用户名: 密码: 验证码:
基于bFGF/ERK信号通路探讨电针对骨骼肌损伤修复的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:基于bFGF/ERK信号通路探讨电针对骨骼肌损伤后肌肉修复再生的作用与机制方法:
     第一部分:电针阿是穴对大鼠腓肠肌损伤早期肌肉修复再生的影响。通过积累性钝挫伤结合动物跑台离心运动的方法建立SD大鼠腓肠肌损伤模型,观察电针阿是穴对大鼠腓肠肌损伤后1d、4d、7d的组织形态学改变以及PCNA、Desmin、bFGF表达的影响,探讨电针阿是穴对大鼠腓肠肌损伤后肌卫星细胞增殖分化的作用与机制;
     第二部分:电针委中穴与阿是穴对兔急性腰肌钝挫伤修复期肌肉修复再生及bFGF/ERK信号通路的影响。通过钝挫伤的方法建立新西兰大耳兔急性腰肌损伤模型,观察电针委中穴与阿是穴对损伤后1d、4d、7d、14d兔血清CK活性的动态调节,结合损伤后14d兔腰肌肌细胞数量、肌纤维平均横截面积、每肌纤维细胞核数、Ⅰ级肌束膜厚度、组织形态改变等组织学指标的变化,分析比较电针委中穴与阿是穴的作用差异,并且通过观察损伤后14d兔腰肌PCNA、Desmin、ERK1/2的表达变化,结合血清、腰肌以及脊髓中bFGF含量的改变,探讨电针委中穴与阿是穴对兔急性腰肌钝挫伤肌肉修复再生的作用机制;
     第三部分:电针阿是穴对应用U0126抑制剂的兔急性腰肌钝挫伤修复期肌肉修复再生及bFGF/ERK信号通路的影响。通过钝挫伤的方法建立新西兰大耳兔急性腰肌损伤模型,应用ERK抑制剂U0126观察电针阿是穴对损伤后1d、14d兔血清CK活性的变化,以及兔腰肌肌细胞数量、肌纤维平均横截面积、每肌纤维细胞核数、Ⅰ级肌束膜厚度、组织形态改变等组织学指标的变化,结合兔腰肌PCNA、Desmin、ERK1/2与bFGF的表达变化,进一步探讨bFGF/ERK信号通路对电针阿是穴促兔腰肌钝挫伤后肌肉修复再生的介导作用。结果:
     1.电针阿是穴对大鼠腓肠肌损伤早期肌肉修复再生的影响:组织形态学结果显示,损伤后4d电针组腓肠肌炎症细胞浸润有所减轻,肌细胞再生较丰富;损伤后7d电针组结缔组织增生程度低于模型组,且组织形态学损伤评分明显低于模型组(P<0.01);电针组腓肠肌Desmin与bFGF在损伤后1d均高于模型组(P<0.01,P<0.05),在损伤后4d腓肠肌PCNA、Desmin与bFGF均高于模型组(P<0.05,P<0.01,P<0.01)。
     2.电针委中穴与阿是穴对兔急性腰肌钝挫伤修复期肌肉修复再生及bFGF/ERK信号通路的影响:从组织病理切片观察,损伤后14d,模型组肌纤维排列不齐,结缔组织增生明显,再生肌细胞较少,电针委中组肌细胞体积较大,可见肌细胞再生并逐渐融合,结缔组织增生程度较轻,而电针阿是穴组可见较多新生的肌细胞,结缔组织增生程度同样较轻;模型组肌细胞数量MM、肌纤维平均横截面积CSA、每肌纤维细胞核数NPF均明显低于空白组(P<0.05,P<0.01,P<0.01),组织形态学损伤评分以及Ⅰ级肌束膜厚度均明显高于空白组(P<0.01),其中肌纤维CSA、NPF均低于电针委中组(P<0.05,P<0.05)与电针阿是穴组(P<0.05,P<0.05),组织形态学损伤评分以及Ⅰ级肌束膜厚度均明显高于电针委中组(P<0.01,P<0.05)与电针阿是穴组(P<0.01,P<0.05),而电针委中组组织形态学损伤评分低于电针阿是穴组(P<0.05);
     损伤后1d,模型组、电针委中组与电针阿是穴组血清CK含量均明显高于空白组(P<0.01),在损伤后4d电针委中组与电针阿是穴组均高于模型组(P<0.01,P<0.05),在损伤后7d模型组再次回升明显高于空白组(P<0.01),电针委中组明显低于模型组(P<0.01)与电针阿是穴组(P<0.05),电针阿是穴组低于模型组(P<0.05),在损伤后14d模型组仍明显高于空白组(P<0.05),而电针委中组与电针阿是穴组均低于模型组(P<0.01,P<0.01);
     损伤后14d,模型组兔腰肌PCNA、ERK1/2以及bFGF的表达均高于空白组(P<0.01,P<0.05,P<0.01),其PCNA、Desmin、ERK1/2以及bFGF的表达均低于电针委中组(P<0.05,P<0.05,P<0.05,P<0.01)与电针阿是穴组(P<0.01,P<0.05,P<0.05,P<0.01);电针委中组兔腰肌PCNA与bFGF的表达低于电针阿是穴组(P<0.05,P<0.01);模型组兔腰段脊髓bFGF含量高于空白组(P<0.05),并且低于电针委中组(P<0.01);
     损伤后4d,模型组血清bFGF均高于空白组(P<0.01)、电针委中组(P<0.05)与阿是穴组(P<0.05);损伤后7d,各组均无统计学差异;损伤后14d,模型组低于空白组(P<0.01),而电针阿是穴组低于电针委中组(P<0.05)。
     3.电针阿是穴对应用U0126抑制剂的兔急性腰肌钝挫伤修复期肌肉修复再生及bFGF/ERK信号通路的影响:从组织病理切片观察,损伤后14d,模型组肌纤维排列不齐,结缔组织增生明显,再生肌细胞较少。模型抑制组肌细胞缺失明显,肌细胞体积明显减小,仅有少量结缔组织增生。电针组肌纤维排列较整齐,可见较多新生的肌细胞,轻度结缔组织增生。电针抑制组有少量肌细胞再生,较严重的结缔组织增生;模型组组织形态学损伤评分明显高于空白组(P<0.01,P<0.01),低于模型抑制组(P<0.01),电针组均明显低于模型组(P<0.01)与电针抑制组(P<0.01);模型组肌细胞数量MM、肌纤维平均横截面积CSA、每肌纤维细胞核数NPF明显低于空白组(P<0.05,P<0.01,P<0.01),高于模型抑制组(P>0.05,P<0.01,P<0.05),电针组高于模型组(P>0.05,P<0.05,P<0.05)与电针抑制剂组(P>0.05,P<0.05,P<0.01);模型组Ⅰ级肌束膜厚度均明显高于空白组(P<0.01)与模型抑制剂组(P<0.05),电针组低于模型组(P<0.05),与电针抑制剂组无显著差异(P>0.05);模型组血清CK含量高于空白组(P<0.01),与模型抑制剂组无显著差异(P>0.05),电针组低于模型组(P<0.05)与电针抑制剂组(P<0.05)。
     损伤后14d,模型组兔腰肌PCNA、ERK1/2以及bFGF的表达均高于空白组(P<0.01,P<0.01,P<0.05),模型抑制剂组PCNA、Desmin、ERK1/2的表达均低于模型组(P<0.01,P<0.01,P<0.01),电针组PCNA、Desmin、ERK1/2以及bFGF的表达均高于模型组(P<0.01,P<0.05,P<0.05,P<0.01);电针抑制剂组PCNA、Desmin、 ERK1/2的表达均低于电针组(P<0.05,P<0.01,P<0.01)。结论:
     1.电针阿是穴能促进大鼠腓肠肌损伤早期肌卫星细胞的增殖与分化,并且可能与其上调bFGF的表达有关;
     2.电针委中穴与阿是穴均能够促进兔腰肌急性钝挫伤修复期肌卫星细胞的增殖、分化以及组织再生修复的成熟度,其机制可能与调节局部组织、血清以及脊髓中bFGF的含量变化有关,ERK1/2信号通路可能是介导电针发挥作用的主要通路之一;
     3.电针委中穴对兔腰肌损伤的促修复再生作用有优于电针阿是穴的趋势,两者的作用途径可能存在差异:电针委中穴可能主要通过神经-内分泌的整体调节发挥作用,因此能更明显的促进脊髓bFGF的释放,两者的明确机制有待于进一步研究,而电针阿是穴可能主要通过局部机械牵拉刺激发挥作用,因此对局部组织中bFGF的促进调节更明显;
     4.应用ERK抑制剂U0126可部分阻断电针阿是穴对兔腰肌损伤后肌卫星细胞增殖分化以及肌肉的再生成熟度的促进作用,bFGF/ERK信号通路可能是电针阿是穴促肌肉修复再生的主要途径之一。
Objective:To observe the effects and discuss the mechanism of electro-acupuncture's function of repairing skeletal muscle injury based on bFGF/ERK signal passway. Methods:
     Part Ⅰ:The observation of a-shi point electro-acupuncture's early recovery and regeneration effects on rats'gastrocnemius muscle damage and bFGF expression. Rat model of gastrocnemius muscle damage was set up by cumulative contusion combined with treadmill exercise. The morphological changes and PCNA, Desmin, bFGF expressions of the gastroncnemius muscle were observed at the first,4th, and7th day after the application of electro-acupuncture on a-shi point for the evaluation and mechanism study of a-shi point electro-acupuncture's effects on the proliferation and differentiation rate of rats'muscular satellite cells after gastrocnemius muscle injury.
     Part Ⅱ:Effects ot weizhong (BL40) and a-shi point electro-acupuncture on rabbits'acute lumbar muscle contusion and bFGF/ERK pass-way. Experiment in part Ⅱ applied dynamic observation of weizhong (BL40) and a-shi point electro-acupuncture's regulatory effects on rabbits' serum CK activity at the first,4th,7th, and14th day. Taking rabbits' average lumbar muscle cell number, cross section area of the muscle fiber, nuclei number per fiber, thickness of grade I perimysium, and histomorphological changes at the14th day into consideration, the study compared and analyzed the differences between electro-acupuncture on weizhong (BL40) and a-shi point. It also discussed the mechanism of the regenerative effects of weizhong (BL40) and a-shi point electro-acupuncture on rabbit's acute lumbar muscle contusion by observing changes of lumbar muscle PCNA, Desmin, ERK1/2, and bFGF in blood serum and spinal cord at the14th day.
     Part Ⅲ:A-shi point electro-acupuncture's effects on muscle recovery and regeneration of acute lumbar muscle contusion rabbits and bFGF/ERK pass-way of rabbits administrated with U0126. The study applied dynamic observation of weizhong (BL40) and a-shi point electro-acupuncture's regulatory effects on rabbits' serum CK activity at the1th,14th day, after ERK inhibitor, U0126, had been administrated. It also combined rabbits'average lumbar muscle cell number, cross section area of the muscle fiber, nuclei number per fiber, thickness of grade I perimysium, and histomorphological changes with expression changes of PCNA, Desmin, ERK1/2, and bFGF in rabbits'lumbar muscle for the further discovery of bFGF/ERK pass-way's mediation of a-shi point electro-acupuncture's regenerative effects on rabbits'lumbar muscle contusion.
