions:single electron transfer via ion/neutral complex in the fragmentation of protonated N, N'-dibenzylpiperazines and protonated N-benzylpiperazines[J]. J. Am. Soc. Mass. Spectrom.2011,22(9):1526-1533.
    [131]Ongay S., Hermans J., Bruins A. P., Nieuwendijk A. M., Overkleeft H., Bischoff R. Electron transfer and collision induced dissociation of non-derivatized and derivatized desmosine and isodesmosine[J]. J. Am. Soc. Mass. Spectrom.2013, 24(1):83-91.
    [132]Butler M., Manez P. A., Cabrera G. M. An experimental and computational study on the dissociation behavior of hydroxypyridine N-oxides in atmospheric pressure ionization mass spectrometry[J]. J. Mass Spectrom.2010,45(5):536-544.
    [133]Goo K.-S., Sim T.-S. Designing new β-lactams:implications from their targets, resistance factors and synthesizing enzymes[J]. Curr. Comput.-Aided Drug Des. 2011,7(1):53-80.
    [134]Ru H. J., Ethiraj K. S., Hakimelahi G. H. Biological activity of some monocyclic-and bicyclic beta-lactams with specified functional groups[J]. Mini-Rev. Med. Chem.2003,3(4):305-313.
    [135]Singh G. Beta-lactams in the new millennium. Part-II:cephems, oxacephems, penams and sulbactam[J]. Mini-Rev. Med. Chem.2004,4(1):93-109.
    [136]ICH. Quality Guidelines Q3A(R2). Impurities in new drug substances[EB/OL]. http://www.ich.org/products/guidelines/quality/article/quality-guidelines.html.
    [137]Fako V. E., Furgeson D. Y. Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity[J]. Adv. Drug Del. Rev.2009,61(6):478-486.
    [138]He N., Li X., Feng D., Wu M., Chen R., Chen T., Chen D., Feng X. Exploring the Toxicity of a Bismuth-Asparagine Coordination Polymer on the Early Development of Zebrafish Embryos [J]. Chem. Res. Toxicol.2013,26(1):89-95.
    [139]Hill A. J., Teraoka H., Heideman W., Peterson R. E. Zebrafish as a model vertebrate for investigating chemical toxicity[J]. Toxicol. Sci.2005,86(1):6-19.
    [140]Hermsen S. A., Pronk T. E., van den Brandhof E.-J., van der Ven L. T., Piersma A. H. Concentration-response analysis of differential gene expression in the zebrafish embryotoxicity test following flusilazole exposure[J]. Toxicol. Sci.2012, 127(1):303-312.
    [141]Shi X., Yeung L. W., Lam P. K., Wu R. S., Zhou B. Protein profiles in zebrafish (Danio rerio) embryos exposed to perfluorooctane sulfonate[J]. Toxicol. Sci.2009, 110(2):334-340.
    [142]Neese F. The ORCA program system[J]. Wiley Interdiscip. Rev:Comput. Mol. Sci.2012,2(1):73-78.
    [143]Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn:design and assessment of accuracy[J]. Phys. Chem. Chem. Phys.2005,7(18):3297-3305.
    [144]Weigend F. Accurate Coulomb-fitting basis sets for H to Rn[J]. Phys. Chem. Chem. Phys.2006,8(9):1057-1065.
    [145]Sinnecker S., Rajendran A., Klamt A., Diedenhofen M., Neese F. Calculation of solvent shifts on electronic g-tensors with the conductor-like screening model (COSMO) and its self-consistent generalization to real solvents (Direct COSMO-RS)[J]. J. Phys. Chem. A 2006,110(6):2235-2245.
    [146]Schaftenaar G., Noordik J. H. Molden:a pre-and post-processing program for molecular and electronic structures[J]. J. Comput. Aided Mol. Des.2000,14(2): 123-134.
    [147]Westerfield M. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio)[EB/OL]. http://zfin.org/zf info/zfbook/zfbk.html.
    [148]佟军威,张靖溥,孟杰.17 α-乙炔雌二醇对斑马鱼胚胎发育的致畸作用及其基因靶位[J].药学学报.2011,46(1):50-57.
