丹参注射液对铁超载所致心脏、肝脏损伤的保护作用及钙通道抑制作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁是人体必需的微量元素之一,它不仅参与细胞血红素的构成,还参与细胞的增殖和分化,并且通过催化氧化-还原反应参与机体的能量代谢、解毒等重要生理过程,同时它也参与调节NOS、PKC-β等与细胞生长功能有关的基因表达。但是当体内铁超载时,则引起器官的广泛受损。心脏、肝脏等是铁超载受损的主要靶器官。自1981年Swanson提出机体铁不断增加是冠心病的危险因素以来,铁超载致心脏损伤一直成为铁超载研究的热点。另外,肝脏是机体铁贮存和代谢的重要脏器,体外培养的肝细胞中加入非转铁蛋白结合铁,可导致肝细胞形态发生变化。研究发现,铁超载可使机体内有氧化活性游离铁大量增加,从而促进OH·的产生,目前认为OH·是体内最具有损伤性的自由基,它能攻击线粒体双层磷脂中不饱和脂肪酸,产生过量的脂质过氧化物,从而导致线粒体膜功能的损伤如物质转运、信号传导等,这会进一步影响整个细胞的结构和功能,最终导致细胞死亡和组织坏死,这可能是铁超载致器官损伤的重要机制之一。
     目前,临床铁超载疾病的治疗药物主要是铁的螯合剂,如去铁胺(Deferoxamine, DFO)、去铁酮(Deferiprone, DFP)、去铁斯若(Deferasirox,DFS)等,其中DFO是目前广泛应用治疗铁超载疾病的药物。DFO具有减少自由基形成、抑制脂质过氧化等作用,但DFO也有很多副作用,可引起低血压、心悸等不良反应,长期静脉注射治疗会引起病人耐受性差、生活质量下降等问题。近年有研究发现钙通道阻滞剂如维拉帕米可以抑制机体脂质过氧化、逆转铁超载,但是其作用机制尚未完全明确。传统中医药治疗铁超载的研究很少,国内有学者从黄芩中提取黄芩苷、从硕苞蔷薇中提取儿茶素和漆黄素来治疗铁超载所致脏器损伤,发现黄芩苷、儿茶素和漆黄素具有抗氧化和铁螯合剂双重作用,但缺点是黄芩苷由于在黄芩中含量低难以提取。因此,研究开发一种新的药物治疗铁超载疾病有着非常重要的意义。
     丹参是属于唇形科鼠尾草植物丹参(Salvia miltiorrhiza,Labiataefamily)的干燥根,是中国传统的中草药之一,具有活血化瘀、凉血、去痈、平燥等功效,现代研究证实丹参还具有降低氧自由基生成、抑制钙离子通道等作用。丹参注射液(丹参的水提物)在临床上极为常用,广泛用于治疗心血管疾病和肝、肾功能障碍等疾病,是一种简便价廉的中药制剂。近年来对丹参注射液的基础和临床研究已逐渐成为热点。我们的前期研究表明,丹参能减少斑马鱼肝脏、心脏和肾脏铁沉积,抑制脂质过氧化;此外,前期研究还证实丹参注射液对其它一些二价金属离子如铅中毒小鼠肾脏损伤也有保护作用。因此,丹参是潜在的治疗铁超载和其他金属离子所致脏器损伤的药物,其作用及机制值得进一步深入研究证实。
     综上所述,近年来有关铁超载引起的健康问题尤其是对心脏、肝脏等重要脏器的损伤逐渐引起人们关注。除DFO等铁螯合剂外,其它治疗铁超载的药物报道亦逐年增加,但丹参注射液对铁超载致心脏及肝脏损伤的保护作用及其机制的研究尚未见报道。本研究论文主要从分子生物学、形态学、细胞学、离子通道水平深入探讨丹参注射液对铁超载致脏器损伤的保护作用及其机制,主要包括以下内容:(1)丹参注射液对铁超载致小鼠急性心脏损伤的保护作用及机制;(2)丹参注射液对铁超载致急性肝脏损伤的保护作用及机制;(3)丹参注射液对大鼠心肌细胞钙电流及钙瞬变的影响。论文具体内容如下:第一部分丹参注射液对铁超载所致心脏损伤的保护作用及机制
     目的:测定丹参注射液的活性成分及其含量;深入探讨丹参注射液对铁超载所致小鼠心脏损伤的保护作用及机制。
     方法:通过高效液相色谱-紫外检测(HPLC-UV)定量测定丹参注射液的主要活性成分及其含量。将60只实验小鼠随机分为5组:对照组、铁超载组、丹参高剂量组、丹参低剂量组和DFO组。除对照组腹腔注射生理盐水外,其它各组均腹腔注射右旋糖酐铁注射液(50mg/kg/d)。给予右旋糖酐铁4h后,丹参高、低剂量组小鼠再分别注射丹参注射液(4ml/kg/d、2ml/kg/d)及DFO(100mg/kg/d)。连续给药2周。
     结果:(1)丹参注射液的主要活性成分及其含量分别是丹参素(2.15mg/mL)、原儿茶醛(0.44mg/mL)和丹酚酸B(1.01mg/mL)。(2)H&E染色结果表明,丹参注射液可明显改善铁超载所致的心脏损伤;(3)普鲁士蓝染色及组织铁含量测定的结果显示,丹参注射液可以显著降低铁在心脏的沉积;(4)血清生化指标检测结果显示,铁超载模型组的CK、CK-MB及LDH水平明显升高,丹参高剂量组和低剂量组使其活性下调,并且具有剂量依赖性。(5)心肌组织氧化指标测定结果显示:丹参可明显提高小鼠抗氧化能力,丹参高剂量组和低剂量组的MDA浓度显著降低,同时SOD和GSH-Px水平显著升高,并且具有剂量依赖性。
     结论:上述结果表明丹参注射液对铁超载所致小鼠心脏损伤具有明显的改善作用,机制与丹参可减少铁在心脏过量沉积,抑制脂质过氧化作用有关。第二部分丹参注射液对铁超载所致肝脏损伤的保护作用及机制
     目的:研究丹参注射液对铁超载所致小鼠的肝脏损伤保护作用及机制
     方法:分组及给药方法同“第一部分”。
     结果:(1)体重和肝系数统计结果显示,铁模型组的体重和肝系数明显升高,丹参注射液可有效缓解体重和肝系数的上升,对肝脏具有一定的保护作用;(2)H&E染色结果表明,丹参注射液可明显改善铁超载所致的肝脏损伤;(3)普鲁士蓝染色结果显示,丹参注射液可以显著降低铁在肝脏的沉积;(4)血清生化指标检测结果显示,铁模型组的AST和ALT水平明显降低,丹参高剂量组和低剂量组使其活性均有所上调,并且具有剂量依赖性;(5)肝脏组织氧化指标测定结果显示:丹参可明显提高小鼠抗氧化能力,丹参高剂量组和低剂量组的MDA浓度显著降低,同时SOD和GSH-Px水平显著升高,并且具有剂量依赖性;(6)TUNEL染色结果显示,丹参注射液可显著降低肝细胞的凋亡。
     结论:上述结果表明丹参对铁超载所致小鼠肝脏损伤具有明显保护作用,其机制与丹参注射液可以减少铁在肝脏的沉积,抑制脂质过氧化和降低细胞凋亡有关。第三部分丹参注射液对心肌细胞钙电流及钙瞬变的作用
     目的:研究丹参注射液对心肌细胞膜L-型钙电流(ICa-L)及细胞内钙离子浓度的影响。
     方法:采用全细胞膜片钳技术研究丹参对大鼠心肌细胞膜ICa-L的作用;采用细胞收缩与离子浓度同步测量系统研究丹参注射液对心肌细胞内钙离子浓度变化及对心肌细胞收缩力的影响。
     结果:(1)100μM维拉帕米可完全阻断所记录的电流,说明此电流即为ICa-L。(2)100mg/L丹参注射液可显著抑制心肌ICa-L并且冲洗后可恢复至给药前水平,说明该抑制作用确由丹参注射液引起而非其自身的衰减。(3)丹参注射液可浓度依赖性降低ICa-L。量效曲线结果显示,不同浓度的丹参注射液(0.1、0.3、1、3及10g/L),对ICa-L的抑制率分别为11.6%、19.1%、26.7%、32.1%及35.2%。(4)丹参注射液对I-V关系及反转ICa,L电位无明显作用。(5)丹参注射液对心肌钙离子激活和失活无明显作用。(6)丹参注射液(3g/L)可以显著抑制心肌细胞收缩(抑制率为21.0%)和降低细胞内钙离子浓度(钙瞬变的峰值降低23.3%)。(7)丹参注射液可明显的缩短从心肌细胞舒张开始至达到90%基线所需的时间(the timeto90%of the baseline,Tr),但对从收缩开始至到达收缩峰值10%的时间(the time to10%of the peak,Tp)无影响。
     结论:结果表明丹参注射液可明显地抑制心肌细胞ICa-L,降低心肌细胞内钙离子浓度,减弱心肌收缩力,发挥其心肌保护作用。由于铁离子可通过细胞膜钙离子通道进入心肌细胞内,提示由于丹参抑制ICa-L作用使铁离子进入细胞减少,从而降低铁在心肌细胞内的沉积。
Iron is one of indispensable microelement of our body, and it hasimportant physiological functions as an important component of hemoglobin,myoglobin and enzymes necessary for normal cell proliferation. Although ironcatalyzes critical redox reactions, detoxification and other processes neededfor energy production, it has highly cytotoxic in excess quantities includingtriggering to product large amount of free radicals, even damaging multipleimportant organs especially heart and liver. Swanson reported that progressvieiron depoistion in body.is one of the risk factors of coronary heart disease. Inaddition, liver is the significant organ to keep iron storage and its metabolism,in vitro experiment hepatocytes cultured mixs non-transferrin-bound ironcould change its shape. Studies show that with the extreme increasement offree iron, OH··is also rise in body, which is one of most damaging the freeradical, and then the latter would attack the unsaturated fattyacid inmitochondria and produce lipid peroxide, thereby result in the damage ofmembrance in mitochondria and eventually cause the death of the cells andtissues, which maybe one of the mechanisms of excessive iron-inducedorganic injuried.