     Results:
     1. A-shi point electro-acupuncture's early regenerative effects on rats' gastrocnemius muscle injury. Results of histomorphological test showed that, at the4th day after injury, rats in the electro-acupuncture group were of relieved inflammatory cell infiltration of the gastrocnemius muscle and comparatively massive muscular cell regeneration. At the7th day, rats in the electro-acupuncture group were of lower connective tissue proliferation rate and histomorphological score, compared with that of the model group (p<0.01). Rats in the electro-acupuncture group were of significantly higher gastrocnemius Desmin and bFGF one day after the injury, compared with that of the model group (p<0.01, p<0.05). At the4th day, gastrocnemius PCNA, Desmin, and bFGF of the electro-acupuncture group were remarkably higher than that of the model group (p<0.05, p<0.01, p<0.01).
     2. Effects of Weizhong (BL40) and a-shi point electro-acupuncture on acute lumbar muscle contusion rabbits'muscle regeneration and bFGF/ERK pass-way in recovery phase. Histopathological sections showed that,14days after the injury, rabbits in the model group were of disarranged muscle fiber, remarkably increased proliferation of connective tissue, and decreased muscular cell regeneration. Rats in we thong (BL40) electro-acupuncture group were of comparatively bigger muscular cells, low proliferation of connective tissue, with regeneration and fusion of muscular cells observed. In a-shi point electro-acupuncture group, more regenerated muscular cells can be observed, with low proliferation of connective tissue. Rabbits in the model group were of drastically decreased muscular cell number, average cross sectional area of muscle fiber (CSA), nuclei number per fiber(NPF)(p<0.05, p<0.01, p<0.01), and significantly higher histomorphological score and thickness of grade I perimysium (p<0.01, p<0.05), compared with that of the blank control group. Among the indices, CSA and NPF were also significantly lower than that in weizhong (BL40) electro-acupuncture group (p<0.05, p<0.05) and a-shi point electro-acupuncture group (p<0.05, p<0.05). The histomorphological score and thickness of grade I perimysium were remarkably higher than that in the weizhong (BL40) electro-acupuncture group (p<0.01, p<0.05) and a-shi point electro-acupuncture group (p<0.01, p<0.05). Histomorphological score of weizhong (BL40) electro-acupuncture group is remarkably lower than that of a-shi point electro-acupuncture group (p<0.05). One day after the injury, serum CK concentrations of the model group, weizhong (BL40) electro-acupuncture group, and a-shi point electro-acupuncture group were significantly higher than that of the blank control group (p<0.01). The index of the model group was significantly lower than that of the weizhong (BL40) electro-acupuncture group and a-shi point electro-acupuncture group (p<0.01, p<0.05) at the4th day after the injury, and rose again to a level remarkably higher than the blank control group (p<0.01) at the7th day. While serum CK contents of weizhong (BL40) electro-acupuncture group was significantly lower than that of the model group (p<0.01) and a-shi point electro-acupuncture group (p<0.05), with that of the a-shi point electro-acupuncture group greatly lower than the model group (p<0.05). At the14th day after the injury, serum CK of the model group was significantly higher than that of the blank control group (p<0.05), while that of the weizhong (BL40) electro-acupuncture group and a-shi point electro-acupuncture group reduced to a level remarkably lower than the model group (p<0.01, p<0.01). At the14th day after the injury, lumbar muscle PCNA, ERK1/2, and bFGF expressions of rabbits in the model group were significantly higher than that in the blank control group (p<0.01, p<0.05, p<0.01). And its PCNA, Desmin, ERK1/2, and bFGF expressions were remarkably lower than that of weizhong (BL40) electro-acupuncture group (p<0.05, p<0.05, p<0.05, p<0.01) and a-shi point electro-acupuncture group (p<0.01, p<0.05, p<0.05, p<0.01). Lumbar muscle PCNA and bFGF expressions of weizhong (BL40) electro-acupuncture group were remarkably lower than a-shi point electro-acupuncture group (p<0.05, p<0.01). And bFGF in lumbar spinal cord of rabbits in the model group was greatly higher than that of the blank control group (p<0.01), but significantly lower than weizhong (BL40) electro-acupuncture group (p<0.01). At the4th day after the injury, serum bFGF of the model group was remarkably higher than that of the blank control group (p<0.01), weizhong (BL40) electro-acupuncture group (p<0.05), and a-shi point electro-acupuncture group (p<0.05). But there's no significant difference of the index between all the groups at the7th day. At the14th day, serum bFGF of the model group was significantly lower than that of the blank control group. The same index of a-shi point electro-acupuncture group was greatly lower than that of the model group (p<0.01) and weizhong (BL40) electro-acupuncture group.
     3. Effects of a-shi point electro-acupuncture on U0126-intervened acute lumbar muscle contusion rabbits'muscle regeneration and bFGF/ERK signal pass-way. At the14th day after the injury, histopathological sections of the model group showed disarranged muscle fiber, obviously proliferated connective tissue, and less regenerated muscle cells. U0126-intervened model group were of obviously decreased and shrunk muscular cells, and less regenerated connective tissue. Rabbits in the electro-acupuncture group were of orderly arranged muscle fiber, more regenerated muscular cells, and slightly proliferation of connective tissue. Rabbits of the U0126-intervened electro-acupuncture group had a small amount of connective tissue proliferation and comparatively severe proliferation of connective tissue. The histomorphological score of the model group was significantly higher than that of the blank control group (p<0.01, p<0.01), and greatly lower than that of the U0126-intervened model group (p<0.01). The score of electro-acupuncture group was remarkably lower than that of the model group (p<0.01) and U0126-intervened electro-acupuncture group (p<0.01). The number of muscular cells, CSA, and NPF of the model group were greatly lower than that of the blank control group (p<0.05, p<0.01, p<0.01), but higher than U0126-intervened model group (p>0.05, p<0.01, p<0.05). The indices of electro-acupuncture groups were higher than that of the model group (p>0.05, p<0.05, p<0.05) and U0126-intervened electro-acupuncture group (p>0.05, p<0.05, p<0.01). Thickness of grade I perimysium of the model group was significantly higher than that of the blank control group (p<0.01) and U0126-intervened model group (p<0.05). The same index of the electro-acupuncture group was lower than that of the model group (p<0.05), but had no significant difference with U0126-intervened electro-acupuncture group (p>0.05). Serum CK content of the model group was remarkably higher than that of the blank control group (p<0.01), and had no significant difference with U0126-intervened model group (p>0.05). The index of the electro-acupuncture group was greatly lower than that of the model group (p<0.05) and U0126-intervened electro-acupuncture group (p<0.05).14days after the injury, lumbar muscle PCNA, ERK1/2, and bFGF of rabbits in the model group were significantly higher than that of the blank control group (p<0.01, p<0.01, p<0.05). Expressions of PCNA, Desmin, and ERK1/2of rabbits in the U0126-intervened model group was remarkably lower than that of the model group (p<0.01, p<0.01, p<0.01). PCNA, Desmin, ERK1/2, and bFGF expressions of rabbits in the electro-acupuncture group were greatly higher than the model group (p<0.01, p<0.05, p<0.05, p<0.01). PCNA, Desmin, and ERK1/2expressions of rabbits in U0126-intervened electro-acupuncture group were lower than that of the electro-acupuncture group (p<0.05, p<0.01, p<0.01).
     Conclusion:
     1.A-shi point electro-acupuncture can boost the proliferation and differentiation of satellite cells of gastrocnemius muscle damaged rats. The mechanism may lies in the up-regulation of bFGF expression.
     2. Electro-acupuncture on weizhong (BL40) point and a-shi can both boost proliferation and differentiation of satellite cells, and regenerative repair of the tissue in recovery stage of acute lumbar muscle contusion rabbits. The mechanism may concerns regulation of bFGF contents in local tissue, blood serum, and spinal cord. ERK1/2pass-way may be one of the important pass-ways mediating curative the effects of electro-acupuncture.
     3. Effect on weizhong (BL40) of promoting repairmen is batter than a-shi point, and there may be differences between the action pass-ways of a-shi point electro-acupuncture and weizhong (BL40) electro-acupuncture. Weizhong (BL40) electro-acupuncture works mainly by general regulation of the nerve-endocrine network. It is thereby of morc obvious effect on bFGF release in the spinal cord. The details of the two mechanisms are to be further studied. On the contrary, A-shi point electro-acupuncture works mainly by pulling stimulation, which had more obviously regulatory effects on bFGF in local tissue.
     4. The application of ERK inhibitor, U0126, can partly block a-shi point electro-acupuncture's effects of stimulating proliferation and differentiation of satellite cells and regenerating muscles on acute lumbar muscle contusion rabbits. bFGF/ERK signal pass-way may be one of the important ways for muscle recovery and regeneration of a-shi point electro-acupuncture.
引文
[1]Huard J, Li Y, Fu FH (2002a) J Bone Joint Surg Am 84A:822-832.
    [2]Gardiner.P.F, MacIntosh.B.R, McComas.A.J著,余志斌等译,骨骼肌结构与功能[M].第四军医大学出版社,2010:7.
    [3]Serrano A L, Munoz-Canoves P. Regulation and dysregulation of fibrosis in skeletal muscle[J]. Experimental cell research,2010,316(18):3050-3058.
    [4]Portilho DM, Soares CP,Morrot A,et al. Cholesterol depletion by methyl-β-cyclodextrin enhances cell proliferation and increases the number of desmin-positive cells in myoblast cultures[J]. Eur J Pharmacol,2012,694(1-3):1-12.
    [5]Haubold KW, Allen DL, Capetanaki Y, et al. Loss of desmin leads to impaired voluntary wheel running and treadmill exercise performance[J]. JApplPhysiol,2003,95(4):1617-1622.
    [6]Vaittinen S, Lukka R, Sahlgren C, et al. The expression of intermediate filamentprotein nestin as related to vimentin and desmin in regenerating skeletal muscle[J]. JNeuropathol Exp Neurol,2001,60(6):588-597.
    [7]袁建琴,王瑞元,李肃反.离心运动对大鼠骨骼肌结蛋白分布和表达的影响对骨髂肌损伤机制的研究[J].体育科学,2005,25(6):64-66.
    [8]陈欢,张莉,崔强,等.电针阿是穴对骨骼肌损伤大鼠肌肉再生及碱性成纤维细胞生长因子表达的影响[J].中国康复理论与实践,2013,19(4):334-340.
    [9]Huard J, Li Y, Peng H, et al. Gene therapy and tissue engineering for sports medicine[J]. The journal of gene medicine,2002,5(2):93-108.
    [10]Cutlip R G, Baker B A, Hollander M, et al. Injury and adaptive mechanisms in skeletal muscle[J]. Journal of Electromyography and Kinesiology,2009,19(3):358-372.
    [11]Jarvinen T A H, Jarvinen T L N, Kaariainen M, et al. Muscle injuries biology and treatment[J]. The American journal of sports medicine,2005,33(5):745-764.
    [12]Counsel P, Breidahl W. Muscle injuries of the lower leg[C]//Seminars in musculoskeletal radiology.2010,14(2):162.
    [13]Beiner J M, Jokl P. Muscle contusion injuries:current treatment options[J]. Journal of the American Academy of Orthopaedic Surgeons,2001,9(4):227-237.
    [14]董亦明,宋一同.软组织损伤学[M].人民卫生出版社,1990:2.
    [15]Turner N J, Badylak S F. Regeneration of skeletal muscle[J]. Cell and tissue research,2012, 347(3):759-774.
    [16]Huard J, Yokoyama T, Pruchnic R, et al. Muscle-derived cell-mediated ex vivo gene therapy for urological dysfunction[J]. Gene therapy,2002,9(23):1617-1626.