    [149]赵壮,佟军威,张靖溥,游学甫,蒋建东,胡昌勤.氨基糖苷类药物耳毒性的斑马鱼模型的研究[J].药学学报.2011,46(8):928-935.
    [150]Kemperman G., De Gelder R., Dommerholt F., Raemakers-Franken P., Klunder A., Zwanenburg B. Clathrate-type complexation of cephalosporins with (3-naphthol[J]. Chem. Eur. J.1999,5(7):2163-2168.
    [151]Sweet R. M., Dahl L. F. Molecular architecture of the cephalosporins. Insights into biological activity based on structural investigations[J]. J. Am. Chem. Soc. 1970,92(18):5489-5507.
    [152]Kemperman G. J., de Gelder R., Dommerholt F., Klunder A. J., Zwanenburg B. Molecular selectivity and cooperativity in the clathrate-type complexation of Cephradine[J]. Eur. J. Org. Chem.2002,2002(2):345-350.
    [153]Kemperman G. J., de Gelder R., Dommerholt F. J., Raemakers-Franken P. C., Klunder A. J., Zwanenburg B. Cavities, Layers, and Channels in the Hosting Framework of Molecular Complexes Derived From Cephradine[J]. Eur. J. Org. Chem.2001,2001(19):3641-3650.
    [154]Martinez H., Byrn S. R., Pfeiffer R. R. Solid-state chemistry and crystal structure of cefaclor dihydrate[J]. Pharm. Res.1990,7(2):147-153.
    [155]Kamiya K., Takamoto M., Wada Y., Nishikawa M. Crystal and molecular structure of cefmenoxime hemihydrochloride[J]. Chem. Pharm. Bull. (Tokyo) 1981, 29(3):609-615.
    [156]Miyamae A., Koda S., Morimoto Y. The crystal and molecular structures of ceftizoxime and ceftizoxime monohydrochloride monohydrate[J]. Chem. Pharm. Bull. (Tokyo) 1986,34(9):3539-3548.
    [157]胡昌勤,成双红,陆璐.头孢替唑钠的结晶性研究[J].药学学报.2002,37(4):275-279.
    [158]胡昌勤,尹立辉,朗雅宁.头孢唑林钠水合物新晶体及其理化特性的研究[J].药学学报.2008,43(8):868-872.
    [159]Clark D. E. What has polar surface area ever done for drug discovery?[J]. Future Med. Chem.2011,3(4):469-484.
    [160]Ertl P., Rohde B., Selzer P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties[J]. J. Med. Chem.2000,43(20):3714-3717.
    [161]Tian Z., Kass S. R. Does electrospray ionization produce gas-phase or liquid-phase structures?[J]. J. Am. Chem. Soc.2008,130(33):10842-10843.
    [162]Bouchoux G. From the mobile proton to wandering hydride ion:mechanistic aspects of gas-phase ion chemistry[J]. J. Mass Spectrom.2013,48(4):505-518.
    [163]Paizs B., Suhai S. Fragmentation pathways of protonated peptides[J]. Mass Spectrom. Rev.2005,24(4):508-548.
    [164]Yunker L. P., Stoddard R. L., McIndoe J. S. Practical approaches to the ESI-MS analysis of catalytic reactions[J]. J. Mass Spectrom.2014,49(1):1-8.
    [165]Irikura K. K., Todua N. G. Facile Smiles-type rearrangement in radical cations of N-acyl arylsulfonamides and analogs[J]. Rapid Commun. Mass Spectrom.2014, 28(7):829-834.
    [166]Polfer N. C., Oomens J. Reaction products in mass spectrometry elucidated with infrared spectroscopy[J]. Phys. Chem. Chem. Phys.2007,9(29):3804-3817.
    [167]Polfer N. C. Infrared multiple photon dissociation spectroscopy of trapped ions[J]. Chem. Soc. Rev.2011,40(5):2211-2221.
    [168]Andersson M., Uvdal P. New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ζ basis set 6-311+G (d, p)[J]. J. Phys. Chem. A 2005,109(12):2937-2941.