     Deferoxamine (DFO) and1,2-dimethyl-3-hydroxypyrid-4-one(deferiprone, L1) is currently prescribed for the treatment of iron overloaddiseases. As iron-chelating agents, DFO and deferiprone/L1have been shownto inhibit free radical formation and the consequent tissue damage in someexperimental systems. However, they have several side effects anddisadvantages. In addition, the need for lifelong treatment of daily ironchelation therapy has a notable negative impact on patients’ perceived andactual quality of life. In rencent years, the reported activities lend some support to the use of calcium channel blockers such as verapamil to restrainthe lipid peroxidation of hepatocyte membranes and to protect against liverinjury, but the protective mechanisms did not illustrate clearly. Besides, it hasrecently been reported that supplementation with quercetin or baicalinextracted from Scutellaria baicalensis Georgi, which possess both antioxidantand iron chelation activities, can increase iron excretion in iron overloadedmice and hence protect the liver from oxidative stress and fibrosis. However,the content of baicalin in the root of S. baicalensis Georgi is lower than10%and is difficult to extract. Therefore, a less toxic and more widely availabledrug is needed to improve therapy outcomes for patients with iron overloaddiseases.
     The dried root of SM belonging to the family Labiatae is one of the mostversatile Chinese herbal drugs. Its traditional curative functions are toinvigorate blood circulation, remove stagnation, cool blood, reduce carbunclesand soothe irritability. Modern researches have proved that SM could decreasethe produce of oxygen radical and inhibit the L-type calcium channels. As theSM decoction is a commonly used preparation in traditional Chinese medicine,recent studies have focused on its aqueous fraction and constituents. SMinjection, the aqueous extracts of SM, is widely used in experimental andclinical treatment of cardiovascular diseases, liver diseases and renal disease.Meanwhile, it is very cheap and convenient. Our preliminary studies show thatSM could reduce the iron deposition in liver, heart and kidney and inhibit theoccurrence of lipid peroxidation. Moreover, we also proved that SM injectioncould protect the kidney injured induced by divalent metal ion such as lead.Therefore, SM is the potential drug that could treat iron overload and metalion, and it deserves to further studies.
     In recent years the health issue results from concerns about the importantorgans damage especial heart and liver induced by iron overload in patients. Inaddition to DFO, the reports of other therapies about iron overload diseasesincreased by years. However, the protective effects involves its mechanism ofSM injection against organs injury induced by iron overload remain unknown. Based upon the above mentioned SM injection, in my thesis, we usetechniques such as molecular biology, pathomorphology, patch clamp andothers to systematically study the following subjects:(1) Protective effect andpotential mechanisms of SM injection on iron overload-induced heart injury;(2) Protective effects and potential mechanismsof SM injection on ironoverload-induced liver injury;(3) Effects of SM injection on calcium currentand calcium transient of ventricular myocytes.Part1Protective effect and potential mechanisms of SM injection on ironoverload-induced heart injury
     Objective: Determination the active ingredient and its content of SMinjection. Research the protective effect and potential mechanism of SM oniron overload-induced cardiac damage in mice.
     Methods: Determination the active ingredient and its content of SMinjection using high performance liquid chromatography-ultraviolet detection(HPLC-UV). All mice were randomized divided into five groups: control, ironoverload, low-dose Danshen, high-dose Danshen and DFO groups. Mice ofthe latter four groups were intraperitoneally (i.p.) injected with a single doseof iron dextran at50mg·kg1per day. Mice of the control group received an i.p.injection of isovolumic saline. Mice of the L-Danshen, H-Danshen groups andDFO group were given i.p. SM injection at3,6g·kg1and DFO100mg·kg1per day respectively. The entire experimental period lasted for2weeks.
     Results:(1) The three main constituents and the actual concentrations ofSM injection were danshensu (2.15mg·mL1), protocatechuic (0.44mg·mL1)and aldehyde salvianolic acid B (1.01mg·mL1).(2) H&E staining showedthat the cardiac damage induced by iron overload was attenuated by SMinjection significantly.(3) The results of Prussian blue staining anddetermination of total iron in heart tissues showed that the accumulation ofexcess iron in the heart diminished following treatment with SM injection.(4)The testing results of serum biochemical indicators showed that serum levelsof CK, CK-MB and LDH in the iron-overloaded mice were significantlyelevated, whereas their activities were down-regulated by SM Injection in a dose-dependent manner.(5) The testing results of three oxidative stressmarkers in myocardial tissues showed that SM can obviously improve theantioxidant ability of mice. SM injection reduced the myocardial MDAcontent and improved cardiac SOD and GSH-Px levels in a dose-dependentmanner.
     Conclusions: Altogether, these results illustrated that SM injection couldattenuate the cardiac damage induced by iron overload significantly. Themechanisms may be attributed to its ability to decrease iron deposition andsuppress lipid peroxidation.Part2Protective effect and potential mechanisms of SM injection on ironoverload-induced liver injury
     Objective: Investigation the protective effects and the potentialmechanism of SM injection on liver injury induced by iron overload in mice.
     Methods: Methods of subgrouping and administration are same with “thefirst part”.
     Results:(1) Statistical results showed that the mean body weight andliver coefficients of iron overloaded mice was significantly lower than that ofthe control group, but they were improved by SM injection.(2) H&stainingshowed that the liver injury induced by iron overload was attenuated by SMinjection.(3) The results of Prussian blue staining showed that theaccumulation of excess iron in the liver diminished following treatment withSM injection.(4) The testing results of serum biochemical indicators showedthat serum levels of AST and ALT in the iron-overloaded mice weresignificantly down-regulated, whereas their activities were elevated by SMInjection in a dose-dependent manner.(5) The testing results of three oxidativestress markers in myocardial tissues showed that SM can obviously improvethe antioxidant ability of mice. SM injection reduced the hepatic MDA contentand improved cardiac SOD and GSH-Px levels in a dose-dependent manner.(6) The results of TUNEL staining showed that SM injection suppressed thehepatocyte apoptosis significantly.