    [17]Gates C,Huard J.Management of Skeletal Muscle Injuries in Military Personnel[J].Oper Techn Sport Med.2005;13(4):247-256.
    [18]Tidball J G, Villalta S A. Regulatory interactions between muscle and the immune system during muscle regeneration[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology,2010,298(5):R1173-R1187.
    [19]Best T M, Hunter K D. Muscle injury and repair[J]. Physical medicine and rehabilitation clinics of North America,2000,11(2):251.
    [20]Aarimaa V, Kaariainen M, Vaittinen S, et al. Restoration of myofiber continuity after transection injury in the rat soleus[J]. Neuromuscular Disorders,2004,14(7):421-428.
    [21]Crow B D, Haltom J D, Carson W L, et al. Evaluation of a novel biomaterial for intrasubstance muscle laceration repair[J]. Journal of orthopaedic research,2007,25(3): 396-403.
    [22]姚明华,黄强民.肌筋膜触发点疼痛的实验动物模型研究[J].中国运动医学杂志,2009(4):415-418.
    [23]陈世益,李云霞,马昕,等.外源性胰岛素样生长因子-2促进骨骼肌损伤修复的实验研究[J].中国运动医学杂志,2002,21(4):340-345.
    [24]周忠群,卢振和,高崇荣.射频热凝治疗兔慢性软组织损伤的实验研究阴.中国疼痛医学杂志,2008,14(5):298-301.
    [25]Filippin L I, Cuevas M J, Lima E, et al. Nitric oxide regulates the repair of injured skeletal muscle[J]. Nitric Oxide,2011,24(1):43-49.
    [26]Armstrong R B, Ogilvie R W, Schwane J A. Eccentric exercise-induced injury to rat skeletal muscle[J]. Journal of Applied Physiology,1983,54(1):80-93.
    [27]Cutlip R G, Baker B A, Hollander M, et al. Injury and adaptive mechanisms in skeletal muscle[J]. Journal of Electromyography and Kinesiology,2009,19(3):358-372.
    [28]Friden J, Lieber RL, Thornell LE. Subtle indications of muscle damage following eccentric contractions[J]. Acta Physiol Scand 1991;142(4):523-524.
    [29]Hesselink MK, Kuipers H, Geurten P, et al. Structural muscle damage and muscle strength after incremental number of isometric and forced lengthening contractions[J]. J Muscle Res Cell Motil,1996;17(3):335-341.
    [30]Lieber RL, Thornell LE, Friden J. Muscle cytoskeletal disruption occurs within the first 15 min of cyclic eccentric contraction[J]. J Appl Physiol 1996;80(1):278-284.
    [31]Friden J, Lieber RL. Segmental muscle fiber lesions after repetitive eccentric contractions[J]. Cell Tissue Res 1998;293(1):165-171.
    [32]Komulainen J, Kalliokoski R, Koskinen SO, et al.Controlled lengthening or shortening contraction-induced damage is followed by fiber hypertrophy in rat skeletal muscle[J]. Int J Sports Med 2000;21(2):107-112.
    [33]Stupka N, Tarnopolsky MA, Yardley NJ, et al.Cellular adaptation to repeated eccentric exercise-induced muscle damage[J]. J Appl Physiol 2001;91 (4):1669-1678.
    [34]Vijayan K, Thompson JL, Norenberg KM, et al.Fiber-type susceptibility to eccentric contraction-induced damage of hindlimb-unloaded rat AL muscles[J]. J Appl Physiol 2001;90(3):770-776.
    [35]Vaittinen S, Lukka R, Sahlgren C, et al. The expression of intermediate filament protein nestin as related to vimentin and desmin in regenerating skeletal muscle [J]. J Neuropathol Exp Neural,2001,60(6):588-597.
    [35]袁建琴,王瑞元,李肃反.离心运动对大鼠骨骼肌结蛋白分布和表达的影响对骨骼肌损伤机制的研究[J].体育科学,2005,25(6):64-66.
    [37]Koh TJ, Peterson JM, Pizza FX, et al.. Passive stretches protect skeletal muscle of adult and old mice from lengthening contraction-induced injury. J Gerontol A Biol Sci Med Sci 2003;58(7):592-597.
    [38]Tidball JG. Inflammatory processes in muscle injury and repair[J]. Am J Physiol Regul Integr Comp Physiol,2005;288(2):R345-353.
    [39]Tsivitse SK, McLoughlin TJ, Peterson JM, et al.Downhill running in rats:influence on neutrophils, macrophages, and MyoD+ cells in skeletal muscle[J]. Eur J Appl Physiol 2003;90(5-6):633-638.
    [40]Geronilla KB, Miller GR, Mowrey KF, et al. Dynamic force responses of skeletal muscle during stretch-shortening cycles[J]. Eur J Appl Physiol 2003;90(1-2):144-153.
    [41]St Pierre BA, Tidball JG. Macrophage activation and muscle remodeling at myotendinous junctions after modifications in muscle loading[J]. Am J Pathol 1994; 145(6):1463-1471.
    [42]Charge S B P, Rudnicki M A. Cellular and molecular regulation of muscle regeneration[J]. Physiological reviews,2004,84(1):209-238.
    [43]Hawke T J, Garry D J. Myogenic satellite cells:physiology to molecular biology[J]. Journal of Applied Physiology,2001,91(2):534-551.
    [44]全国体育学院教材委员会运动医学教材小组.运动医学[M].北京:人民体育出版社,1990:274.
    [45]Komulainen J, Takala T E S, Kuipers H, et al. The disruption of myofibre structures in rat skeletal muscle after forced lengthening contractions[J]. Pflugers Archiv European Journal of Physiology,1998,436(5):735-741.
    [46]刘明燕,王大安.股二头肌急性拉伤动物模型的建立[J].中国运动医学杂志,2012,31(1):48-52.
    [47]宋吉锐,柏树令.电刺激鼠骨骼肌后肌血流量及肌纤维结构变化的研究[J].中国医科大学学报,2001,30(4):248-250.
    [48]倪江东,傅荫宇,李贺君.骨骼肌缺血再灌注损伤及其保护的实验研究[J].湖南医学,1998,15(2):92-93.
    [49]Cahoon Cahoon N J, Naparus A, Ashrafpour H, et al. Pharmacologic Prophylactic Treatment for Perioperative Protection of Skeletal Muscle from Ischemia-Reperfusion Injury in Reconstructive Surgery[J]. Plastic and Reconstructive Surgery,2013,131(3):473-485.
    [50]Ball C J, Reiftel A J, Chintalapani S, et al. Hydrogen Sulfide Reduces Neutrophil Recruitment in Hind-Limb Ischemia-Reperfusion Injury in an L-Selectin and ADAM-17-Dependent Manner[J]. Plastic and Reconstructive Surgery,2013,131(3):487497.
    [51]Reinert A, Kaske A, Mense S. Inflammation-induced increase in the density of neuropeptide-immunoreactive nerve endings in rat skeletal muscle[J]. Exp Brain Res 1998;121:174-180.
    [52]Hill M, Goldspink G. Expression and Splicing of the Insulin-Like Growth Factor Gene in Rodent Muscle is Associated with Muscle Satellite (stem) Cell Activation following Local Tissue Damage[J]. The Journal of physiology,2003,549(2):409^18.
    [53]McGrath-Morrow S A, Collaco J M, Crawford T O, et al. Elevated serum IL-8 levels in ataxiatelangiectasia[J]. The Journal of pediatrics,2010,156(4):682-684. e1.
    [54]Filippin L I, Moreira A J, Marroni N P, et al. Nitric oxide and repair of skeletal muscle injury[J]. Nitric Oxide,2009,21(3):157-163.
    [55]Cornelison D D W. Context matters:in vivo and in vitro influences on muscle satellite cell activity[J]. Journal of cellular biochemistry,2008,105(3):663-669.
    [56]Murphy M M, Lawson J A, Mathew S J, et al. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration[J]. Development,2011,138(17): 3625-3637.
    [57]Mann C J, Perdiguero E, Kharraz Y, et al. Aberrant repair and fibrosis development in skeletal muscle[J]. Skelet Muscle,2011,1(1):21.
    [58]Jarvinen T A H, Kaariainen M, Jarvinen M, et al. Muscle strain injuries[J]. Current opinion in rheumatology,2000,12(2):155-161.
    [59]Jarvinen T A H, Jarvinen T L N, Kaariainen M, et al. Muscle injuries:optimising recovery[J]. Best Practice & Research Clinical Rheumatology,2007,21 (2):317-331.
    [60]Jarvinen TAH, Jarvinen TLN, Kaariainen M et al. Biology of muscle trauma[J]. American Journal of Sports Medicine 2005; 33:745-766.
    [61]Kannus P, Parkkari J, Jarvinen T LN, et al. Basic science and clinical studies coincide:active treatment approach is needed after a sports injury[J]. Scandinavian journal of medicine & science in sports,2003,13(3):150-154.
    [62]Connolly D A J, SAYERS S E, McHugh M P. Treatment and prevention of delayed onset muscle soreness[J]. The Journal of Strength & Conditioning Research,2003,17(1):197-208.
    [63]Cheung K, Hume P A, Maxwell L. Delayed onset muscle soreness[J]. Sports Medicine, 2003,33(2):145-164.
    [64]Lanier A B. Use of nonsteroidal anti-inflammatory drugs following exercise-induced muscle injury[J]. Sports Medicine,2003,33(3):177-186.
    [65]Pizza F X, Cavender D, Stockard A, et al. Anti-inflammatory doses of ibuprofen:effect on neutrophils and exercise-induced muscle injury[J]. International journal of sports medicine,2007, 20(02):98-102.
    [66]Sayers S P, Knight C A, Clarkson P M, et al. Effect of ketoprofen on muscle function and sEMG activity after eccentric exercise [J]. Medicine and science in sports and exercise,2001, 33(5):702-710.
    [67]Adams S S, Bough R G, Cliffe E E, et al. Absorption, distribution and toxicity of ibuprofen[J]. Toxicology and applied pharmacology,1969,15(2):310-330.
    [68]Southorn B G, Palmer R M. Inhibitors of phospholipase A2 block the stimulation of protein synthesis by insulin in L6 myoblasts[J]. Biochemical journal,1990,270(3):737.
    [69]Lee J, Goldfarb A H, Rescino M H, et al. Eccentric exercise effect on blood oxidative-stress markers and delayed onset of muscle soreness[J]. Medicine and science in sports and exercise, 2002,34(3):443-448.
    [70]Close G L, Ashton T, McArdle A, et al. The emerging role of free radicals in delayed onset muscle soreness and contraction-induced muscle injury [J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2005,142(3):257-266.
    [71]Goldfarb A H. Nutritional antioxidants as therapeutic and preventive modalities in exercise-induced muscle damage[J]. Canadian journal of applied physiology,1999,24(3): 249-266.
    [72]Cleak M J, Eston R G. Delayed onset muscle soreness:mechanisms and management[J]. Journal of sports sciences,1992,10(4):325-341.
    [73]Bryer S C, Goldfarb A H. Effect of high dose vitamin C supplementation on muscle soreness, damage, function, and oxidative stress to eccentric exercise[J]. International journal of sport nutrition and exercise metabolism,2006,16(3):270.
    [74]Thompson D, Williams C, McGregor S J, et al. Prolonged vitamin C supplementation and recovery from demanding exercise[J]. International journal of sport nutrition and exercise metabolism,2001,11(4):466.