    [169]Schmidt J., Meyer M. M., Spector I., Kass S. R. Infrared multiphoton dissociation spectroscopy study of protonated p-aminobenzoic acid:does electrospray ionization afford the amino-or carboxy-protonated ion?[J]. J. Phys. Chem. A 2011,115(26):7625-7632.
    [170]Steill J. D., Oomens J. Gas-phase deprotonation of p-hydroxybenzoic acid investigated by IR spectroscopy:solution-phase structure is retained upon ESI[J]. J. Am. Chem. Soc.2009,131(38):13570-13571.
    [171]Wu R., McMahon T. B. An investigation of protonation sites and conformations of protonated amino acids by IRMPD spectroscopy[J]. ChemPhysChem 2008, 9(18):2826-2835.
    [172]Wu R., McMahon T. B. Infrared multiple-photon dissociation mechanisms of peptides of glycine[J]. Chem. Eur. J.2008,14(26):7765-7770.
    [173]Lorenz U. J., Solca N., Lemaire J., Maitre P., Dopfer O. Infrared spectra of isolated protonated polycyclic aromatic hydrocarbons:Protonated naphthalene[J]. Angew. Chem. Int. Ed.2007,46(35):6714-6716.
    [174]Andrei H. S., Solca N., Dopfer O. IR spectrum of the ethyl cation:evidence for the nonclassical structure[J]. Angew. Chem. Int. Ed.2008,47(2):395-397.
    [175]Schroder D., Schwarz H., Milko P., Roithova J. Dissociation routes of protonated toluene probed by infrared spectroscopy in the gas phase[J]. J. Phys. Chem. A 2006, 110(27):8346-8353.
    [176]Polfer N. C, Oomens J., Suhai S., Paizs B. Spectroscopic and theoretical evidence for oxazolone ring formation in collision-induced dissociation of peptides[J]. J. Am. Chem. Soc.2005,127(49):17154-17155.
    [177]Oomens J., Young S., Molesworth S., van Stipdonk M. Spectroscopic evidence for an oxazolone structure of the b2 fragment ion from protonated tri-Alanine[J]. J. Am. Soc. Mass. Spectrom.2009,20(2):334-339.
    [178]Sinha R. K., Erlekam U., Bythell B. J., Paizs B., Maitre P. Diagnosing the protonation site of b2 peptide fragment ions using IRMPD in the X-H (X= O, N, and C) stretching region[J]. J. Am. Soc. Mass. Spectrom.2011,22(9):1645-1650.
    [179]Yoon S. H., Chamot-Rooke J., Perkins B. R., Hilderbrand A. E., Poutsma J. C., Wysocki V. H. IRMPD spectroscopy shows that AGG forms an oxazolone b2+ ion[J].J. Am. Chem. Soc.2008,130(52):17644-17645.
    [180]Chen X., Steill J. D., Oomens J., Polfer N. C. Oxazolone versus macrocycle structures for Leu-Enkephalin b2-b4:Insights from infrared multiple-photon dissociation spectroscopy and gas-phase hydrogen/deuterium exchange[J]. J. Am. Soc. Mass. Spectrom.2010,21(8):1313-1321.
    [181]Erlekam U., Bythell B. J., Scuderi D., Van Stipdonk M., Paizs B., Maitre P. Infrared spectroscopy of fragments of protonated peptides:direct evidence for macrocyclic structures of b5 ions[J]. J. Am. Chem. Soc.2009,131(32): 11503-11508.
    [182]Kullman M. J., Molesworth S., Berden G., Oomens J., Van Stipdonk M. IRMPD spectroscopy b2 ions from protonated tripeptides with 4-aminomethyl benzoic acid residues[J].Int. J. Mass spectrom.2012,316-318:174-181.
    [183]Gallivan J. P., Dougherty D. A. Cation-π interactions in structural biology [J]. Proc. Natl. Acad. Sci. USA 1999,96(17):9459-9464.