     Conclusions: SM injection demonstrated significant protective effects towards the liver of iron overloaded mice, which may due to the decrease ofiron deposition and inhibition of lipid peroxidation and hepatocyte apoptosis.Part3Effects of SM injection on calcium current and calcium transientof ventricular myocytes
     Objective: To investigate the effects of SM on L-type calcium current(ICa-L) and intracellular calcium ([Ca2+]i).
     Methods: we used the whole-cell patch-clamp techniques to study ICa-L,and used myocyte calcium and contractility systems to measured calciumtransient and contractility in isolated adult rat ventricular myocytes of SMinjection.
     Results:(1) The recored currents were completely blocked by100μMVerapamil, which indicated that the currents were calcium currents.(2) Thecalcium currents were blocked by100μM SM injection and it could recoverafter washed, which indicated that the inhibition effects were induced by SMinjection not “run down”.(3) SM reduced the ICa-Lin aconcentration-dependent manner.0.1,0.3,1,3,10g/L SM reduced the ICa-Lby11.6%、19.1%、26.7%、32.1%and35.2%respectively.(4) The SM injectionhave no significant effect on the I-V relationship or reversal potential of ICa,L.(5) The SM injection have no significant effect on the activation andinactivation.(6) SM (3g/L) decreased the amplitudes of myocyte shortening21.02%and lessened the peak value of Ca2+transient23.33%respectively.(7)From the time parametes of cell shortening, SM injection was found tosignificantly shorten the time to90%of the baseline (Tr), however, the time to10%of the peak (Tp) was not dramatically prolonged.
     Conclusions: SM injection not only significantly inhibited ICa-Lin aconcentration-dependent manner but also suppressed calcium transient andcontraction in rat ventricular myocytes under physiological conditions. Sinceiron can enter into cardiomyocytes via myocardial calcium currents, theinhibition of calcium currents may be one of the intracellular mechenisms ofSM injection to prevent Fe2+into cardiomyocytes.
引文
1Andrews NC. Disorders of iron metabolism. N Engl J Med,1999,341(26):1986~1995
    2Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts:molecular control of mammalian iron metabolism. Cell,2004,117(3):285~297
    3Napier I, Ponka P, Richardson DR. Iron trafficking in the mitochondrion:novel pathways revealed by disease. Blood,2005,105(5):1867~1874
    4Omara FO, Blakley BR. Influence of low dietary iron and iron overloadon urethan-induced lung tumors in mice. Can J Vet Res,1993,57(3):209~211
    5Herbert V. Iron worsens high-cholesterol-related coronary artery disease.Am J Clin Nutr,1994,60(2):299~300
    6McCord JM. Effects of positive iron status at a cellular level. Nutr Rev,1996,54(3):85~89
    7Oudit GY, Trivieri MG, Khaper N, et al. Role of L-type Ca2+channels iniron transport and iron-overload cardiomyopathy. J Mol Med (Berl),2006,84(5):349~364
    8Steensma DP, Hoyer JD, Fairbanks VF. Hereditary red blood celldisorders in middle eastern patients. Mayo Clin Proc,2001,76(3):285~293
    9Niederau C, Fischer R, Purschel A, et al. Long-term survival in patientswith hereditary hemochromatosis. Gastroenterology,1996,110(4):1107~1119
    10Cecchetti G, Binda A, Piperno A, et al. Cardiac alterations in36consecutive patients with idiopathic haemochromatosis: polygraphicand echocardiographic evaluation. Eur Heart J,1991,12(2):224~230
    11Palka P, Macdonald G, Lange A. The role of Doppler left ventricularfilling indexes and Doppler tissue echocardiography in the assessmentof cardiac involvement in hereditary hemochromatosis. J Am SocEchocardiogr,2002,15(9):884~890
    12Olivieri NF, Brittenham GM. Iron-chelating therapy and the treatmentof thalassemia. Blood,1997,89(3):739~761
    13Niederau C, Fischer R, Sonnenberg A, et al. Survival and causes ofdeath in cirrhotic and in noncirrhotic patients with primaryhemochromatosis. N Engl J Med,1985,313(20):1256~1262
    14Olivieri NF. The beta-thalassemias. N Engl J Med,1999,341(2):99~109
    15Modell B, Khan M, Darlison M. Survival in beta-thalassaemia major inthe UK: data from the UK Thalassaemia Register. Lancet,2000,355(9220):2051~2056
    16Galanello R. Iron chelation: new therapies. Semin Hematol,2001,38(1Suppl1):73~76
    17张超群,周德生.丹参治疗心脑血管疾病机制的研究进展述略.实用中医内科杂志,2011,25(1):16~19
    18常晋华.丹参在心脑血管疾病中的应用.中国社区医学(医学专业),2012,14,(14):250~255
    19Zhao GR, Zhang HM, Ye TX, et al. Characterization of the radicalscavenging and antioxidant activities of danshensu and salvianolic acidB. Food Chem Toxicol,2008,46(1):73~81
    20Yokozawa T, Dong E, Oura H, et al. Magnesium lithospermate Bsuppresses the increase of active oxygen in rats after subtotalnephrectomy. Nephron,1997,75(1):88~93
    21Moon CY, Ku CR, Cho YH. Protocatechuic aldehyde inhibits migrationand proliferation of vascular smooth muscle cells and intravascularthrombosis. Biochem Biophys Res,2011,423(1):116~121
    22Gambling L, Charania Z, Hannah L, et al. Effect of iron deficiency onplacental cytokine expression and fetal growth in the pregnant rat. BiolReprod,2002,66(2):516~523
    23Link G, Konijn AM, Hershko C. Cardioprotective effect ofalpha-tocopherol, ascorbate, deferoxamine, and deferiprone:mitochondrial function in cultured, iron-loaded heart cells. J Lab ClinMed,1999,133(2):179~188
    24Livrea MA, Tesoriere L, Pintaudi AM, et al. Oxidative stress andantioxidant status in beta-thalassemia major: iron overload anddepletion of lipid-soluble antioxidants. Blood,1996,88(9):3608~3614
    25Cheng TO. Cardiovascular effects of Danshen. Int J Cardiol,2007,121(1):9~22
    26Cheng TO. Danshen: a versatile Chinese herbal drug for the treatmentof coronary heart disease. Int J Cardiol,2006,113(3):437~438
    27Zhou L, Zuo Z, Chow MS. Danshen: an overview of its chemistry,pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol,2005,45(12):1345~1359
    28Wang M, Liu J, Zhou B, et al. Acute and sub-chronic toxicity studies ofDanshen injection in Sprague-Dawley rats. J Ethnopharmacol,2010,141(1):96~103
    29Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal tohuman studies revisited. FASEB J,2008,22(3):659~661
    30Han JY, Fan JY, Horie Y, et al. Ameliorating effects of compoundsderived from Salvia miltiorrhiza root extract on microcirculatorydisturbance and target organ injury by ischemia and reperfusion.Pharmacol Ther,2008,117(2):280~295