    [75]Bloomer R J, Goldfarb A H. Can Nutritional Supplements Reduce Exercise-Induced Skeletal Muscle Damage[J]. Strength & Conditioning Journal,2003,25(5):30-37.
    [76]Close G L, Ashton T, Cable T, et al. Ascorbic acid supplementation does not attenuate post-exercise muscle soreness following muscle-damaging exercise but may delay the recovery process[J]. British Journal of Nutrition,2006,95(5):976-981.
    [77]Childs A, Jacobs C, Kaminski T, et al. Supplementation with vitamin C and N-acetyl-cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise[J]. Free Radical Biology and Medicine,2001,31(6):745-753.
    [78]Shafat A, Butler P, Jensen R L, et al. Effects of dietary supplementation with vitamins C and E on muscle function during and after eccentric contractions in humans[J]. European journal of applied physiology,2004,93(1-2):196-202.
    [79]Goldfarb A H, Bloomer R J, McKenzie M J. Combined antioxidant treatment effects on blood oxidative stress after eccentric exercise[J]. Med Sci Sports Exerc,2005,37(2):234-9.
    [80]Connolly D A J, McHugh M P, Padilla-Zakour O I. Efficacy of a tart cherry juice blend in preventing the symptoms of muscle damage[J]. British journal of sports medicine,2006,40(8): 679-683.
    [81]Costill D L, Pascoe D D, Fink W J, et al. Impaired muscle glycogen resynthesis after eccentric exercise[J]. Journal of Applied Physiology,1990,69(1):46-50.
    [82]Saunders M J, Kane M D, Todd M K. Effects of a carbohydrate-protein beverage on cycling endurance and muscle damage[J]. MEDICINE AND SCIENCE IN SPORTS AND EXERCISE.,2004,36(7):1233-1238.
    [83]Gharaibeh B, ChunLansinger Y, Hagen T, et al. Biological approaches to improve skeletal muscle healing after injury and disease[J]. Birth Defects Research Part C:Embryo Today: Reviews,2012,96(1):82-94.
    [84]Henon P R. Human embryonic or adult stem cells:an overview on ethics and perspectives for tissue engineering[M]//Tissue Engineering, Stem Cells, and Gene Therapies. Springer US, 2003:27-45.
    [85]Danisovic L', Polak S, Vojtassak J. Adult stem cells derived from skeletal muscle-biology and potential[J]. Central European Journal of Biology,2013,8(3):215-225.
    [86]Zainuddin Z, Sacco P, Newton M, et al. Light concentric exercise has a temporarily analgesic effect on delayed-onset muscle soreness, but no effect on recovery from eccentric exercise[J]. Applied Physiology, Nutrition, and Metabolism,2006,31(2):126-134.
    [87]Denegar C R, Perrin D H, Rogol A D, et al. Influence of transcutaneous electrical nerve stimulation on pain, range of motion, and serum cortisol concentration in females experiencing delayed onset muscle soreness[J]. J Orthop Sports Phys Ther,1989,11(3):100-103.
    [88]Weber M D, Servedio F J, Woodall W R. The effects of three modalities on delayed onset muscle soreness[J]. The Journal of orthopaedic and sports physical therapy,1994,20(5):236.
    [89]Butterfield D L, Draper D O, Ricard M D, et al. The effects of high-volt pulsed current electrical stimulation on delayed-onset muscle soreness[J]. Journal of Athletic training,1997, 32(1):15.
    [90]Flaibani M, Boldrin L, Cimetta E, et al. Muscle differentiation and myotubes alignment is influenced by micropatterned surfaces and exogenous electrical stimulation[J]. Tissue Engineering Part A,2009,15(9):2447-2457.
    [91]Park H, Bhalla R, Saigal R, et al. Effects of electrical stimulation in C2C12 muscle constructs[J]. Journal of tissue engineering and regenerative medicine,2008,2(5):279-287.
    [92]Serena E, Flaibani M, Carnio S, et al. Electrophysiologic stimulation improves myogenic potential of muscle precursor cells grown in a 3D collagen scaffold[J]. Neurological research, 2008,30(2):207-214.
    [93]Liu Y, Heinichen M, Wirth K, et al. Response of growth and myogenic factors in human skeletal muscle to strength training[J]. British journal of sports medicine,2008,42(12):989-993.
    [94]邵素霞,马洪骏,赵春芳,等EGF, bFGF和PHGF对大鼠骨骼肌卫星细胞增殖的影响[J].细胞生物学杂志,2004,26(4):425-428.
    [95]Kalicke T, Sprutacz O, Schlegel U, et al. Influence of local application of basic fibroblast growth factor on resistance to local infection after standardized closed soft tissue trauma. An experimental study in rats[J]. Der Unfallchirurg,2004,107(3):211.
    [96]Miller Kl. J, Thaloor D, Matteson S, et al. Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle[J]. American Journal of Physiology-Cell Physiology,2000,278(1):C174-C181.
    [97]Gur A, Karakoc M, Nas K, et al. Efficacy of low power laser therapy in fihromyalgia:a single-blind, placebo-controlled trial[J]. Lasers in medical science,2002,17(1):57-61.
    [98]Hakguder A, Birtane M, Gtircan S, et al. Efficacy of low level laser therapy in myofascial pain syndrome:an algometric and thermographic evaluation[J]. Lasers in surgery and medicine, 2003,33(5):339-343.
    [99]Vasseljen Jr O, Hoeg N, Kjeldstad B, et al. Low level laser versus placebo in the treatment of tennis elbow[J]. Scand J Rehabil Med,1992,24(1):37-42.
    [100]Vecchio P, Cave M, King V, et al. A double-blind study of the effectiveness of low level laser treatment of rotator cuff tendinitis[J]. Rheumatology,1993,32(8):740-742.
    [101]罗丽,低功率激光照射对急性骨骼肌钝挫伤大鼠血浆CK活性的影响[J].内江科技,2009,1:28-32.
    [102]Bibikova A, Belkin V, Oron U. Enhancement of angiogenesis in regenerating gastrocnemius muscle of the toad (Bufo viridis) by low-energy laser irradiation[J]. Anatomy and embryology,1994,190(6):597-602.
    [103]Weiss N, Oron U. Enhancement of muscle regeneration in the rat gastrocnemius muscle by low energy laser irradiation[J]. Anatomy and embryology,1992,186(5):497-503.
    [104]Schwartz F, Brodie C, Appel E, et al. Effect of helium/neon laser irradiation on nerve growth factor synthesis and secretion in skeletal muscle cultures[J]. Journal of Photochemistry and Photobiology B:Biology,2002,66(3):195-200.
    [105]Glasgow P D, Hill I D, McKevitt A M, et al. Low intensity monochromatic infrared therapy:a preliminary study of the effects of a novel treatment unit upon experimental muscle soreness[J]. Lasers in surgery and medicine,2001,28(1):33-39.
    [1]Mauro A. Satellite cell of skeletal muscle fibers[J]. The Journal of biophysical and biochemical cytology,1961,9(2):493-495.
    [2]Buckingham M., Bajard L., Chang T., et al.The formation of skeletal muscle:from somite to limb[J]. J. Anat,2003,202:59-68.
    [3]Rocheteau P, Gayraud-Morel B, Siegl-Cachedenier I, et al. A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division[J]. Cell,2012,148(1):112.
    [4]Henon P R. Human embryonic or adult stem cells:an overview on ethics and perspectives for tissue engineering[M]//Tissue Engineering, Stem Cells, and Gene Therapies. Springer US,2003: 27-45.
    [5]Danisovic E, Polak S, Vojtassak J. Adult stem cells derived from skeletal muscle-biology and potential[J]. Central European Journal of Biology,2013,8(3):215-225.
    [6]Skuk D, Roy B, Goulet M, et al. Dystrophin expression in myofibers of Duchenne muscular dystrophy patients following intramuscular injections of normal myogenic cells[J]. Molecular Therapy,2004,9(3):475-482.
    [7]Deasy B M, Feduska J M, Payne T R, et al. Effect of VEGF on the regenerative capacity of muscle stem cells in dystrophic skeletal muscle[J]. Molecular Therapy,2009,17(10): 1788-1798.
    [8]Lee J Y, Cannon T W, Pruchnic R, et al. The effects of periurethral muscle-derived stem cell injection on leak point pressure in a rat model of stress urinary incontinence[J]. International Urogynecology Journal,2003,14(1):31-37.
    [9]Wu X, Wang S, Chen B, et al. Muscle-derived stem cells:isolation, characterization, differentiation, and application in cell and gene therapy[J]. Cell and tissue research,2010,340(3): 549-567.
    [10]王晓玲,汪涛,赵舒,武宋,海林,田晨.当归多糖与体外造血微环境中小鼠肌卫星细胞增殖关系的研究[J].江苏中医药2010,42(9):74-75.
    [11]Adachi N, Sato K, Usas A, et al. Muscle derived, cell based ex vivo gene therapy for treatment of full thickness articular cartilage defects[J]. The Journal of rheumatology,2002, 29(9):1920-1930.
    [12]Seale P, Rudnicki M A. Anew look at the origin, function, and "stem-cell" status of muscle satellite cells[J]. Developmental biology,2000,218(2):115-124.
    [13]Bueno D F, Kerkis I, Costa A M, et al. New source of muscle-derived stem cells with potential for alveolar bone reconstruction in cleft lip and/or palate patients[J]. Tissue Engineering Part A,2008,15(2):427-435.
    [14]Turner N J, Badylak S F. Regeneration of skeletal muscle[J]. Cell and tissue research,2012, 347(3):759-774.
    [15]Ten Broek R W, Grefte S, Von den Hoff J W. Regulatory factors and cell populations involved in skeletal muscle regeneration[J]. Journal of cellular physiology,2010,224(1):7-16.
    [16]Wiedlocha A, Sorensen V. Signaling, internalization, and intracellular activity of fibroblast growth factor[M]//Signalling from Internalized Growth Factor Receptors. Springer Berlin Heidelberg,2004:45-79.
    [17]Malecki J, Wesche J, Skjerpen CS, et al. Translocationof FGF-1 and FGF-2 across vesicular membranes occursduring G1-phase by acommon mechanism[J]. Mol BiolCell,2004,15: 801-814.
    [18]丁焕文,何锡煌.碱性成纤维细胞生长因子的生物学功能[J].中华创伤杂志,1995,11(3):189-191.
    [19]Anderson JE, Liu L,Kardami E. Distinctive patterns of basic fibroblast growth factor(bFGG) distribution in degenerating and regenerating areas of dystrophic(mdx) striated muscle [JJ.Dev Biol,1991,147:96-109.
    [20]Mark S.F.Clarke,Robert Khakee,Paul L,et al.Loss of cytoplasmic basic fibroblast growth factor from physiologically wounded myofriber of normal and dystrophic muscle[J] Journal of Cell Science 1993,106:121-133.
    [21]向峥,孙林辉,余斌.碱性成纤维细胞生长因子mRNA在运动性肌损伤骨骼肌中的表达[J].华南国防医学杂志,2007,21(3):28-30.
    [22]李宏云,陈世益,张健,等.黄芪皂甙与丹参酮ⅡA对大鼠骨骼肌急性钝挫伤后生长因子表达的影响[J].复旦学报(医学版),2011,38(01):47-50.
    [23]许蕙,朱悦,辛畅泰.bFGF植入失神经骨骼肌对肌卫星细胞增殖与肌萎缩影响的实验研究[J].中国修复重建外科杂志,2008,22(12):1462-1465.
