用户名: 密码: 验证码:
缺糖缺氧/复糖复氧对神经细胞损伤及丹酚酸B干预作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缺血性脑血管病具有高发病率、高死亡率和高致残率的特点,造成了严重的社会问题和经济负担。因此,深入认识其发病机制,寻找新的治疗靶点是目前亟待解决的问题。
     缺血性脑血管病的直接原因是脑血流减少,导致氧和能量供应中断,细胞死亡。治疗后脑血流恢复,但往往出现神经系统损伤加重的情况,即缺血再灌注损伤。中医理论认为中风病(这里主要指缺血性脑血管病)的病因与风、火、痰、瘀等毒邪损伤脑络有关。传统中药丹参具有活血化瘀的功效,已广泛应用于缺血性脑血管病的临床治疗。丹酚酸B(Salvianolic acid B)是从传统中药丹参中提取的水溶性有效成分,由3分子丹参素和1分子咖啡酸缩合而成的酚酸类化合物,具有很强的抗氧化、清除自由基作用,但其在脑缺血再灌注损伤过程中的作用机制还不完全清楚。
     本论文以中医中风病理论为指导,在我们实验室已证明丹酚酸B对小鼠脑缺血性损伤具有治疗作用的基础上,采用原代培养大鼠皮层神经细胞,建立缺糖缺氧/复糖复氧的细胞模型,从兴奋性毒性、钙超载、氧化应激、细胞凋亡的角度研究神经细胞损伤及丹酚酸B干预作用的机制。
     论文的实验研究包括四个部分:
     一、缺糖缺氧模型的建立及丹酚酸B有效剂量的确定
     目的:建立稳定可靠的缺糖缺氧模型,并确定丹酚酸B的有效剂量。
     方法:体外培养大鼠大脑皮层神经细胞,复制神经细胞缺糖缺氧2h、3h、4h、5h的细胞模型,测氧仪测量培养液中溶解氧浓度,采用MTT法检测细胞活性和存活率。
     结果:体外培养的神经细胞状态稳定,经免疫组化神经元特异性烯醇化酶(NSE)鉴定阳性细胞比例达70~80%,神经细胞Nissl's染色显示Nissl's小体丰富。随缺糖缺氧时间延长,培养液中溶解氧浓度逐渐降低,神经细胞活性、存活率也随之下降,各时间点与正常组比较均有显著性差异(P<0.01)。选择对细胞损伤较重的缺糖缺氧4 h作为模型时间。神经细胞缺氧缺糖4 h后活性明显下降,与正常组比较有显著性差异(P<0.01)。丹酚酸B治疗组包括10μg/L,100μg/L,1mg/L,5 mg/L,7.5 mg/L,10 mg/L,25 mg/L和50 mg/L共8个不同剂量,其中10、25、50 mg/L 3个剂量的丹酚酸B明显增强神经细胞活性,且存在量效关系,与缺糖缺氧4 h组相比差异明显(P<0.01)。将10、25、50 mg/L3个剂量的丹酚酸B加入正常神经细胞,其活性与正常组之间没有显著性差异。选择终浓度10 mg/L作为以下实验丹酚酸B的用药剂量。
     二、缺糖缺氧对神经细胞损伤及丹酚酸B干预作用机制的研究
     目的:探讨缺糖缺氧对神经细胞损伤及丹酚酸B干预作用的机制。
     方法:将培养的神经细胞随机分为正常组、缺糖缺氧4 h组和丹酚酸B治疗组。复制缺糖缺氧4 h的病理模型,MTT法观察神经细胞活性和存活率,比色法检测LDH漏出率和培养液中谷氨酸含量,流式细胞术测定神经细胞线粒体膜电位(MMP)、胞浆内Ca~(2+),倒置相差显微镜、HE染色及透射电镜观察神经细胞形态和超微结构的变化。
     结果:神经细胞缺糖缺氧4 h后活性、存活率、MMP荧光值明显降低,LDH漏出率、培养液中谷氨酸含量及胞浆内Ca~(2+)荧光强度显著升高,与正常组比较有显著性差异(P<0.01)。丹酚酸B治疗组神经细胞活性、存活率、MMP荧光值均增高,LDH漏出率、培养液中谷氨酸含量、胞浆内Ca~(2+)荧光强度下降,与缺糖缺氧4 h组比较有显著性差异(P<0.05~0.01)。正常组神经细胞胞体呈锥体形,细胞器丰富:缺糖缺氧4 h组大部分神经细胞肿胀,细胞器数目有所减少,可见线粒体肿胀明显;丹酚酸B治疗组神经细胞轻度肿胀,细胞器结构尚完整。
     三、复糖复氧对神经细胞损伤及丹酚酸B干预作用机制的研究
     目的:研究复糖复氧对神经细胞的氧化损伤,并在体外模型中证实丹酚酸B的干预作用与其抗氧化能力有关。
     方法:神经细胞随机分为正常组、复糖复氧组和丹酚酸B治疗组。MTT法检测缺糖缺氧3h/复糖复氧1h、3h、6h、12h、18h、24h共6个时间点神经细胞活性、存活率。缺糖缺氧3h/复糖复氧3h、24h分别代表再灌注早期、晚期,并采用比色法观察神经细胞LDH漏出率,荧光标记和自旋捕集技术检测细胞内ROS水平,比色法测定神经细胞内Mn-SOD、CAT和GSH-PX的活性。倒置相差显微镜观察神经细胞形态变化。