    [184]Forbes M. W., Bush M. F., Polfer N. C., Oomens J., Dunbar R. C., Williams E. R., Jockusch R. A. Infrared spectroscopy of arginine cation complexes:direct observation of gas-phase zwitterions[J]. J. Phys. Chem. A 2007,111(46): 11759-11770.
    [185]Heaton A., Bowman V, Oomens J., Steill J., Armentrout P. Infrared multiple photon dissociation spectroscopy of cationized asparagine:effects of metal cation size on gas-phase conformation[J]. J. Phys. Chem. A 2009,113(19):5519-5530.
    [186]Bush M. F., Oomens J., Saykally R. J., Williams E. R. Alkali metal ion binding to glutamine and glutamine derivatives investigated by infrared action spectroscopy and theory[J]. J. Phys. Chem. A 2008,112(37):8578-8584.
    [187]Citir M., Hinton C. S., Oomens J., Steill J. D., Armentrout P. Infrared multiple photon dissociation spectroscopy of cationized histidine:effects of metal cation size on gas-phase conformation[J]. J. Phys. Chem. A 2012,116(6):1532-1541.
    [188]Bush M. F., Forbes M. W., Jockusch R. A., Oomens J., Polfer N. C., Saykally R. J., Williams E. R. Infrared Spectroscopy of Cationized Lysine and ε-N-methyllysine in the Gas Phase:Effects of Alkali-Metal Ion Size and Proton Affinity on Zwitterion Stability[J]. J. Phys. Chem. A 2007,111(32):7753-7760.
    [189]Drayss M. K., Blunk D., Oomens J., Schafer M. Infrared multiple photon dissociation spectroscopy of potassiated proline[J]. J. Phys. Chem. A 2008,112(47): 11972-11974.
    [190]Mino Jr W. K., Gulyuz K., Wang D., Stedwell C. N., Polfer N. C. Gas-phase structure and dissociation chemistry of protonated tryptophan elucidated by infrared multiple-photon dissociation spectroscopy[J]. J. Phys. Chem. Lett.2011, 2(4):299-304.
    [191]Verkerk U. H., Zhao J., Saminathan I. S., Lau J. K.-C., Oomens J., Hopkinson A. C., Siu K. M. Infrared Multiple-Photon Dissociation Spectroscopy of Tripositive Ions:Lanthanum-Tryptophan Complexes[J]. Inorg. Chem.2012,51(8): 4707-4710.
    [192]Carl D. R., Cooper T. E., Oomens J., Steill J. D., Armentrout P. Infrared multiple photon dissociation spectroscopy of cationized methionine:effects of alkali-metal cation size on gas-phase conformation[J]. Phys. Chem. Chem. Phys.2010,12(14): 3384-3398.
    [193]Citir M., Stennett E., Oomens J., Steill J. D., Rodgers M., Armentrout P. Infrared multiple photon dissociation spectroscopy of cationized cysteine:Effects of metal cation size on gas-phase conformation[J]. Int. J. Mass spectrom.2010,297(1): 9-17.
    [194]Armentrout P., Rodgers M., Oomens J., Steill J. Infrared multiphoton dissociation spectroscopy of cationized serine:effects of alkali-metal cation size on gas-phase conformation[J]. J. Phys. Chem. A 2008,112(11):2248-2257.
    [195]Rodgers M., Armentrout P., Oomens J., Steill J. Infrared multiphoton dissociation spectroscopy of cationized threonine:effects of alkali-metal cation size on gas-phase conformation[J]. J. Phys. Chem. A 2008,112(11):2258-2267.
    [196]Aleese L. M., Simon A., McMahon T. B., Ortega J.-M., Scuderi D., Lemaire J., Maitre P. Mid-IR spectroscopy of protonated leucine methyl ester performed with an FTICR or a Paul type ion-trap[J]. Int. J. Mass spectrom.2006,249:14-20.
    [197]Atkins C. G., Banu L., Rowsell M., Blagojevic V., Bohme D. K., Fridgen T. D. Structure of [Pb (Gly-H)]+and the monosolvated water and methanol solvated species by infrared multiple-photon dissociation spectroscopy, energy-resolved collision-induced dissociation, and electronic structure calculations[J].J. Phys. Chem. B 2009,113(43):14457-14464.