    [24]许蕙,辛畅泰.经硅胶管缓慢释放碱性成纤维细胞生长因子对失神经骨骼肌的作用[J].中国组织工程研究与临床康复,2008,12(19):3738-3742.
    [25]苏秋香,张庭深,王淑华,等bFGF对骨骼肌肌卫星细胞增殖的影响—-PCNA免疫组化法的实验研究[J].沈阳医学院学报,2004,6(3):131-132.
    [26]冯鑫,王生,李国珍.碱性成纤维细胞生长因子对大鼠骨骼肌拉伤后纤维化的抑制作用[J].中华劳动卫生职业病杂志,2004,22(2):90-92.
    [27]冯鑫,王生,李国珍.碱性成纤维细胞生长因子对大鼠骨骼肌拉伤修复的影响[J].中国临床康复,2004,8(5):846-847.
    [28]葛新发,潘卫东,董贵俊.利用碱性成纤维细胞生长因子包裹的磁性纳米粒对大鼠急性骨骼肌钝挫伤后肌肉收缩力与松弛特性恢复的影响研究[J].中国运动医学杂志,2010(5):538-541.
    [29]DO MK, Suzuki T,Sato Y, et al.Time-cordinated prevalent of excellular HGF,FGF-2 and TGF-β3 in crush-injury skeletal muscle[J].Anim Sci J,2012,83(10)712-717.
    [30]邵素霞,马洪骏,赵春芳,等EGF, bFGF和PHGF对大鼠骨骼肌卫星细胞增殖的影响[J].细胞生物学杂志,2004,26(4):425-428.
    [31]Philippou A, Maridaki M, Halapas A, et al. The role of the insulin-like growth factor 1 (IGF-1) in skeletal muscle physiology[J]. In Vivo,2007,21(1):45-54.
    [32]Sato K, Li Y Foster W, et al. Improvement of muscle healing through enhancement of muscle regeneration and prevention of fibrosis[J]. Muscle & nerve,2003,28(3):365-372.
    [33]Bischoff R. Chemotaxis of skeletal muscle satellite cells[J]. Developmental dynamics,1998, 208(4):505-515.
    [34]Li J, Reed S A, Johnson S E. Hepatocyte growth factor (HGF) signals through SHP2 to regulate primary mouse myoblast proliferation[J]. Experimental cell research,2009,315(13): 2284-2292.
    [35]Miller K1. J, Thaloor D, Matteson S, et al. Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle[J]. American Journal of Physiology-Cell Physiology,2000,278(1):C174-C181.
    [36]Kollias H D, McDermott J C. Transforming growth factor-β and myostatin signaling in skeletal muscle[J]. Journal of Applied Physiology,2008,104(3):579-587.
    [37]Wipff P J, Hinz B. Integrins and the activation of latent transforming growth factorβ1-An intimate relationship[J]. European journal of cell biology,2008,87(8):601-615.
    [38]Shen W, Li Y, Zhu J, et al. Interaction between macrophages, TGF-β1, and the COX-2 pathway during the inflammatory phase of skeletal muscle healing after injury[J]. Journal of cellular physiology,2008,214(2):405-412.
    [39]Yusuf F, Brand-Saberi B. The eventful somite:patterning, fate determination and cell division in the somite[J]. Anatomy and embryology,2006,211(1):21-30.
    [40]Tapscott S J. The circuitry of a master switch:MyoD and the regulation of skeletal muscle gene transcription[J]. Development,2005,132(12):2685-2695.
    [41]Yokoyama S, Asahara H. The myogenic transcriptional network[J]. Cellular and Molecular Life Sciences,2011,68(11):1843-1849.
    [42]Rudnicki M A, Schnegelsberg P N, Stead R H, et al. MyoD or Myf-5 is required for the formation of skeletal muscle[J]. Cell,1993,75(7):1351.
    [43]Hasty P, Bradley A, Morris J H, et al. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene[J]. Nature 1993,364(6437):501-506.
    [44]Zhang W, Behringer R R, Olson E N. Inactivation of the myogenic bHLH gene MRF4 results in up-regulation of myogenin and rib anomalies[J]. Genes & development,1995,9(11): 1388-1399.
    [45]Kassar-Duchossoy L, Gayraud-Morel B, Gomes D, et al. Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice[J]. Nature,2004,431(7007):466-471.
    [46]Cornelison D D W, Wold B J. Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells[J]. Developmental biology,1997,191(2): 270-283.
    [47]陈晓萍,范明.肌卫星细胞研究进展术[J].生理科学进展,2003,34(2).
    [48]Krens S F, Spaink H P, Snaar-Jagalska B E. Functions of the MAPK family in vertebrate-development[J]. FEBS letters,2006,580(21):4984-4990.
    [49]Seger R, Krebs E G. The MAPK signaling cascade[J]. The FASEB journal,1995,9(9): 726-735.
    [50]Johnson G L, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases[J]. Science,2002,298(5600):1911-1912.
    [51]McFarland D C, Pesall J E. Phospho-MAPK as a marker of myogenic satellite cell responsiveness to growth factors[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology,2008,149(3):463-467.
    [52]Zubkov A Y, Rollins K S, McGehee B, et al. Relaxant Effect of U0126 in Hemolysate-, Oxyhemoglobin-, and Bloody Cerebrospinal Fluid-Induced Contraction in Rabbit Basilar Artery[J]. Stroke,2001,32(1):154-161.
    [53]Chua C C, Rahimi N, Forsten-Williams K, et al. Heparan Sulfate Proteoglycans Function as Receptors for Fibroblast Growth Factor-2 Activation of Extracellular Signal-Regulated Kinases 1 and 2[J]. Circulation research,2004,94(3):316-323.
    [54]Sangaj N, Kyriakakis P, Yang D, et al. Heparin mimicking polymer promotes myogenic differentiation of muscle progenitor cells[J]. Biomacromolecules,2010,11(12):3294-3300.
    [55]Jump S S, Childs T E, Zwetsloot K A, et al. Fibroblast growth factor 2-stimulated proliferation is lower in muscle precursor cells from old rats[J]. Experimental Physiology,2009, 94(6):739-748.
    [56]Pellegrini L. Role of heparan sulfate in fibroblast growth factor signalling:a structural view[J]. Current opinion in structural biology,2001,11 (5):629-634.
    [57]Delehedde M, Lyon M, Gallagher J T, et al. Fibroblast growth factor-2 binds to small heparin-derived oligosaccharides and stimulates a sustained phosphorylation of p42/44 mitogen-activated protein kinase and proliferation of rat mammary fibroblasts[J]. Biochemical Journal,2002,366(Pt 1):235.
    [58]Hoshino R, Tanimura S, Watanabe K, et al. Blockade of the Extracellular Signal-regulated Kinase Pathway Induces Marked Gl Cell Cycle Arrest and Apoptosis in Tumor Cells in Which the Pathway Is Constitutively Activated UP-REGULATION OF p27Kip1 [J]. Journal of Biological Chemistry,2001,276(4):2686-2692.
    [59]张贵斌,王伟,徐运兰,等.细胞外信号调节激酶对细胞周期调控的影响[J].武汉大学学报:医学版,2011,32(6):717-722.
    [60]Rocheteau P, Gayraud-Morel B, Siegl-Cachedenier I, et al. A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division[J]. Cell,2012,148(1):112.
    [61]宋卫红,梁小文,廖艳萍,汤长发.离心运动对大鼠骨骼肌细胞增殖和波形蛋白表达的时序性影响[J].中国组织工程研究与临床康复,2009,13(28):5475-5479.
    [62]卢虹蓓等研卢虹蓓,李昌崇.ERK信号转导通路在哮喘大鼠气道重塑中的作用阴.浙江临床医学,2009,11(5):452455.
    [63]郭晓,潘崚.ERK阻滞剂U0126对白血病细胞K562细胞周期的作用及机制[J].第三军医大学学报,2008,30(5):393-395.
    [64]Tidball J G, Villalta S A. Regulatory interactions between muscle and the immune system during muscle regeneration[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology,2010,298(5):R1173-R1187.
    [65]Li Y, Cummins J, Huard J. Muscle injury and repair[J]. Current Opinion in Orthopaedics, 2001,12(5):409-415.
    [66]McGrath-Morrow S A, Collaco J M, Crawford T O, et al. Elevated serum IL-8 levels in ataxia telangiectasia[J]. The Journal of pediatrics,2010,156(4):682-684. el.
    [67]Filippin L I, Moreira A J, Marroni N P, et al. Nitric oxide and repair of skeletal muscle injury[J]. Nitric Oxide,2009,21(3):157-163.
    [68]Comelison D D W. Context matters:in vivo and in vitro influences on muscle satellite cell activity[J]. Journal of cellular biochemistry,2008,105(3):663-669.
    [69]Murphy M M, Lawson J A, Mathew S J, et al. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration[J]. Development,2011,138(17): 3625-3637.
    [70]Mann C J, Perdiguero E, Kharraz Y, et al. Aberrant repair and fibrosis development in skeletal muscle[J]. Skelet Muscle,2011,1(1):21.
    [71]F.Buchthal,E.Kaiser.Optimum mechanical conditions for the work of skeletal uscle[J].Acta Psychiatr NeurolScand,1949,24(3-4):333-352.
    [72]RJ.Bloch,H.Gonzalez-Serratos. Lateral force transmission across costameres in skeletal muscle[J].ExercSport Sci Rev,2003,31:73-78.
    [73]Passerieux E, Rossignol R, Chopard A, et al. Structural organization of the perimysium in bovine skeletalmuscle:junctional plates and associated intracellular subdomains[J]. Journal of structural biology,2006,154(2):206-216.
    [74]张学林,高晓娟,史冀鹏,等.离心运动引起骨骼肌过度使用损伤机理研究[J].中国运动医学杂志,2012,31(12):1064-1074.
    [1]马建,尹立,唐启华,等.肌肉挫伤后中药内服与外敷协同作用的实验研究[J].中国运动医学杂志,1990,9(2):89-92.
    [2]李浩钢,郭天旻,王翔.三色膏对骨骼肌损伤修复过程中组织形态学的影响[J].上海中医药杂志,2008,42(2):60-62.
    [3]孙茹,赵立君,杨熹洁,等.云南白药对大鼠骨骼肌急性损伤后炎症反应和卫星细胞再生的影响[J].吉林大学学报:医学版,2009,35(6):1092-1092.
    [4]罗毅文,孙之镐,谭新华,等.复方西红花膏对损伤组织成纤维细胞凋亡的影响[J].中国中医骨伤科杂志,2006,14(3):26-29.
    [5]罗毅文,孙之镐,谭新华,等.复方西红花膏对损伤组织bFGF mRNA表达的影响闭.中国中医骨伤科杂志,2003,11(6):1-4.
    [6]陈世益,李云霞,陈疾忤,等.中药黄芪,丹参注射液治疗运动员骨骼肌损伤多中心临床研究[J].中国运动医学杂志,2008,27(4):468-469.
    [7]董宇,陈世益,李云霞,等.丹参注射液对大鼠骨骼肌急性钝挫伤后生物力学指标的影响[J].复旦学报(医学胸,2009,36(1):53-56.
    [8]张健,陈世益,李云霞,等黄芪皂甙、丹参酮ⅡA注射液对大鼠骨骼肌急性钝挫伤后胚胎型肌球蛋白重链及波形蛋白mRNA表达的影响[J].中国运动医学杂志,2010,29(6):693-696.