     结果:缺糖缺氧3h后复糖复氧1h、3h、6h、12h、18h、24h,神经细胞活性、存活率均较正常组降低(P<0.05~0.01);除复糖复氧1h、12h外,其他时间点丹酚酸B治疗组神经细胞活性、存活率均高于复糖复氧组(P<0.05)。神经细胞复糖复氧3h、24h后,LDH漏出率、细胞内ROS均明显高于正常组(P<0.05~0.01);而丹酚酸B治疗组神经细胞LDH漏出率、细胞内ROS则低于复糖复氧组(P<0.05~0.01)。复糖复氧3h、24h神经细胞内Mn-SOD、CAT、GSH-PX的活性均降低,与正常组比较差异明显(P<0.05~0.01),丹酚酸B治疗组神经细胞内抗氧化酶的活性明显高于复糖复氧3h、24h组(P<0.05~0.01)。正常组神经细胞胞体饱满,突起粗大伸展;复糖复氧3h后神经细胞形态发生改变,至24h神经细胞皱缩,部分细胞死亡;丹酚酸B治疗组神经细胞形态变化有所减轻。
     四、复糖复氧诱导神经细胞凋亡及丹酚酸B抗凋亡作用机制的研究
     目的:探讨复糖复氧诱导神经细胞凋亡及丹酚酸B抗凋亡作用的机制。
     方法:神经细胞随机分为正常组、复糖复氧24h组和丹酚酸B治疗组。复制缺糖缺氧3h/复糖复氧24h的细胞模型。激光扫描共聚焦显微镜测定胞浆内Ca~(2+)荧光强度,流式细胞仪检测MMP、细胞凋亡率,免疫组化法观察细胞内Bcl-2、Bax的表达水平,Western blot测定细胞色素C释放率,Hoechst 33342染色观察细胞核形态变化,透射电镜观察神经细胞超微结构。
     结果:缺糖缺氧3h/复糖复氧24h引起胞浆内Ca~(2+)荧光强度明显增高,MMP荧光值降低,神经细胞凋亡率明显增高,与正常组相比有显著性差异(P<0.01)。丹酚酸B治疗组胞浆内Ca~(2+)荧光强度降低,MMP荧光值增强,凋亡率下降,与复糖复氧24h组相比亦有显著性差异(P<0.01)。神经细胞复糖复氧24h,Bcl-2表达减弱,Bax表达升高,与正常组相比有显著性差异(P<0.01)。丹酚酸B治疗组Bcl-2表达增加,Bax表达降低,与复糖复氧24h组比较差异明显(P<0.05)。正常组胞浆内细胞色素C含量很低,主要集中于线粒体,复糖复氧24 h后胞浆内细胞色素C含量明显升高,其灰度值与正常组相比有显著性差异(P<0.01),丹酚酸B治疗组胞浆内细胞色素C含量低于复糖复氧24 h组(P<0.05)。复糖复氧24 h组细胞色素C释放率明显高于正常组(P<0.01),丹酚酸B治疗组细胞色素C释放率明显降低,两组相比差异明显(P<0.05)。正常神经细胞经Hoechst33342荧光染色,核呈均匀的蓝色荧光;复糖复氧24 h组则有较多细胞核呈凝聚固缩,荧光明显增强,并有核碎裂;丹酚酸B治疗组细胞核大部分呈淡蓝色或蓝色荧光,接近正常组,仅见个别细胞核浓染呈明亮蓝色荧光。透射电镜观察复糖复氧24 h组神经细胞核染色质凝聚,细胞膜完整,符合凋亡的形态改变;丹酚酸B治疗组神经细胞超微结构变化较复糖复氧24 h组有所减轻。
     结论:
     本研究建立了稳定可靠的神经细胞原代培养体系,复制的细胞模型可以实现体外神经细胞缺糖缺氧损伤。缺糖缺氧4 h引起神经细胞培养液中谷氨酸含量增加、细胞内Ca~(2+)超载、MMP下降。丹酚酸B通过减少培养液中的谷氨酸含量,抑制神经细胞内Ca~(2+)超载,稳定MMP,从而对缺糖缺氧神经细胞起到保护作用。缺糖缺氧3 h/复糖复氧3 h、24 h对神经细胞的损伤与氧化应激有关,丹酚酸B可以清除细胞内ROS,提高抗氧化酶Mn-SOD、CAT、GSH-PX的活性,从而对复糖复氧神经细胞起到保护作用。缺糖缺氧3h/复糖复氧24 h可诱导神经细胞发生凋亡,丹酚酸B通过保护线粒体功能,提高Bcl-2的表达,降低Bax的表达,减少促凋亡物质的释放,起到抗凋亡作用。
     综上所述,神经细胞缺糖缺氧损伤的机制与兴奋性毒性、细胞内Ca~(2+)超载有关,而复糖复氧损伤的机制则涉及到氧化应激、线粒体途径的细胞凋亡。丹酚酸B通过减轻兴奋性毒作用,抑制神经细胞内Ca~(2+)超载保护缺糖缺氧的神经细胞,通过改善细胞的氧化-还原状态,保护线粒体功能,拮抗凋亡,对复糖复氧神经细胞起到保护作用。
Ischemic cerebrovascular disease has the characteristics of high incidence,high mortality and high deformity.It has caused serious social problems and economic burden.Therefore,to deeply understand its pathogenesis and find a new target is the key issue to be solved.