    [198]O'Brien J. T., Prell J. S., Berden G., Oomens J., Williams E. R. Effects of anions on the zwitterion stability of Glu, His and Arg investigated by IRMPD spectroscopy and theory[J]. Int. J. Mass spectrom.2010,297(1-3):116-123.
    [199]Wu R., McMahon T. B. Infrared multiple photon dissociation spectra of proline and glycine proton-bound homodimers. Evidence for zwitterionic structure[J].J. Am. Chem. Soc.2007,129(16):4864-4865.
    [200]Polfer N. C., Dunbar R. C., Oomens J. Observation of zwitterion formation in the gas-phase H/D-exchange with CH3OD:Solution-phase structures in the gas phase[J]. J. Am. Soc. Mass. Spectrom.2007,18(3):512-516.
    [201]Bush M. F., Oomens J., Williams E. R. Proton affinity and zwitterion stability: New results from infrared spectroscopy and theory of cationized lysine and analogues in the gas phase[J]. J. Phys. Chem. A 2008,113(2):431-438.
    [202]Bush M. F., O'Brien J. T., Prell J. S., Saykally R. J., Williams E. R. Infrared spectroscopy of cationized arginine in the gas phase:direct evidence for the transition from nonzwitterionic to zwitterionic structure[J]. J. Am. Chem. Soc.2007, 129(6):1612-1622.
    [203]Bush M. F., Oomens J., Saykally R. J., Williams E. R. Effects of alkaline earth metal ion complexation on amino acid zwitterion stability:results from infrared action spectroscopy[J]. J. Am. Chem. Soc.2008,130(20):6463-6471.
    [204]Dunbar R. C., Polfer N. C., Oomens J. Gas-phase zwitterion stabilization by a metal dication[J]. J. Am. Chem. Soc.2007,129(47):14562-14563.
    [205]Wu R., McMahon T. B. IRMPD spectra of Gly NH4+and proton-bound betaine dimer:evidence for the smallest gas phase zwitterionic structures [J]. J. Mass Spectrom.2008,43(12):1641-1648.
    [206]Sinha R. K., Maitre P., Piccirillo S., Chiavarino B., Crestoni M. E., Fornarini S. Cysteine radical cation:A distonic structure probed by gas phase IR spectroscopy[J]. Phys. Chem. Chem. Phys.2010,12(33):9794-9800.
    [207]Osburn S., Steill J. D., Oomens J., O'Hair R. A., van Stipdonk M, Ryzhov V. Structure and reactivity of the cysteine methyl ester radical cation[J]. Chem. Eur. J. 2011,17(3):873-879.
    [208]Lanucara F., Chiavarino B., Crestoni M. E., Scuderi D., Sinha R. K., Maitre P., Fornarini S. S-nitrosation of cysteine as evidenced by IRMPD spectroscopy[J]. Int. J. Mass spectrom.2012,330:160-167.
    [209]Baldauf C., Pagel K., Warnke S., von Helden G., Koksch B., Blum V, Scheffler M. How cations change peptide structure[J]. Chem. Eur. J.2013,19(34): 11224-11234.
    [210]Rajabi K., Fridgen T. D. Structures of aliphatic amino acid proton-bound dimers by infrared multiple photon dissociation spectroscopy in the 700-2000 cm-1 region[J]. J. Phys. Chem. A 2008,112(1):23-30.
    [211]Atkins C. G., Rajabi K., Gillis E. A., Fridgen T. D. Infrared multiple photon dissociation spectra of proton-and sodium ion-bound glycine dimers in the N-H and O-H stretching region[J]. J. Phys. Chem. A 2008,112(41):10220-10225.
    [212]Chiavarino B., Crestoni M. E., Fornarini S., Lanucara F., Lemaire J., Maitre P., Scuderi D. Molecular complexes of simple anions with electron-deficient arenes: Spectroscopic evidence for two types of structural motifs for anion-arene interactions[J]. Chem. Eur. J.2009,15(33):8185-8195.