    31Zhou R, He LF, Li YJ, et al. Cardioprotective effect of water andethanol extract of Salvia miltiorrhiza in an experimental model ofmyocardial infarction. J Ethnopharmacol,2011,139(2):440~446
    32Link G, Tirosh R, Pinson A. Role of iron in the potentiation ofanthracycline cardiotoxicity: identification of heart cell mitochondria asa major site of iron-anthracycline interaction. J Lab Clin Med,1996,127(3):272~278
    33Vanella A, Campisi A, di Giacomo C, et al. Enhanced resistance ofadriamycin-treated MCR-5lung fibroblasts by increased intracellularglutathione peroxidase and extracellular antioxidants. Biochem MolMed,1997,62(1):36~41
    34Saad SY, Najjar TA, Al-Rikabi AC. The preventive role of deferoxamineagainst acute doxorubicin-induced cardiac, renal and hepatic toxicity inrats. Pharmacol Res,2001,43(3):211~218
    35Olivieri NF, Brittenham GM, McLaren CE, et al. Long-term safety andeffectiveness of iron-chelation therapy with deferiprone for thalassemiamajor. N Engl J Med,1998,339(7):417~423
    36Tsushima RG, Wickenden AD, Bouchard RA, et al. Modulation of ironuptake in heart by L-type Ca2+channel modifiers: possible implicationsin iron overload. Circ Res,1999,84(11):1302~1309
    37Benzie IF. Lipid peroxidation: a review of causes, consequences,measurement and dietary influences. Int J Food Sci Nutr,1996,47(3):233~241
    38Dawson EA, Shave R, George K, et al. Cardiac drift during prolongedexercise with echocardiographic evidence of reduced diastolic functionof the heart. Eur J Appl Physiol,2005,94(3):305~309
    39Chow SN, Wu CC, Huang SC. Combined analysis of serum lacticdehydrogenase levels and isozyme patterns in ovarian neoplasms. ProcNatl Sci Counc Repub China B,1991,15(2):101~104
    40Zwart LL, Meerman JH, Commandeur JN. Biomarkers of free radicaldamage applications in experimental animals and in humans. Free RadicBiol Med,1999,26(1-2):202~226
    41Gutteridge JM. Lipid peroxidation and antioxidants as biomarkers oftissue damage. Clin Chem,1995,41(12Pt2):1819~1828
    42Fridovich I. Oxygen radicals from acetaldehyde. Free Radic Biol Med,1989,7(5):557~558
    43Forman HJ, Dickinson DA. Introduction to serial reviews on4-hydroxy-2-nonenal as a signaling molecule. Free Radic Biol Med,2004,37(5):594~596
    44Huang WM, Yan H, Jin JM. Beneficial effects of berberine onhemodynamics during acute ischemic left ventricular failure in dogs.Chin Med J (Engl),1992,105(12):1014~1019
    1Finch C. Regulators of iron balance in humans. Blood,1994,84(6):1697~702
    2Ong-ajyooth L, Malasit P, Ong-ajyooth S, et al. Renal function in adultbeta-thalassemia/Hb E disease. Nephron,1998,78(2):156~61
    3Crichton R.R., Ward R.J. Iron species in iron homeostas is and toxicity.Analyst,1995,120(3):693-697
    4彭开良,蒋芸,彭德惠,等.辛基二茂铁亚急性毒性及致突变作用的研究.1999,17(2):107-108
    5Hershko C. Control of disease by selective iron depletion: a noveltherapeutic strategy utilizing iron chelators. Baillieres Clin Haematol,1994,7(4):965~1000
    6Refaie FN, Wonke B, Hoffbrand AV, et al. Efficacy and possible adverseeffects of the oral iron chelator1,2-dimethyl-3-hydroxypyrid-4-one(L1) in thalassemia major. Blood,1992,80(3):593~599
    7Cable H, Lloyd JB. Cellular uptake and release of two contrasting ironchelators. J Pharm Pharmacol,1999,51(2):131~134
    8Kontoghiorghes GJ, Agarwal MB, Tondury P, et al. Deferiprone or fataliron toxic effects? Lancet,2001,357(9259):882~883
    9Arboretti R, Tognoni G, Alberti D. Pharmacosurveillance and quality ofcare of thalassaemic patients. A large scale epidemiological survey. EurJ Clin Pharmacol,2001,56(12):915~922
    10Gabutti V, Piga A. Results of long-term iron-chelating therapy. ActaHaematol,1996,95(1):26~36
    11Sekeres MA, Stone RM, Zahrieh D, et al. Decision-making and qualityof life in older adults with acute myeloid leukemia or advancedmyelodysplastic syndrome. Leukemia,2004,18(4):809~816
    12Wang N, Guan P, Li F, et al. Sodium glutamate andgamma-aminobutyric acid affect iron metabolism in the rat caudateputamen. Neural Regeneration R,2010,5(21):1644~1649
    13Guan P, Wang N, Shi HH, et al. Effects of Low ConcentrationIronStatuson Iron Metabolism in Primary Cultured Rats' Cardiac Myocytes.Chin J,2007,31(3):392~396
    14Carafoli E. Intracellular calcium homeostasis. Annu Rev Biochem,1987,56:395~433
    15Ludwiczek S, Theurl I, Muckenthaler MU, et al. Ca2+channel blockersreverse iron overload by a new mechanism via divalent metaltransporter-1. Nat Med,2007,13(4):448~454
    16Zhao Y, Li H, Gao Z, et al. Effects of dietary baicalin supplementationon iron overload-induced mouse liver oxidative injury. Eur J Pharmacol,2005,509(2-3):195~200
    17Zhang Y, Huang Y, Deng X, et al. Iron overload-induced rat liver injury:Involvement of protein tyrosine nitration and the effect of baicalin. EurJ Pharmacol,2012,680(1-3):95~101
    18Chan K, Chui SH, Wong DY, et al. Protective effects of Danshensufrom the aqueous extract of Salvia miltiorrhiza (Danshen) againsthomocysteine-induced endothelial dysfunction. Life Sci,2004,75(26):3157~71
    19Cao CM, Xia Q, Zhang X, et al. Salvia miltiorrhiza attenuates thechanges in contraction and intracellular calcium induced by anoxia andreoxygenation in rat cardiomyocytes. Life Sci,2003,72(22):2451~2463
    20Lam FF, Yeung JH, Kwan YW, et al. Salvianolic acid B, an aqueouscomponent of danshen (Salvia miltiorrhiza), relaxes rat coronary arteryby inhibition of calcium channels. Eur J Pharmacol,2006,553(1-3):240~245
    21Jinping Q, Peiling H, Yawei L, et al. Effects of the aqueous extract fromSalvia miltiorrhiza Bge on the pharmacokinetics of diazepam and onliver microsomal cytochrome P450enzyme activity in rats. J PharmPharmacol,2003,55(8):1163~1167
    22Kang DG, Oh H, Sohn EJ, et al. Lithospermic acid B isolated fromSalvia miltiorrhiza ameliorates ischemia/reperfusion-induced renalinjury in rats. Life Sci,2004,75(15):1801~1816
    23Qin S, Sun B. Protective effects of Salvia miltiorrhiza on hepaticischemia-reperfusion injury of liver. Acta Chin Med Pharmacol,2001,(06):37~38
    24Xing HC, Li LJ, Xu KJ, et al. Effects of Salvia miltiorrhiza on intestinalmicroflora in rats with ischemia/reperfusion liver injury. HepatobiliaryPancreat Dis Int,2005,4(2):274~280
    25Wu Y, Li J, Wang J, et al. Anti-atherogenic effects of centipede acidicprotein in rats fed an atherogenic diet. J Ethnopharmacol,2009,122(3):509~516