    [9]金哲.”三针”针法治疗肌肉拉伤[J]广西体育科技.1996,17(1):43.
    [10]李涛.电针治疗肌肉损伤63例疗效观察[J].青海医学院学报.2003,24(1):35-36.
    [11]薛良成.成式针灸疗法治疗肌肉损伤[J].按摩与导引.2008,24(9):29-30.
    [12]常歌华.电针治疗胭绳肌损伤52例疗效观察[J].中医药研究,1995,5.
    [13]尹炳南,包大鹏.针刺治疗腓肠肌损伤的临床观察[J].针灸临床杂志,2006,22(3):22-23.
    [14]王荣国.电针促进家兔骨骼肌钝器伤后再生的作用和机制研究[D].北京中医药大学,2012.
    [15]段田田.电针对家兔急性骨髂肌损伤后氧化应激的影响[D].北京中医药大学,2012.
    [16]仝乐.电针足三里+阿是穴对急性腓肠肌损伤家兔TGF-1表达的影响[D].北京中医药大学,2012.
    [17]李俊华,王正珍,唐云峰,等.针刺对大鼠骨骼肌挫伤后肌肉再生的影响[J].北京体育大学学报,2012,35(6):61-65.
    [18]马忆南,杨华元,冯麟,赵宇平,陈静静.针刺诱导胶原信号变化对骨骼肌损伤的修复作用[J].中国组织工程研究2012,16(42):7888-7892.
    [19]李则望.斜刺法治疗骨骼肌损伤25例[J].湖北中医杂志,1994,5:43.
    [20]卢鼎厚,张志廉,段昌平,等.阿是穴斜刺治疗肌肉损伤的研究[J].上海针灸杂志,2000,19(S1):65-67.
    [21]卢鼎厚.骨骼肌损伤的病因和治疗:斜刺对骨骼肌损伤治疗作用的临床和实验研究[M].北京体育学院出版社,1993:24-28.
    [22]段昌平,卢鼎厚,傅湘琦,等.针刺和静力牵张对延迟性酸痛过程中骨骼肌超微结构的影响[J].北京体育大学学报,1984,4:12-23.
    [23]张建国,卢鼎厚,樊景禹.针刺(直刺,斜刺)对大负荷斜蹲后骨髂肌超微结构变化的影响[J].体育科学,1988,8(1):61-61.
    [24]Friden J. Muscle soreness after exercise:implications of morphological changes[J]. International journal of sports medicine,1984,5(2):57.
    [25]林丽雅,卢鼎厚.运动终板阻断后针刺对力竭的蟾蜍腓肠肌收缩能力恢复的促进作用[J].广州体育学院学报,1993,13(4):16-21.
    [26]李建文.多针斜刺法治疗慢性骨骼肌劳损[J].中国临床医学,2001,8(2):187-188.
    [27]涂小华,付继美,陈有林.多针分层斜刺治疗骨骼肌损伤156例[J].中国针灸,2006,26(6):448448.
    [28]史翼鹏,张学林,高晓娟,等.离心运动对骨骼肌Myf-5的影响及针刺修复作用[J][J]Acta Physiologica Siniea,2010,62:368-368.
    [29]李俊平,徐涛,许寿TNF-α、MMP-1在针刺抑制骨骼肌纤维化中的表达及意义[Z].中国生理学会运动生理学专业委员会年会暨“运动与健康”学术研讨会论文摘要汇编,广州,2013.
    [30]刘晓然,李俊平,刘阳,等.针刺对大负荷强度运动后骨骼肌微管蛋白的影响[Z].中国生理学会运动生理学专业委员会年会暨“运动与健康”学术研讨会论文摘要汇编,广州,2013.
    [31]侯京山,陈华,高谦,等.银质针在温热针法中热传导作用[J].中国康复理论与实践,2004,10(5):315-316.
    [32]冯传有,陈华,王福根,等.热传导银质针治疗对股四头肌慢性损伤兔骨骼肌白细胞介素8水平的影响[J].中国临床康复,2005,9(18):98-99.
    [33]杨志丽,高谦,王刚,等.软组织内热针对大鼠骨骼肌慢性损伤后血管新生的影响[J].军医进修学院学报,2010,31(012):1240-1242.
    [34]张泉香.排针加拔火罐治疗骨骼肌损伤200例[J].中国针灸,2006,S1:61-62.
    [35]王秀云.斜刺阿是穴配TDP治疗骨胳肌损伤[J].科技信息,2007(25):253-253.
    [36]唐青.温针灸配合穴位注射治疗腰肌劳损120例疗效观察[J].四川中医.2010,28(9):109-110.
    [37]闽学进.温针灸配合走罐治疗腰肌劳损疗效观察[J].中国中医药现代远程教育.2010,8(17):230-231.
    [38]刘霞,郭勇力.特异针刺和非甾体抗炎药对兔急性骨骼肌损伤疼痛的影响[J].山东体育学院学报,2013,29(4):52-54.
    [39]Smith L L, Keating M N, Holbert D, et al. The effects of athletic massage on delayed onset muscle soreness, creatine kinase, and neutrophil count:a preliminary report[J]. The Journal of orthopaedic and sports physical therapy,1994,19(2):93-99.
    [40]Mancinelli C A, Davis D S, Aboulhosn L, et al. The effects of massage on delayed onset muscle soreness and physical performance in female collegiate athletes[J]. Physical Therapy in Sport,2006,7(1):5-13.
    [41]马玉河.按摩防治兔骨骼肌运动性损伤的实验观察[J].中国运动医学杂志,1994,13(3):147-151.
    [42]张静.按摩对兔骨骼肌急性挫伤后修复的研究[D].河北师范大学,2003.
    [43]Hu J, Zhang X, Yan J. Effects of massage on satellite cells of acute contusive skeletal muscles[J]. Journal of Acupuncture and Tuina Science,2007,5(1):6.
    [44]刘志诚,邱莉,洪蕾,等.按摩对肢体损伤家兔中枢和外周单胺类物质代谢的影响[J].中国康复医学杂志,1989,4(4):166-171.
    [45]刘志诚,邱莉.按摩对软组织损伤家兔中枢和外周5-羟色胺代谢的影响[J].南京中医学院学报,1989,2:34-36.
    [46]文琛,曹庆淑,瞿娜,等.电针对急性心肌缺血的微血管酶和儿茶酚胺荧光的作用[J].针刺研究,1993,18(3):223-227.
    [47]韩冰冰,王世军,蒋继强.电针对MCAO大鼠海马微循环血流量的影响[J].时珍国医国药,2010,21(3):730-731.
    [48]赵雅芳,李春华,嵇波等.电针三阴交、血海对痛经模型大鼠子宫微循环的影响[J].微循环学杂志,2011,21(2):4-7.
    [49]刘芳,黄光英,张明敏.针刺对经脉穴位微循环血流量的影响[J].微循环学杂志,2007,17(1):8-11.
    [50]赵斌,田慧林,刘玉倩.电针对骨骼肌损伤修复作用的形态学研究[J].中国临床康复.2002,6(20):3044-45.
    [51]屈竹青,卢鼎厚,等.针刺对骨骼肌损伤过程中细胞内钙分布的影响及其机制中国运动医学杂志.1995,14(1):7-12.
    [52]Langevin H M, Churchill D L, Wu J, et al. Evidence of connective tissue involvement in acupuncture[J]. The FASEB journal,2002,16(8):872-874.
    [53]Konofagou E E, Langevin H M. Using ultrasound to understand acupuncture[J]. Engineering in Medicine and Biology Magazine, IEEE,2005,24(2):41-46.
    [54]Cheng W, Li B, Kajstura J, et al. Stretch-induced programmed myocyte cell death[J]. Journal of Clinical Investigation,1995,96(5):2247.
    [55]Sanchez-Esteban J, Wang Y, Cicchiello L A, et al. Cyclic mechanical stretch inhibits cell proliferation and induces apoptosis in fetal rat lung fibroblasts[J]. American Journal of Physiology-Lung Cellular and Molecular Physiology,2002,282(3):L448-L456.
    [56]杨林林.机械牵拉刺激对非特异性筋膜结缔组织细胞活性影响的研究[D].南方医科大学,2008.
    [57]Kumar A, Murphy R, Robinson P, et al. Cyclic mechanical strain inhibits skeletal myogenesis through activation of focal adhesion kinase, Rac-1 GTPase, and NF-κB transcription factor[J]. The FASEB journal,2004,18(13):1524-1535.
    [58]金百仁.阿是穴是对腧穴特异性的挑战[J].针灸临床杂志,1995,11(2):6.
    [59]黄昌惠.针刺委中穴治疗急性腰扭伤120例[J].中国民间医学,2003,11(7):17.1057-1069.
    [60]余维豪,范维铭,蔡虹,等.“腰背委中求”的临床与机理研究[J].中国针 炙,1997(8):503-504.
    [61]卜玉,孙忠人.委中刺血配合针刺治疗背肌筋膜炎临床疗效观察[J].针灸临床杂志,2012,28(5):32.
    [152]王苓苓,张维波,谢衡辉,等.使用血流成像技术对“腰背委中求”经典理论的验证[J].针刺研究,2007,32(4):247-251.
    [1]Huard J, Li Y, Peng H, et al. Gene therapy and tissue engineering for sports medicine[J]. The journal of gene medicine,2002,5(2):93-108.
    [2]Aaos. Burden of Musculoskeletal Diseases in the United States:Prevalence, Societal and Economic Cost[M]. Amer Academy of Orthopaedic,2008.
    [3]Cutlip R G, Baker B A, Hollander M, et al. Injury and adaptive mechanisms in skeletal muscle[J]. Journal of Electromyography and Kinesiology,2009,19(3):358-372.
    [4]王荣国.电针促进家兔骨骼肌钝器伤后再生的作用和机制研究[D].北京中医药大学,2012.
    [5]段田田.电针对家兔急性骨骼肌损伤后氧化应激的影响[D].北京中医药大学,2012.
    [6]仝乐.电针足三里_阿是穴对急性腓肠肌损伤家兔TGF-1表达的影响[D].北京中医药大学,2012.
    [7]李俊华,王正珍,唐云峰,等.针刺对大鼠骨骼肌挫伤后肌肉再生的影响[J].北京体育大学学报,2012,35(6):61-65.
    [8]Takaoka Y, Ohta M, Ito A, et al. Electroacupuncture suppressesmyostatin gene express ion: cell proliferative reaction inmouse skeletal muscle[J]. Physiol Genomics,2007,30 (2):102-110.
    [9]余维豪,范维铭,蔡虹,等.“腰背委中求”的临床与机理研究[J].中国针灸,1997(8):503-504.
    [10]Pellegrini L. Role of heparan sulfate in fibroblast growth factor signalling:a structural view[J]. Current opinion in structural biology,2001,11(5):629-634.
    [11]Dvorak P, Hampl A. Basic fibroblast growth factor and its receptors in human embryonic stem cells.Folia Histochem Cytobiol,2005,43(4):203.
    [12]Johnson G L, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases[J]. Science,2002,298(5600):1911-1912.
    [1]张海平,宋吉锐.急性骨骼肌损伤动物实验模型构建及应用[J].中国组织工程研究与临床康复,2007,11(49):9984-9988.
    [2]Nonaka, Koji, Akiyama, et al. Cool Water Immersion after Downhill Running Suppresses Exercise-induced Muscle Damage in the Rat Soleus Muscle[J]. Journal of Physical Therapy Science,2012,24(7):613-616.