    [213]Chiavarino B., Crestoni M. E., Fornarini S., Lanucara F., Lemaire J., Maitre P. Meisenheimer complexes positively characterized as stable intermediates in the gas phase[J]. Angew. Chem. Int. Ed.2007,46(12):1995-1998.
    [214]Asmis K. R., Yang Y., Santambrogio G., Brummer M., Roscioli J. R., McCunn L. R., Johnson M. A., Kuhn O. Gas-phase infrared spectroscopy and multidimensional quantum calculations of the protonated ammonia dimer N2H7+[J]. Angew. Chem. Int. Ed.2007,46(45):8691-8694.
    [215]Chiavarino B., Crestoni M. E., Fornarini S., Scuderi D., Salpin J.-Y. Interaction of cisplatin with adenine and guanine:a combined IRMPD, MS/MS, and theoretical study[J].J. Am. Chem. Soc.2013,135(4):1445-1455.
    [216]Fielicke A., von Helden G., Meijer G., Simard B., Rayner D. M. Gold cluster carbonyls:Vibrational spectroscopy of the anions and the effects of cluster size, charge, and coverage on the CO stretching frequency[J]. J. Phys. Chem. B 2005, 109(50):23935-23940.
    [217]Simon A., Joblin C., Polfer N., Oomens J. Infrared Spectroscopy of [XFeC24H12]+(X= C5H5, C5 (CH3) 5) Complexes in the Gas Phase: Experimental and Computational Studies of Astrophysical Interest[J]. J. Phys. Chem. A 2008,112(37):8551-8560.
    [218]Groenewold G., Gianotto A. K., Cossel K. C., Van Stipdonk M. J., Oomens J., Polfer N., Moore D., De Jong W. A., McIlwain M. Mid-infrared vibrational spectra of discrete acetone-ligated cerium hydroxide cations[J]. Phys. Chem. Chem. Phys. 2007,9(5):596-606.
    [219]Moore D. T., Oomens J., Eyler J. R., von Helden G, Meijer G, Dunbar R. C. Infrared spectroscopy of gas-phase Cr+coordination complexes:determination of binding sites and electronic states[J].J. Am. Chem. Soc.2005,127(19):7243-7254.
    [220]Oomens J., Myers L., Dain R., Leavitt C., Pham V., Gresham G, Groenewold G, Van Stipdonk M. Infrared multiple-photon photodissociation of gas-phase group II metal-nitrate anions[J]. Int. J. Mass spectrom.2008,273(1):24-30.
    [221]Asmis K. R., Santambrogio G, Brummer M., Sauer J. Polyhedral Vanadium oxide cages:Infrared spectra of cluster anions and size-induced d electron localization[J]. Angew. Chem. Int. Ed.2005,44(20):3122-3125.
    [222]Sinha R. K., Nicol E., Steinmetz V, Maitre P. Gas phase structure of micro-hydrated [Mn(C104)]+and [Mn2(ClO4)3]+ions probed by infrared spectroscopy[J]. J. Am. Soc. Mass. Spectrom.2010,21(5):758-772.
    [223]Asmis K. R., Santambrogio G, Zhou J., Garand E., Headrick J., Goebbert D., Johnson M. A., Neumark D. M. Vibrational spectroscopy of hydrated electron clusters (H2O)(15-50) via infrared multiple photon dissociation[J]. J. Chem. Phys. 2007,126(19):191105.
    [224]Goebbert D. J., Garand E., Wende T., Bergmann R., Meijer G, Asmis K. R., Neumark D. M. Infrared Spectroscopy of the Microhydrated Nitrate Ions NO3-(H2O) 1-6[J]. J. Phys. Chem. A 2009,113(26):7584-7592.
    [225]Dunbar R. C., Oomens J., Orlova G, Bohme D. K. IRMPD spectroscopic investigation of gas-phase complexes of deprotonated penicillin G with Ba2+, Zn2+and Cd2+[J]. Int. J. Mass spectrom.2011,308(2):330-337.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700