    26Powell LW, Bassett ML, Halliday JW. Hemochromatosis:1980update.Gastroenterology,1980,78(2):374~381
    27Dresow B, Albert C, Zimmermann I, et al. Ethane exhalation andvitamin E/ubiquinol status as markers of lipid peroxidation in ferroceneiron-loaded rats. Hepatology,1995,21(4):1099~1105
    28Valerio LG, Jr., Petersen DR. Formation of liver microsomalMDA-protein adducts in mice with chronic dietary iron overload.Toxicol Lett,1998,98(1-2):31~39
    29Bacon BR, Healey JF, Brittenham GM, et al. Hepatic microsomalfunction in rats with chronic dietary iron overload. Gastroenterology,1986,90(6):1844~1853
    30Bacon BR, Britton RS. The pathology of hepatic iron overload: a freeradical--mediated process? Hepatology,1990,11(1):127~137
    31She SF, Huang XZ, Tong GD. Clinical Study onTreatment of LiverFibrosis by Different Dosages of Salvia Injection. Chin J Integr Med,2004,(01):17~20
    32Dillard CJ, Downey JE, Tappel AL. Effect of antioxidants on lipidperoxidation in iron-loaded rats. Lipids,1984,19(2):127~133
    33Galleano M, Puntarulo S. Hepatic chemiluminescence and lipidperoxidation in mild iron overload. Toxicology,1992,76(1):27~38
    34Nielsen P, Heinelt S, Dullmann J. Chronic feeding of carbonyl-iron andTMH-ferrocene in rats. Comparison of two iron-overload models withdifferent iron absorption. Comp Biochem Physiol C,1993,106(2):429~436
    35Britton RS, O'Neill R, Bacon BR. Hepatic mitochondrialmalondialdehyde metabolism in rats with chronic iron overload.Hepatology,1990,11(1):93~97
    36Kudo H, Suzuki S, Watanabe A, et al. Effects of colloidal iron overloadon renal and hepatic siderosis and the femur in male rats. Toxicology,2008,246(2-3):143~147
    37Lam FF, Yeung JH, Chan KM, et al. Relaxant effects of danshenaqueous extract and its constituent danshensu on rat coronary artery aremediated by inhibition of calcium channels. Vascul Pharmacol,2007,46(4):271~277
    38Atef M A-A. Vitamin E attenuates liver injury induced by exposure tolead, mercury, cadmium and copper in albino mice. Saudi J Bio Scien,2011,18(4):395~401
    39Chen X, Xu J, Zhang C, et al. The protective effects of ursodeoxycholicacid on isoniazid plus rifampicin induced liver injury in mice. Eur JPharmacol,2011,11(2):55~58
    40Bedossa P, Houglum K, Trautwein C, et al. Stimulation of collagenalpha1(I) gene expression is associated with lipid peroxidation inhepatocellular injury: a link to tissue fibrosis? Hepatology,1994,19(5):1262~1271
    41Tjalkens RB, Valerio LG, Jr., Awasthi YC, et al. Association ofglutathione S-transferase isozyme-specific induction and lipidperoxidation in two inbred strains of mice subjected to chronic dietaryiron overload. Toxicol Appl Pharm,1998,151(1):174~181
    42Parks RR, Huang CC, Haddad J, et al. Evidence of oxygen radicalinjury in experimental otitis media. Laryngoscope,1994,104(11Pt1):1389~1392
    43Hogberg J, Orrenius S, Larson RE. Lipid peroxidation in isolatedhepatocytes. Eur J Biochem,1975,50(3):595~602
    44Zhou JL, ZHUANG ZX, Cai XJ. Certain hepatotoxicity characteristicsinduced by trinitrotoluene. Chin J Health Toxicology,1997,11(1):5~7
    45Jiang L, Li YH, Qi XH, et al. The preventative effect and mechanism ofDanshensu on endotoxin induced liver injury. Chin J IntegrativeMedicine on Liver Diseases,1999,10(9):30~32
    46Huang YS, Zhang JT. The antioxidative effects of three water solubleingredients in Salvia miltiorrhiza in vitro. Acta Pharm Sin,1992,27:96~100
    47Wang AM, Sha SH, Lesniak W, et al. Tanshinone (Salviae miltiorrhizaeextract) preparations attenuate aminoglycoside-induced free radicalformation in vitro and ototoxicity in vivo. Antimicrob A Chemother,2003,47(6):1836~1841
    48Tian SZ, Wang JG, Zhang JY. An experimental study on the effect ofSalvia miltiorrhiza in improving postburn intestinal ischemia. J ChinMicrocirculation,2004,3(8):87~88
    1Cheng TO. Cardiovascular effects of Danshen. Int J Cardiol,2007,121:9~22
    2Cheng TO. Warfarin danshen interaction. Ann Thorac Surg,1999,67:894~897
    3Cheng TO. Danshen: a popular chinese cardiac herbal drug. J Am CollCardiol,2006,47:1499~1500
    4Cheng TO. Danshen: what every cardiologist should know about thisChinese herbal drug. Int J Cardiol,2006,110:411~412
    5Cheng TO. Danshen: a versatile Chinese herbal drug for the treatment ofcoronary heart disease. Int J Cardiol,2006,113:437~438
    6Lam FF, Yeung JH, Chan KM, et al. Relaxant effects of danshen aqueousextract and its constituent danshensu on rat coronary artery are mediated byinhibition of calcium channels. Vascul Pharm,2007,46:271~277
    7Chan K, Chui SH, Wong DY, et al. Protective effects of Danshensu fromthe aqueous extract of Salvia miltiorrhiza (Danshen) againsthomocysteine-induced endothelial dysfunction. Life Sci,2004,75:3157~3171
    8Kamata K, Iizuka T, Nagai M et al. Endothelium-dependent vasodilatoreffects of the extract from Salviae Miltiorrhizae radix. A study on theidentification of lithospermic acid B in the extracts. Gen Pharm,1993,24:977~981
    9Godfraind T, Miller RC, Lima JS. Calcium entry blocking action ofyohimbine and its isomers. Arch Int Pharmacodyn Ther,1982,260:280~281
    10Lu Y, Foo LY. Polyphenolics of Salvia. Phytochemistry,2002,59:117~140
    11Fung KP, Zeng LH, Wu J, et al. Demonstration of the myocardial salvageeffect of lithospermic acid B isolated from the aqueous extract of Salviamiltiorrhiza. Life Sci,1993,52: PL239~244
    12Ji XY, Tan BK, Zhu YZ. Salvia miltiorrhiza and ischemic diseases. ActaPharmacol Sin,2000,21:1089~1094
    13Wu TW, Zeng LH, Fung KP, et al. Effect of sodium tanshinone IIAsulfonate in the rabbit myocardium and on human cardiomyocytes andvascular endothelial cells. Biochem Pharmacol,1993,46:2327~2332
    14Cao CM, Xia Q, Zhang X, et al. Salvia miltiorrhiza attenuates the changesin contraction and intracellular calcium induced by anoxia andreoxygenation in rat cardiomyocytes. Life Sci,2003,72:2451~2463
    15Kuang P, Tao Y, Tian Y. Radix Salviae miltiorrhizae treatment results indecreased lipid peroxidation in reperfusion injury. J Tradit Chin Med,1996,16:138~142
    16Wang BS, Wang LJ, Zhang YB, et al. Reduction of myocardialischemia-reperfusion injury by isovolumic hemodilution. Clin HemorheolMicrocirc,1997,17:181~186
    17Gao Y, Wang N, Zhang Y, et al. Mechanism of protective effects ofDanshen against iron overload-induced injury in mice. J Ethnopharmacol,2013,145:254~260