     The immediate cause of ischemic cerebrovascular disease is a decrease in the cerebral blood flow,inducing the interruption of oxygen and energy as well as cell death.Cerebral blood flow restores after treatment,however,nervous system damages more seriously,which is called ischemia-reperfusion injury.In Chinese medicine theories,the etiological factors of stroke(here mainly refers to ischemic cerebrovascular disease) is related to the toxin hurts brain collaterals,the toxin is including wind,fire,sputum and stasis.The Chinese traditional herb- Salvia miltiorrhiza has the effects of activating blood circulation and dissipate blood stasis.It has been widely used in clinical treatment of ischemic cerebrovascular disease. Salvianolic acid B(Sal B) is a water-soluble active component extracted from Salvia miltiorrhiza.It is a phenolic acid compound,which is condensated by three molecules tanshinol and one molecule caffeic acid.Sal B exhibits higher antioxidant and radical scavenging activities.Nevertheless,the mechanisms Of its intervening effect during the cerebral ischemia and reperfusion have not yet been explained very clearly.
     The effects of Sal B on the cerebral ischemic mice have been proved in our laboratory. Under the instruction of Chinese medicine theories and our findings,in the present thesis,we established the oxygen-glucose deprivation/reintroduction model of primary neuron cultures. Then,the mechanisms of neuron injuries and the interventional effects of Sal B were systematically investigated in terms of excitotocitity,calcium overload,oxidant stress and neuron apoptosis.
     Therefore,the research work is divided into four parts:
     1、The establishment of the oxygen-glucose deprivation(OGD) model and the determination of effective dose of Sal B.
     Objective:To establish a stable and reliable OGD model;to determine the effective dose of Sal B.