    [3]Haubold KW, Allen DL, Capetanaki Y, Leinwand LA. Loss of desmin leads to impaired voluntary wheel running and treadmill exercise performance[J] JApplPhysiol, 2003,95(4):1617-1622.
    [4]周国林,姚全胜,潘玉英.一种动物软组织损伤的实验方法[J].中国药理学通报.1991,7(5):396-398.
    [5]Jarvinen T A H, Jarvinen T L N, Kaariainen M, et al. Muscle injuries biology and treatment[J]. The American journal of sports medicine,2005,33(5):745-764.
    [6]Crow B D,Haltom J D,Carson W L,et al. Evaluation of a novel biomaterial for intrasubstance muscle laceration repair[J]. Journal of orthopaedic research,2007,25(3):396-403.
    [7]姚明华,黄强民.肌筋膜触发点疼痛的实验动物模型研究[J].中国运动医学杂志,2009,28(4):417-420.
    [8]Cutlip R G, Baker B A, Hollander M, et al. Injury and adaptive mechanisms in skeletal muscle[J]. Journal of Electromyography and Kinesiology,2009,19(3):358-372.
    [9]Friden J, Lieber RL, Thornell LE. Subtle indications of muscle damage following eccentric contractions[J]. Acta Physiol Scand 1991;142(4):523-524.
    [10]Hesselink MK, Kuipers H, Geurten P, et al.. Structural muscle damage and muscle strength after incremental number of isometric and forced lengthening contractions[J]. J Muscle Res Cell Motil 1996;17(3):335-341.
    [11]Lieber RL, Thomell LE, Friden J. Muscle cytoskeletal disruption occurs within the first 15 min of cyclic eccentric contraction[J]. J Appl Physiol 1996;80(1):278-284.
    [12]Friden J, Lieber RL. Segmental muscle fiber lesions after repetitive eccentric contractions[J]. Cell Tissue Res 1998;293(1):165-171.
    [13]Komulainen J, Kalliokoski R, Koskinen SO, et al. Controlled lengthening or shortening contraction-induced damage is followed by fiber hypertrophy in rat skeletal muscle[J]. Int J Sports Med 2000;21 (2):107-112.
    [14]Stupka N, Tarnopolsky MA, Yardley NJ, et al. Cellular adaptation to repeated eccentric exercise-induced muscle damage[J]. J Appl Physiol 2001;91(4):1669-1678.
    [15]Vijayan K, Thompson JL, Norenberg KM, et al. Fiber-type susceptibility to eccentric contraction-induced damage of hindlimb-unloaded rat AL muscles[J]. JAppl Physiol 2001;90(3):770-776.
    [16]Vaittinen S, Lukka R, Sahlgren C, et al. The expression of intermediate filament protein nestin as related to vimentin and desmin in regenerating skeletal muscle [J]. J Neuropathol Exp Neurol,2001,60(6):588-597.
    [17]袁建琴,王瑞元,李肃反.离心运动对大鼠骨骼肌结蛋白分布和表达的影响对骨骼肌损伤机制的研究[J].体育科学,2005,25(6):64-66.
    [18]Koh TJ, Peterson JM, Pizza FX, et al.. Passive stretches protect skeletal muscle of adult and old mice from lengthening contraction-induced injury [J]. J Gerontol A Biol Sci Med Sci 2003;58(7):592-597.
    [19]Tidball JG. Inflammatory processes in muscle injury and repair.[J] Am J Physiol Regul Integr Comp Physiol 2005;288(2):R345-353.
    [20]Tsivitse SK, McLoughlin TJ, Peterson JM, et al.. Downhill running in rats:influence on neutrophils, macrophages, and MyoD+ cells in skeletal muscle[J].Eur J Appl Physiol 2003;90(5-6):633-638.
    [21]Geronilla KB, Miller GR, Mowrey KF, et al.. Dynamic force responses of skeletal muscle during stretch-shortening cycles[J]. Eur J Appl Physiol 2003;90(1-2):144-153.
    [22]陈世益,李云霞,马昕,等.外源性胰岛素样生长因子-2促进骨骼肌损伤修复的实验研究[J].中国运动医学杂志,2002,21(4):340-345.
    [23]Armstrong R B, Ogilvie R W, Schwane J A. Eccentric exercise-induced injury to rat skeletal muscle[J]. Journal of Applied Physiology,1983,54(1):80-93.
    [24]宋卫红,梁小文,廖艳萍,汤长发.离心运动对大鼠骨骼肌细胞增殖和波形蛋白表达的时序性影响[J].中国组织工程研究与临床康复,2009,13(28):5475-5479.
    [25]李俊华,王正珍,王军力,等.针刺对急性骨骼肌钝挫伤大鼠肌卫星细胞增殖的影响[J].中国体育科技,2012(4):137-140.
    [26]罗丽,张林,董宇.低功率激光对急性骨骼肌顿挫伤大鼠肌卫星细胞增殖活性的影响[J].体育科学,2007,27(7):55-58.
    [27]宋卫红.离心运动对大鼠骨骼肌细胞凋亡和增殖的时序性影响[D].湖南师范大学硕士学位论文,2009.
    [28]MariaCristina Balejo Piedade, Milene Sanches Galhardo, Cla'udia Naves Battlehner,Marcelo Alves Ferreira, Elia Garcia Caldini,Olga Maria Szymanski de Toledo, Effect of ultrasound therapy on the repair of Gastrocnemiusmuscle injury in rats[J].Ultrasonics,2008, 48:403-411.
    [29]Vaittinen S, Lukka R, Sahlgren C, et al. The expression of intermediate filamentprotein nestin as related to vimentin and desmin in regenerating skeletal muscle[J]. JNeuropathol Exp Neurol,2001,60(6):588-597.
    [30]Denise Paulin, Zhenlin Li. Desmin:a major intermediate filament protein essential for the structuralintegrity and function of muscle[J]. Experimental Cell Research,2004,301:1-7.
    [31]Wiedlocha A, Sorensen V. Signaling, internalization, and intracellular activity of fibroblast growth factor[M]//Signalling from Internalized Growth Factor Receptors. Springer Berlin Heidelberg,2004:45-79.
    [32]Malecki J, Wesche J, Skjerpen CS, et al. Translocationof FGF-1 and FGF-2 across vesicular membranes occursduring G1-phase by acommonmechanism[J]. Mol BiolCell,2004,15: 801-814.
    [33]Anderson J E, Mitchell C M, McGeachie J K, et al. The time course of basic fibroblast growth factor expression in crush-injured skeletal muscles of SJL/J and BALB/c mice[J]. Experimental cell research,1995,216(2):325-334.
    [34]DO M K Q, Suzuki T, Gerelt B, et al. Time-coordinated prevalence of extracellular HGF, FGF2 and TGF-β3 in crush-injured skeletal muscle[J]. Animal Science Journal,2012,83(10): 712-717.
    [35]Anderson JE, Liu L,Kardami E. Distinctive patterns of basic fibroblast growth factor(bFGG) distribution in degenerating and regenerating areas of dystrophic(mdx) striated muscle [JJ.Dev Biol,1991,147:96-109.
    [36]Mark S.F.Clarke,Robert Khakee,Paul L,et al.Loss of cytoplasmic basic fibroblast growth factor from physiologically wounded myofriber of normal and dystrophic muscle[J] Journal of Cell Science 1993,106:121-133.
    [37]向峥,孙林辉,余斌.碱性成纤维细胞生长因子mRNA在运动性肌损伤骨骼肌中的表达[J].华南国防医学杂志,2007,21(3):28-30.
    [38]李宏云,陈世益,张健,等.黄芪皂甙与丹参酮ⅡA对大鼠骨骼肌急性钝挫伤后生长因子表达的影响阴.复旦学报(医学版),2011,38(01):47-50.
    [39]DO MK, Suzuki T,Sato Y, et al.Time-cordinated prevalent of excellular HGF,FGF-2 and TGF-β3 in crush-injury skeletal muscle[J].Anim Sci J,2012,83(10):712-717.
    [40]邵素霞,马洪骏,赵春芳,等EGF, bFGF和PHGF对大鼠骨骼肌卫星细胞增殖的影响[J].细胞生物学杂志,2004,26(4):425428.
    [41]苏秋香,张庭深,王淑华,等bFGF对骨髂肌肌卫星细胞增殖的影响—-PCNA免疫组化法的实验研究[J].沈阳医学院学报,2004,6(3):131-132.
    [42]冯鑫,王生,李国珍.碱性成纤维细胞生长因子对大鼠骨骼肌拉伤后纤维化的抑制作用[J].中华劳动卫生职业病杂志,2004,22(2):90-92.
    [43]冯鑫,王生,李国珍.碱性成纤维细胞生长因子对大鼠骨骼肌拉伤修复的影响[J].中国临床康复,2004,8(5):846-847.
    [44]葛新发,潘卫东,董贵俊.利用碱性成纤维细胞生长因子包裹的磁性纳米粒对大鼠急性骨骼肌钝挫伤后肌肉收缩力与松弛特性恢复的影响研究[J].中国运动医学杂志,2010(5):538-541.
    [45]Anderson JE,Lin L,Kardami E,et al. Distinctive patterns of basicfibroblast fator(bFGF) distribution in degenerating and regeneratingarea of dystrophic (mdx) striated muscles[J].Dev Biol,1991,147:96-109.
    [46]金哲.”三针”针法治疗肌肉拉伤[J].广西体育科技.1996,17(1):43.
    [47]薛良成.成式针灸疗法治疗肌肉损伤[J].按摩与导引.2008,24(9):29-30.
    [48]常歌华.电针治疗胭绳肌损伤52例疗效观察[J].中医药研究,1995,5.
    [49]尹炳南,包大鹏.针刺治疗腓肠肌损伤的临床观察[J].针灸临床杂志,2006,22(3):22-23.
    [50]王荣国.电针促进家兔骨髂肌钝器伤后再生的作用和机制研究[D].北京中医药大学,2012.
    [51]段田田.电针对家兔急性骨骼肌损伤后氧化应激的影响[D].北京中医药大学,2012.
    [52]仝乐.电针足三里_阿是穴对急性腓肠肌损伤家兔TGF-1表达的影响[D].北京中医药大学,2012.
    [53]李俊华,王正珍,唐云峰,等.针刺对大鼠骨骼肌挫伤后肌肉再生的影响[J].北京体育大学学报,2012,35(6):61-65.
    [54]马忆南,杨华元,冯麟,等.针刺诱导胶原信号变化对骨骼肌损伤的修复作用[J].中国组织工程研究,2012,16(42):7888-7892.
    [55]金百仁.阿是穴是对腧穴特异性的挑战[J].针灸临床杂志,1995,11(2):6-6.
    [56]Sanchez-Esteban J, Wang Y, Cicchiello L A, et al. Cyclic mechanical stretch inhibits cell proliferation and induces apoptosis in fetal rat lung fibroblasts[J]. American Journal of Physiology-Lung Cellular and Molecular Physiology,2002,282(3):L448-L456.
    [57]M C. Dalakas, M.D.,KY.Park, et al. Desmin myopathy, a skeletalmyopathy with cardiomyo-pathy caused bymutations in the desmin gene[J].The New England Journal of Medicine,2000,16:770-780.
    [58]周忠群,卢振和,高崇荣.射频热凝治疗兔慢性软组织损伤的实验研究[J].中国疼痛医学杂志,2008,14(5):298-301.