    18Guan SJ, Ma JJ, Zhang Y, et al. Danshen(salvia miltiorrhiza) InjectionSuppresses kidney Injury Induced by Iron Overload in Mice. PLOS,2013;8
    19Zhang Y, Xie Y, Gao Y, et al. Multitargeted inhibition of hepatic fibrosis inchronic iron-overloaded mice by Salvia miltiorrhiza. J Ethnopharmacol,2013,148:671~681
    20Zhang JP, Zhang YY, Zhang Y, et al. Salvia miltiorrhiza (Danshen)injection ameliorates iron overload-induced cardiac damage in mice. PlantaMed,2013,79:744~752
    21Lam FF, Yeung JH, Kwan YW, et al. Salvianolic acid B, an aqueouscomponent of danshen (Salvia miltiorrhiza), relaxes rat coronary artery byinhibition of calcium channels. Eur J Pharmacol,2006,553:240~245
    22Bristow MR, Kantrowitz NE, Ginsburg R, et al. Beta-adrenergic functionin heart muscle disease and heart failure. J Mol Cell Cardiol,1985,17Suppl2:41~52
    23Frey N, Olson EN. Cardiac hypertrophy: the good, the bad, and the ugly.Annu Rev Physiol,2003,65:45~79
    24Chen X, Zhang X, Kubo H, et al. Ca2+influx-induced sarcoplasmicreticulum Ca2+overload causes mitochondrial-dependent apoptosis inventricular myocytes. Circ Res2005,97:1009~1017
    25Isenberg G, Klockner U. Calcium tolerant ventricular myocytes preparedby preincubation in a "KB medium". Pflugers Arch,1982,395:6~18
    26Howarth FC, Qureshi MA, White E. Effects of hyperosmotic shrinking onventricular myocyte shortening and intracellular Ca2+instreptozotocin-induced diabetic rats. Pflugers Arch,2002,444:446~451
    27Ren Z, Ma J, Zhang P, et al. The effect of ligustrazine on L-type calciumcurrent, calcium transient and contractility in rabbit ventricular myocytes. JEthnopharmacol,2012,144:555~561
    28Salem KA, Qureshi A, Ljubisavijevic M, et al. Alloxan reduces amplitudeof ventricular myocyte shortening and intracellular Ca2+without alteringL-type Ca2+current, sarcoplasmic reticulum Ca2+content or myofilamentsensitivity to Ca2+in Wistar rats. Mol Cell Biochem,2010,340:115~123
    29Haworth RA, Redon D. Calibration of intracellular Ca transients of isolatedadult heart cells labelled with fura-2by acetoxymethyl ester loading. CellCal,1998,24:263~273
    30Kameyama A, Yazawa K, Kaibara M, et al. Run-down of the cardiac Ca2+channel: characterization and restoration of channel activity by cytoplasmicfactors. Pflugers Arch,1997,433:547~556
    31Tao J, Wang H, Chen J, et al. Effects of saponin monomer13of dwarflilyturf tuber on L-type calcium currents in adult rat ventricular myocytes.Am J Chin Med,2005,33:797~806
    32McDonald TF, Pelzer S, Trautwein W, et al. Regulation and modulation ofcalcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev,1994,74:365~507
    33Sonnenblick EH, Ross J, Jr., Covell JW, et al. Velocity of contraction as adeterminant of myocardial oxygen consumption. Am J Physiol,1965,209:919~927
    34Crystal GJ, Silver JM, Salem MR. Mechanisms of increased right and leftventricular oxygen uptake during inotropic stimulation. Life Sci,2013,93:59~63
    35Balaban RS. Cardiac energy metabolism homeostasis: role of cytosoliccalcium. J Mol Cell Cardiol,2002,34:1259~1271
    36Gill C, Mestril R, Samali A. Losing heart: the role of apoptosis in heartdisease-a novel therapeutic target? FASEB J,2002,16:135~146
    37Ludwiczek S, Theurl I, Muckenthaler MU, et al. Ca2+channel blockersreverse iron overload by a new mechanism via divalent metal transporter-1.Nat Med,2007,13:448~454
    38Josephson RA, Silverman HS, Lakatta EG, et al. Study of the mechanismsof hydrogen peroxide and hydroxyl free radical-induced cellular injury andcalcium overload in cardiac myocytes. J Biol Chem,1991,266:2354~2361
    39Okabe E, Odajima C, Taga R, et al. The effect of oxygen free radicals oncalcium permeability and calcium loading at steady state in cardiacsarcoplasmic reticulum. Mol Pharmacol,1988,34:388~394
    40Zhang J, Cao H, Zhang Y, et al. Nephroprotective effect of calcium channelblockers against toxicity of lead exposure in mice. Toxicol Lett,2013,218:273~280
    1杨志霞,林谦,马利.丹参对心血管疾病药理作用的文献研究.世界中西医结合杂志,2012,7(2):93~96
    2国家中医药管理局《中华草本》编委会.中华草本精先本[M].上海科学技术出版社,1998,1653~1669
    3俞善昌.氧自由基与清除剂.实用儿科杂志,1998,8(2):77~79
    4Huang WM, Yan H, Jin JM, et al. Beneficial effects of berberine onhemodynamics during acute ischemic left ventricular failure in dogs. ChinMed J (Engl),1992,105(12):1014~1019
    5范慧霞.中药丹参药理作用研究概况.新疆中医药,2007,27(5):113~116
    6Zhang JP, Zhang YY, Zhang Y, et al. Salvia miltiorrhiza (Danshen)injection ameliorates iron overload-induced cardiac damage in mice.Planta Med,2013,79:744~752
    7韩畅,王孝铭,张国义.丹参对心肌缺血和再灌注的保护作用.中国病理生理杂志,1991,7(4):337~339
    8冯愉态.丹参治疗心血管疾病作用研究进展.医学信息,2001,14(11):778~780
    9Fu J,Huang H,Liu J,et al.TanshinoneⅡA protects cardiac myocytesagainst oxidative stress-triggered damage and apoptosis. Eur J Pharmacol,2007,568(1-3):213~221
    10陶军,王舟琪.丹参酮防治心肌再灌注损伤的实验研究.中国麻醉学杂志,1996,16(5):202~204
    11陈海明,叶攀.丹参酮IIA对心血管内皮细胞氧化应激损伤的保护作用.中药材,2008,31(4):569~572
    12贾娜,项海芝,杨松松.丹参水溶性部分丹酚酸的进展述评.辽宁中医学院学报,2006,8(3):41~42
    13张力,王孝铭,梁殿权等.丹参素对大鼠心肌缺血/再灌注致线粒体变化的影响及其作用机理的探讨.中国病理生理杂志,1990,6(6):420~421
    14常英姿,梁殿权,王孝铭.丹参素对大鼠心肌线粒体氧自由基损伤的保护作用-膜流动性、LPO的变化.中国病理生理杂志,1991,7(3):240~242
    15孙可青,徐长庆,王新一等.丹参素的抗心律失常作用及其电生理机制的研究.中国中医药科技,2000,7(3):171~172
    16张安民,张青元.钙稳态与钙超载.中华医学研究杂志,2009,9(3):335~337
    17曾娅莉.细胞凋亡时线粒体钙离子信号调节因素研究进展.国际检验医学杂志,2006,27(6):543~545
    18Sonnenblick EH, Ross J, Covell JW, et al. Velocity of contraction as adeterminant of myocardial oxygen consumption. Am J Physiol,1965,209:919~927.
    19Crystal GJ, Silver JM, Salem MR. Mechanisms of increased right and leftventricular oxygen uptake during inotropic stimulation. Life Sci,2013,93:59~63
    20王腾,李庚山.丹参注射液对离体家兔浦肯野纤维钙通道的抑制作用.湖北医科大学学报,1996,17(2):134~136
    21陶月玉,严玉兰.丹参对急性缺血后再灌注心肌磷脂肌醇系统变化的影响.中国病理生理杂志,1997,13(3):267~269
    22钱卫民,邓春玉,薛玉梅等.丹参素对豚鼠心室肌细胞L型钙通道的影响.岭南心血管病杂志,2002,8(4):276~278
    23张洁,曾晓荣,杨艳等.丹参酮ⅡA磺酸钠和丹参素对猪冠状动脉平滑肌细胞钙激活钾通道的激活机制.中国药理学与毒理学杂志,2005,19(4):270~273
    24桂冠华,张均田.丹参水溶性有效成分丹酚酸研究进展.基础医学与临床,2000,20(5):10~14
    25王世军,李定格,史仁华等.丹参注射液对正常状态及实验性微循环障碍小鼠脑微循环的影响.中国微循环,2000,4(4):213~214
    26金顺姬.丹参对心血管系统作用的研究.现代医药卫生,2008,24(9):1376~1378
    27程彰华,楼亚平,戴华娟等.丹参素对微循环障碍和血浆乳酸含量影响的实验研究.上海医科大学学报,1987,14(1):25~27
    28劳杰,顾玉东.中药对血管内皮细胞缺血缺氧损伤保护作用的实验研究.中华手外科杂志,1993,9(1):39~40
    29顾杨洪,张彩英.丹参和丹参素对牛内皮细胞抗凝和纤溶功能的影响.上海第二医科大学学报,1990,10(3):208~210
    30许冬青,张旭,蔡文峰等.丹参药物血清保护血管内皮细胞分子机制研究.中成药,2005,27(2):230~233.
    31王新星,游杰美.丹参酮IIA对低密度脂蛋白引起牛血管内皮细胞损伤的影响.中药药理学与毒理学杂志,1993,7(2):157~159
    32肖闲,徐军.复方丹参滴丸对老年冠心病患者影响的临床分析.时珍国医国药,2012,23(8):2087~2088
    33王受益,戴瑞鸿,范维琥.丹参注射液对急性心肌梗塞患者预后的影响.中医杂志,1994,35(1):29~30
    34梁甜娇,范小玑.丹参注射液治疗冠心病心绞痛的效果观察.中国现代药物应用,2013,7(22):149~150
    35林小端.中药复方丹参滴丸对急性心梗后早期心室重构的临床研究.世界中医药,2011,6(2):111~112
    36伍寒松,谭小进.中药复方丹参滴丸对急性冠脉综合征患者血小板聚集与活化的影响.现代中西医结合杂志,2011,20(9):1093~1094
    37张琳,王小彬.复方丹参滴丸治疗冠心病心律失常患者的可行性分析,中外医疗,2013,11:120~121
    38肖业伟,何光凤,刘紫全等.丹参注射液对兔室性心律失常心外膜单相动作电位的影响.时珍国医国药,2009,20(10):2512~2513
    39唐昱,盛国太,葛郁芝等.丹参酮ⅡA对豚鼠肥厚心肌延迟整流钾通道的影响.中国病理生理杂志,2012,28(2):234~238
    40王德序.丹参对高血压心室重构患者的影响研究.实用心脑肺血管病杂志,2012,20(5):853~854
    41杜立建,吴俊喜.心室重构的中医单味药治疗研究发展.现代中西医结合杂志,2007,16(2):282~283
    42孙联平,熊玮,郑智.丹参对自发性高血压大鼠左室肥厚及心肌Ⅰ型和Ⅲ型胶原的影响.中华新医学,2003,4(5):481~483
    43鲁巍峰,夏强,张雄.丹参注射液加强缺血预处理对大鼠心肌的保护作用.中草药,1998,29(7):460~463
    44卢卫忠,贺小强,吴清等.缺血预处理和丹参对肢体缺血再灌注损伤影响的临床观察.适用医学杂志,2002,18(10):1032~1034
    45王蓉,曾晓荣,王贞等.丹参酮ⅡA磺酸钠对家兔缺血预处理心肌保护作用的影响.中国微循环,2004,8(5):558~562
    1Mascitelli L, Pezzetta F, Goldstein MR. Body iron stores and genderdifferences in risk factors for coronary heart disease. Maturitas,2010,66:107~112
    2Andrews NC. Disorders of iron metabolism. N Engl J Med1999,341:1986~1995
    3Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: Molecularcontrol of mammalian iron metabolism. Cell,2004,117:285~297
    4付丽娟,段相林,钱忠明等.铁代谢与铁调素.生理科学进展,2005,36(5):233~236
    5Yu P, Duan XL, Qian ZM, et al. Stimulator of Fe transport and brain ironmebolism. Chinese J. of clinical rehabilitation,2005,9(9):254~256
    6黄世博,何明.继发性铁超载对机体的影响.实用临床医学,2011,12(3):132~134
    7王莉,段相林,王英泽等.铁紊乱相关疾病的研究进展.生理科学进展,2007,38(4)307~312
    8郭佩,赵述强,樊玉梅等.铁过载与糖尿病关系的研究进展.解剖科学进展,2009,15(2):243~249
    9Templeton DM, Liu Y. Genetic regulation of cell function in response toiron overload or chelation. Biochim Biophys Acta,2003,1619:113~124
    10Lee DH, Jacobs DR, Jr. Serum markers of stored body iron are notappropriate markers of health effects of iron: A focus on serum ferritin.Med Hypotheses,2004,62:442~445
    11Liu P, Olivieri N. Iron overload cardiomyopathies: New insights into anold disease. Cardiovasc Drugs Ther,1994,8:101~110
    12Pinto JP, Arezes J, Dias V, et al. Physiological implications of ntbi uptakeby t lymphocytes. Front Pharm,2014,5:24~27
    13Teixeira Neto PF, Goncalves RP, Elias DB, et al. Analysis of oxidativestatus and biochemical parameters in adult patients with sickle cellanemia treated with hydroxyurea, ceara, brazil. Rev Bras HematolHemoter,33:207~210
    14Vernon DD, Banner W, Dean JM. Hemodynamic effects of experimentaliron poisoning. Ann Emerg Med,1989,18:863~866
    15Chakraborty PK, Hoque MR, Paul UK. Body iron status among acutemyocardial infarction patients. Mymensingh Med J,2013,22:460~464
    16Oudit GY, Trivieri MG, Khaper N, et al. Taurine supplementation reducesoxidative stress and improves cardiovascular function in an iron-overloadmurine model. Circulation,2004,109:1877~1885
    17Anderson LJ, Westwood MA, Prescott E, et al. Development ofthalassaemic iron overload cardiomyopathy despite low liver iron levelsand meticulous compliance to desferrioxamine. Acta Haematol,2006,115:106~108
    18Seznec H, Simon D, Monassier L, Criqui-Filipe P, et al. Idebenone delaysthe onset of cardiac functional alteration without correction of fe-senzymes deficit in a mouse model for friedreich ataxia. Hum Mol Genet,2004,13:1017~1024
    19Hempenius LM, Van Dam PS, Marx JJ, et al. Mineralocorticoid statusand endocrine dysfunction in severe hemochromatosis. J EndocrinolInvest1999,22:369~376
    20Li CK, Luk CW, Ling SC, et al. Morbidity and mortality patterns ofthalassaemia major patients in hong kong: Retrospective study. HongKong Med J,2002,8:255~260
    21Mahachoklertwattana P, Sirikulchayanonta V, Chuansumrit A, et al. Bonehistomorphometry in children and adolescents with beta-thalassemiadisease: Iron-associated focal osteomalacia. J Clin Endocrinol Metab,2003,88:3966-3972
    22Matsushima S, Torii M, Ozaki K. Iron lactate-induced osteomalacia inassociation with osteoblast dynamics. Toxicol Pathol,2003,31:646~654
    23Turoczi T, Jun L, Cordis G, et al. Hfe mutation and dietary iron contentinteract to increase ischemia/reperfusion injury of the heart in mice. CircRes,2003,92:1240~1246
    24Ramakrishna G, Rooke TW, Cooper LT. Iron and peripheral arterialdisease: Revisiting the iron hypothesis in a different light. Vasc Med,2003,8:203~210
    25Kaur D, Yantiri F, Rajagopalan S, et al. Genetic or pharmacological ironchelation prevents mptp-induced neurotoxicity in vivo: A novel therapyfor parkinson's disease. Neuron,2003,37:899~909
    26Todorich BM, Connor JR. Redox metals in alzheimer's disease. Ann N YAcad Sci,2004,1012:171~178
    27Napier I, Ponka P, Richardson DR. Iron trafficking in the mitochondrion:Novel pathways revealed by disease. Blood2005,105:1867~1874
    28Weatherall DJ, Clegg JB. Thalassemia-a global public health problem.Nat Med,1996,2:847~849
    29Bulaj ZJ, Ajioka RS, Phillips JD, et al. Disease-related conditions inrelatives of patients with hemochromatosis. N Engl J Med,2000,343:1529~1535
    30Rochette J, Pointon JJ, Fisher CA, et al. Multicentric origin ofhemochromatosis gene (hfe) mutations. Am J Hum Genet,1999,64:1056~1062
    31Papanikolaou G, Samuels ME, Ludwig EH, et al. Mutations in hfe2causeiron overload in chromosome1q-linked juvenile hemochromatosis. NatGenet,2004,36:77~82
    32Roetto A, Daraio F, Alberti F, et al. Hemochromatosis due to mutations intransferrin receptor2. Blood Cells Mol Dis,2002,29:465~470
    33Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular ironefflux by binding to ferroportin and inducing its internalization. Science,2004,306:2090~2093
    34Gordeuk VR. African iron overload. Semin Hematol2002,39:263~269
    35Chen FE, Ooi C, Ha SY, et al. Genetic and clinical features ofhemoglobin h disease in chinese patients. N Engl J Med,2000,343:544~550
    36Olivieri NF. The beta-thalassemias. N Engl J Med,1999,341:99~109
    37Olivieri NF. Progression of iron overload in sickle cell disease. SeminHematol,2001,38:57~62
    38Quinn CT, Rogers ZR, Buchanan GR. Survival of children with sicklecell disease. Blood,2004,103:4023~4027
    39Engle JP, Polin KS, Stile IL. Acute iron intoxication: Treatmentcontroversies. Drug Intell Clin Pharm,1987,21:153~159
    40Tenenbein M, Kopelow ML, deSa DJ. Myocardial failure and shock iniron poisoning. Hum Toxicol,1988,7:281~284
    41Fine JS. Iron poisoning. Curr Probl Pediatr2000,30:71~90
    42Brittenham GM, Griffith PM, Nienhuis AW, et al. Efficacy ofdeferoxamine in preventing complications of iron overload in patientswith thalassemia major. N Engl J Med,1994,331:567~573