    [59]实验针灸学[M].中国中医药出版社,2003.
    [60]Filippin L I, Cuevas M J, Lima E, et al. Nitric oxide regulates the repair of injured skeletal muscle[J]. Nitric Oxide,2011,24(1):4349.
    [61]宋吉锐,柏树令.电刺激鼠骨骼肌后肌血流量及肌纤维结构变化的研究[J].中国医科大学学报,2001,30(4):248-250.
    [62]罗丽,低功率激光照射对急性骨髂肌钝挫伤大鼠血浆CK活性的影响[J].内江科技,2009,1:28-32.
    [63]Pertille A, Macedo A B, Oliveira C P V. Evaluation of muscle regeneration in aged animals after treatment with low-level laser therapy [J]. Brazilian Journal of Physical Therapy,2012, 16(6):495-501.
    [64]Best T M, Hunter K D. Muscle injury and repair[J]. Physical medicine and rehabilitation clinics of North America,2000,11(2):251.
    [65]Wilkin L D, Merrick M A, Kirby T E, et al. Influence of therapeutic ultrasound on skeletal muscle regeneration following blunt contusion[J]. International journal of sports medicine,2004, 25(1):73-77.
    [66]Schmalbruch H, Lewis DM. Dynamics of nuclei of muscle fibersand connective tissue cells in normal and denervated rat muscles[J]..Muscle Nerve 2000;23:617-626.
    [67]Miller JB, Girgenrath M The role of apoptosis in neuromusculardiseases and prospects for anti-apoptosis therapy[J].Trends Mol Med,2006,12(6):279-286.
    [68]Stratos I, Graff J, Rotter R, et al. Open blunt crush injury of different severity determines nature and extent of local tissue regeneration and repair[J]. Journal of Orthopaedic Research, 2010,28(7):950-957.
    [69]Shenkman B S, Turtikova O V, Nemirovskaya T L, et al. Skeletal Muscle Activity and the Fate of Myonuclei[J]. Acta naturae,2010,2(2):59.
    [70]Allen D L, Roy R R, Edgerton V R. Myonuclear domains in muscle adaptation and disease[J]. Muscle & nerve,1999,22(10):1350-1360.
    [71]Adams G R, Haddad F. The relationships among IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy [J]. Journal of Applied Physiology,1996,81(6): 2509-2516.
    [72]Hikida R S, van Nostran S, Murray J D, et al. Myonuclear loss in atrophied soleus muscle fibers[J]. The Anatomical Record,1997,247(3):350-354.
    [73]Markert C D, Merrick M A, Kirby T E, et al. Nonthermal ultrasound and exercise in skeletal muscle regeneration[J]. Archives of physical medicine and rehabilitation,2005,86(7): 1304-1310.
    [74]Brzoska E, Grabowska I, Wrobel E, et al. Syndecan-4 distribution during the differentiation of satellite cells isolated from soleus muscle treated by phorbol ester and calphostin C[J]. Cellular & molecular biology letters,2002,8(2):269-278.
    [75]组织学与胚胎学[M].高等教育出版社,2004.
    [76]Serrano A L, Mufioz-Canoves P. Regulation and dysregulation of fibrosis in skeletal muscle[J]. Experimental cell research,2010,316(18):3050-3058.
    [77]Best T M, Hunter K D. Muscle injury and repair[J]. Physical medicine and rehabilitation clinics of North America,2000,11 (2):251.
    [78]张学林,高晓娟,史冀鹏,等.离心运动引起骨骼肌过度使用损伤机理研究[J].中国运动医学杂志,2012,31(12):1064-1074.
    [79]Gardiner.P.F, MacIntosh.B.R, McComas.A.J著,余志斌等译,骨骼肌结构与功能[M].第四军医出版社,2010:7.
    [80]Armstrong R B. Initial events in exercise-induced muscular injury[J]. Medicine and science in sports and exercise,1990,22(4):429-435.
    [81]Clarkson P M, Nosaka K, Braun B. Muscle function after exercise-induced muscle damage and rapid adaptation[J]. Medicine and science in sports and exercise,1992,24(5):512-520.
    [82]毕秋芸,彭莉,王启荣.递增负荷训练后大鼠血清CK及其同工酶、LDH、ALT、AsT活性变化.中国运动医学杂志,2006,25(5):593-595.
    [83]崔玉鹏,杨则宜,许葆华,等.大鼠不同方式运动后骨骼肌损伤与血浆CK及其同工酶变化的关系[J].中国运动医学杂志,2003,22(6):561-565.
    [84]Grenadier E, Keidar S, Kahana L, et al. The roles of serum myoglobin, total CPK, and CK-MB isoenzyme in the acute phase of myocardial infarction[J]. American heart journal,1983, 105(3):408-416.
    [85]罗丽,张林,董宇.低功率激光对急性骨骼肌顿挫伤大鼠肌卫星细胞增殖活性的影响[J].体育科学,2007,27(7):55-58.
    [86]Kasemkijwattana C, Menetrey J, Somogyi G, et al. Development of approaches to improve the healing following muscle contusion[J]. Cell transplantation,1998,7(6):585-598.
    [87]Taylor DC, Dalton JD Jr, Seaber AV, Garrett WE Jr. Experimentalmuscle strain injury. Early functional and structural deficits andthe increased risk for reinjury[J]. Am J Sports Med 1993,21:190-194.
    [88]Tidball J G. Inflammatory cell response to acute muscle injury[J]. Medicine and science in sports and exercise,1995,27(7):1022.
    [89]Hurme T, Kalimo H, Lehto M, et al. Healing of skeletal muscle injury:an ultrastructural and immunohistochemical study[J]. Medicine and science in sports and exercise,1991,23(7):801.
    [90]Hurme T, Kalimo H. Activation of myogenic precursor cells after muscle injury[J]. Medicine and Science in Sports and Exercise,1992,24(2):197.
    [91]Evans W J, Cannon J G.3 The Metabolic Effects of Exercise-Induced Muscle Damage[J]. Exercise and sport sciences reviews,1991,19(1):99-126.
    [92]Toumi H, F'guyer S, Best T M. The role of neutrophils in injury and repair following muscle stretch[J]. Journal of anatomy,2006,208(4):459-470.
    [93]Merrick M A. Secondary injury after musculoskeletal trauma:a review and update[J]. Journal of athletic training,2002,37(2):209.
    [94]屈竹青,卢鼎厚,等.针刺对骨骼肌损伤过程中细胞内钙分布的影响及其机制[J].中国运动医学杂志.1995,14(1):7-12.
    [95]李俊华针刺对骨骼肌钝挫伤后组织修复的影响[D].北京体育大学.2011
    [96]陈杰林,郭军.电针对大鼠骨骼肌拉伤后组织自由基代谢的影响[J].广州体育学院学报.2006,26(6):82-84
    [97]杨锐.针灸不同穴位组合对运动性疲劳大鼠骨骼肌生理生化指标影响的实验研究[D].上海体育学院,2009.
    [98]廖军,柯玫瑰,徐腾,等.基于(3-catenin信号通路的电针促进颈椎病模型大鼠椎旁肌细胞血管新生实验研究[J].福建中医药大学学报,2013,2:7.
    [99]赵斌,田惠林.电针对肌肉损伤修复作用的形态学研究[J].中国临床康复,2002,6(20):3044-3044.
    [100]Schmalbruch H, Lewis DM. Dynamics of nuclei of muscle fibersand connective tissue cells in normal and denervated rat muscles[J]..Muscle Nerve 2000,23:617-626.
    [101]白秉学,徐东刚,范明.碱性成纤维细胞生长因子的研究进展[J].国外医学遗传学分册,2004,27(4):197-199.
    [102]Clarke M S, Khakee R, McNeil P L. Loss of cytoplasmic basic fibroblast growth factor from physiologically wounded myofibers of normal and dystrophic muscle[J]. Journal of Cell Science,1993,106(1):121-133.
    [103]Smith C, Kruger M J, Smith R M, et al. The inflammatory response to skeletal muscle injury[J]. Sports medicine,2008,38(11):947-969.
    [104]Pellegrini L. Role of heparan sulfate in fibroblast growth factor signalling:a structural view[J]. Current opinion in structural biology,2001,11(5):629-634.
    [105]Dvorak P, Hampl A. Basic fibroblast growth factor and its receptors in human embryonic stem cells[J].Folia Histochem Cytobiol,2005,43(4):203.
    [106]Krens S F, Spaink H P, Snaar-Jagalska B E. Functions of the MAPK family in vertebrate-development[J]. FEBS letters,2006,580(21):4984-4990.
    [107]多明荷,孙莉娜,应森林,等.西黄丸通过ERK/MAPK信号通路对人结肠癌裸鼠移植瘤的影响[J].中华中医药杂志,2013,28(10):3055-3058.
    [108]Seger R, Krebs E G. The MAPK signaling cascade[J]. The FASEB journal,1995,9(9): 726-735.
    [109]Johnson G L, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases[J]. Science,2002,298(5600):1911-1912.
    [110]mp S S, Childs T E, Zwetsloot K A, et al. Fibroblast growth factor 2-stimulated proliferation is lower in muscle precursor cells from old rats[J]. Experimental Physiology,2009, 94(6):739-748.
    [111]Chua C C, Rahimi N, Forsten-Williams K, et al. Heparan Sulfate Proteoglycans Function as Receptors for Fibroblast Growth Factor-2 Activation of Extracellular Signal-Regulated Kinases 1 and 2[J]. Circulation research,2004,94(3):316-323.
    [112]余维豪,范维铭,蔡虹,等.“腰背委中求”的临床与机理研究[J].中国针灸,1997(8):503-504.
    [113]Ravenhall C, Guida E, Harris T, et al. The importance of ERK activity in the regulation of cyclin D1 levels and DNA synthesis in human cultured airway smooth muscle[J]. British journal of pharmacology,2000,131(1):17-28.
    [114]Hoshino R, Tanimura S, Watanabe K, et al. Blockade of the Extracellular Signal-regulated Kinase Pathway Induces Marked G1 Cell Cycle Arrest and Apoptosis in Tumor Cells in Which the Pathway Is Constitutively Activated UP-REGULATION OF p27Kipl[J]. Journal of Biological Chemistry,2001,276(4):2686-2692.
    [115]张贵斌,王伟,徐运兰,等.细胞外信号调节激酶对细胞周期调控的影响[J].武汉大学学报:医学版,2011,32(6):717-722.
    [116]马洪德,蒋明德,曾维政,等.ERK信号传导通路与细胞周期调控[J].西南国防医药,2003,13(5):556-558.
    [117]任延艳Orexin-A诱导的ERK(1/2)激活对癫痫大鼠学习记忆及海马神经细胞增殖的影响[D].泰山医学院,2012.
    [118]郭晓,潘崚.ERK阻滞剂U0126对白血病细胞K562细胞周期的作用及机制[J].第三军医大学学报,2008,30(5):393-395.
    [119]于欢,张敏,赵勇,等.胰岛素通过P13/Akt和MEK/ERK信号通路增强大鼠骨骼 肌成肌细胞的增殖[J].生理学报,2013(001):19-25.
    [120]卢虹蓓,李昌崇.ERK信号转导通路在哮喘大鼠气道重塑中的作用[J].浙江临床医学,2009,11(5):452-455.
    [121]姚晓霖,陈昭典,谭付清,等.MEK抑制剂U0126对大鼠睾丸移植缺血再灌注损伤的保护作用[J].浙江大学学报:医学版2009,38(1):81-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700