    43Zurlo MG, De Stefano P, Borgna-Pignatti C, et al. Survival and causes ofdeath in thalassaemia major. Lancet,1989,2:27~30
    44Niederau C, Fischer R, Purschel A, et al. Long-term survival in patientswith hereditary hemochromatosis. Gastroenterology,1996,110:1107~1119
    45Cecchetti G, Binda A, Piperno A, et al. Cardiac alterations in36consecutive patients with idiopathic haemochromatosis: Polygraphic andechocardiographic evaluation. Eur Heart J,1991,12:224~230
    46Palka P, Macdonald G, Lange A, et al. The role of doppler left ventricularfilling indexes and doppler tissue echocardiography in the assessment ofcardiac involvement in hereditary hemochromatosis. J Am SocEchocardiogr,2002,15:884~890
    47Modell B, Khan M, Darlison M. Survival in beta-thalassaemia major inthe uk: Data from the uk thalassaemia register. Lancet,2000,355:2051~2052
    48Veglio F, Melchio R, Rabbia F, et al. Blood pressure and heart rate inyoung thalassemia major patients. Am J Hypertens,1998,11:539~547
    49Kremastinos DT, Tsiapras DP, Tsetsos GA, et al. Left ventricular diastolicdoppler characteristics in beta-thalassemia major. Circulation1993,88:1127~1135
    50Buja LM, Roberts WC. Iron in the heart. Etiology and clinicalsignificance. Am J Med,1971,51:209~221
    51Rosenqvist M, Hultcrantz R. Prevalence of a haemochromatosis amongmen with clinically significant bradyarrhythmias. Eur Heart J1989,10:473~478
    52Laurita KR, Chuck ET, Yang T, et al. Optical mapping reveals conductionslowing and impulse block in iron-overload cardiomyopathy. J Lab ClinMed,2003,142:83~89
    53Eaton JW, Qian M. Molecular bases of cellular iron toxicity. Free RadicBiol Med,2002,32:833~840
    54Kadiiska MB, Burkitt MJ, Xiang QH, et al. Iron supplementationgenerates hydroxyl radical in vivo. An esrspin-trapping investigation. JClin Invest,1995,96:1653~1657
    55Young IS, Trouton TG, Torney JJ, et al. Antioxidant status and lipidperoxidation in hereditary haemochromatosis. Free Radic Biol Med,1994,16:393~397
    56Livrea MA, Tesoriere L, Pintaudi AM, et al. Oxidative stress andantioxidant status in beta-thalassemia major: Iron overload and depletionof lipid-soluble antioxidants. Blood,1996,88:3608~3614
    57Lim PS, Chan EC, Lu TC, et al. Lipophilic antioxidants and iron status inesrd patients on hemodialysis. Nephron,2000,86:428~435
    58Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of4-hydroxynonenal, malonaldehyde and related aldehydes. Free RadicBiol Med,1991,11:81~128
    59Lee SH, Oe T, Blair IA. Vitamin c-induced decomposition of lipidhydroperoxides to endogenous genotoxins. Science,2001,292:2083~2086
    60Valenti L, Conte D, Piperno A, et al. The mitochondrial superoxidedismutase a16v polymorphism in the cardiomyopathy associated withhereditary haemochromatosis. J Med Genet,2004,41:946~950
    61Kremastinos DT, Tiniakos G, Theodorakis GN, et al. Myocarditis inbeta-thalassemia major. A cause of heart failure. Circulation1995,91:66~71
    62Kremastinos DT, Flevari P, Spyropoulou M, et al. Association of heartfailure in homozygous beta-thalassemia with the major histocompatibilitycomplex. Circulation,1999,100:2074~2078
    63Gao X, Qian M, Campian JL, et al. Mitochondrial dysfunction mayexplain the cardiomyopathy of chronic iron overload. Free Radic BiolMed,49:401~407
    64Gao X, Qian M, Campian JL, et al. Mitochondrial dysfunction mayexplain the cardiomyopathy of chronic iron overload. Free Radic BiolMed,2010,49:401~407
    65Catterall WA. Structure and regulation of voltage-gated ca2+channels.Annu Rev Cell Dev Biol,2000,16:521~555
    66Bers DM: Cardiac excitation-contraction coupling. Nature,2002,415:198~205
    67Shirotani K, Katsura M, Higo A, et al. Suppression of ca2+influx throughl-type voltage-dependent calcium channels by hydroxyl radical in mousecerebral cortical neurons. Brain Res Mol Brain Res,2001,92:12~18
    68Schwartz KA, Li Z, Schwartz DE, et al. Earliest cardiac toxicity inducedby iron overload selectively inhibits electrical conduction. J Appl Physiol,(1985)2002,93:746~751
    69Barrington PL, Martin RL, Zhang K. Slowly inactivating sodium currentsare reduced by exposure to oxidative stress. J Mol Cell Cardiol,1997,29:3251~3265
    70Lemogoum D, Van Bortel L, Najem B, et al. Arterial stiffness and wavereflections in patients with sickle cell disease. Hypertension,2004,44:924~929
    71Kohgo Y, Ikuta K, Ohtake T, et al. Body iron metabolism andpathophysiology of iron overload. Int J Hematol,2008,88:7~15
    72Liu Y, Parkes JG, Templeton DM. Differential accumulation ofnon-transferrin-bound iron by cardiac myocytes and fibroblasts. J MolCell Cardiol,2003,35:505~514
    73Ke Y, Chen YY, Chang YZ, et al. Post-transcriptional expression of dmt1in the heart of rat. J Cell Physiol,2003,196:124~130
    74Hess P, Lansman JB, Tsien RW. Calcium channel selectivity for divalentand monovalent cations. Voltage and concentration dependence of singlechannel current in ventricular heart cells. J Gen Physiol,1986,88:293~319
    75Tsushima RG, Wickenden AD, Bouchard RA, et al. Modulation of ironuptake in heart by l-type ca2+channel modifiers: Possible implications iniron overload. Circ Res,1999,84:1302~1309
    76Oudit GY, Sun H, Trivieri MG, et al. L-type Ca2+channels provide amajor pathway for iron entry into cardiomyocytes in iron-overloadcardiomyopathy. Nat Med,2003,9:1187~1194
    77Randell EW, Parkes JG, Olivieri NF, et al. Uptake ofnon-transferrin-bound iron by both reductive and nonreductive processesis modulated by intracellular iron. J Biol Chem,1994,269:16046~16053
    78Flynn JT, Pasko DA. Calcium channel blockers: Pharmacology and placein therapy of pediatric hypertension. Pediatr Nephrol,2000,15:302~316
    79Pepine CJ, Handberg EM, Cooper-DeHoff RM, et al. A calciumantagonist vs a non-calcium antagonist hypertension treatment strategyfor patients with coronary artery disease. The internationalverapamil-trandolapril study (invest): A randomized controlled trial.JAMA,2003,290:2805~2816
    80Julius S, Kjeldsen SE, Weber M, et al. Outcomes in hypertensive patientsat high cardiovascular risk treated with regimens based on valsartan oramlodipine: The value randomised trial. Lancet,2004,363:2022~2031
    81Elliott HL, Elawad M, Wilkinson R, et al. Persistence of antihypertensiveefficacy after missed doses: Comparison of amlodipine and nifedipinegastrointestinal therapeutic system. J Hypertens,2002,20:333~338
    82Gujja P, Rosing DR, Tripodi DJ, et al. Iron overload cardiomyopathy:Better understanding of an increasing disorder. J Am Coll Cardiol,2010,56:1001~1012
    83Fernandes JL, Sampaio EF, Fertrin K, et al. Amlodipine reduces cardiaciron overload in patients with thalassemia major: a pilot trial. AM J ofMed,2013,126:834~837

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700