     Methods:Primary cortical neuron cultures were preformed by using neonate rats.The neurons which grew for 8~10 d in vitro were treated by OGD for 2 h、3 h、4 h、5 h and the dissolved oxygen concentrations in the cultures media were measured by an oxygen measuring tester.The neurons vitality and survival rate were determined by MTT assay.
     Results:The primary cultures were in good conditions.The percentage of NSE-positive neurons reached 70~80%,Nissl's staining showed the Nissl's bodies were abundant in the neurons.The dissolved oxygen concentrations decreased as the time of OGD prolonged,the neurons vitality and survival rate also reduced.There was significant difference between the control group and the model group at various time points(P<0.01).Since the cell damages were moreserious at OGD 4 h,we selected it as the duration of OGD in further experiments. After OGD 4 h,the neurons vitality declined(P<0.01);the Sal B treatment group included eight different doses:10μg/L,100μg/L,1mg/L,5 mg/L,7.5 mg/L,10 mg/L,25 mg/L and 50 mg/L.The neurons vitality in the Sal B treatment group of 10 mg/L,25 mg/L and 50 mg/ L increased obviously compared with that in the OGD 4 h group(P<0.01).There was a relationship between the dose of Sal B and the neurons vitality.In addition,normal neurons were treated by adding 10 mg/L,25 mg/L and 50 mg/L Sal B,respectively.Their vitalities had no significant difference,as compared with the control group.The final concentration of 10 mg/L was determined as the dosage of Sal B in the following experiments.
     2、The study of OGD induced neurons injury and the interventional mechanisms of Sal B.
     Objective:To study OGD induced neurons injury and the interventional mechanisms of Sal B.
     Methods:Primary cultured rat cortical neurons were randomly divided into the control group,the OGD 4 h group and the Sal B treatment group.The cell model was established by depriving of oxygen and glucose for 4 h.The cortical neurons vitality and survival rate were determined by MTT assay.The leakage rate of lactate dehydrogenase(LDH) and the content of glutamate in neuron medium were measured by chromatometry.The mitochondria membrane potential(MMP),the cytosolic free calcium concentration were quantitatively analyzed by flow cytometry.The neuronal morphous and ultrastructure were observed with an inverted phase contrast microscope,HE staining and a transmission electron microscope (TEM),respectively.
     Results:After OGD 4 h,the cortical neurons vitality,the survival rate and the fluorescence intensity of MMP reduced,the leakage rate of LDH,the content of glutamate in neuron medium and the cytosolic free calcium increased.There was significant difference between the OGD 4 h group and the control group(P<0.01).In the Sal B treatment group the cortical neurons vitality,the survival rate and the fluorescence value of MMP were obviously higher than those in the OGD 4 h group,the cytosolic free calcium and the content of glutamate in the medium were significantly lower than those in the OGD 4 h group.Obvious difference was observed between the two groups(P<0.05~0.01).In addition,the shapes of normal neuronal bodies were pyramidal,cell organs were abundant.In OGD 4 h group,most of the neuronal bodies and mitochondria were markedly swollen,the amount of cell organs decreased.The neuronal bodies of Sal B treatment group were swollen slightly,ultrastructure was still complete.
     3、The study of OGD-reintroduction(OGD-R) induced neurons injury and the interventional mechanisms of Sal B.
     Objective:To investigate OGD-R induced neurons oxidative injury and to confirm the interventional mechanisms of Sal B related to its antioxidation in vitro.
     Methods:Primary neuron cultures were randomly divided into the control group,the OGD-R group and the Sal B treatment group.The cell model was established by depriving of oxygen and glucose for 3 h and reintroducing for 1 h,3 h,6 h,12 h,18 h and 24 h, respectively.The neurons vitality and survival rate were determined by MTT assay.Then,the OGD-R 3 h and OGD-R 24 h were selected as the two timepoints for the following experiments.The leakage rate of LDH was measured by chromatometry.The level of cellular ROS was detected by fluorescent labeling method and spin trapping technique.The activities of neuronal Mn-SOD,CAT and GSH-PX were assaied by chromatometry.The morphologies were observed with an inverted phase contrast microscope.
     Results:The neurons vitality and the survival rate in the OGD-R group were lower than those in the control group at six different timepoints(P<0.05~0.01).Except OGD-R 1 h and 12 h,the neurons vitality and the survival rate of Sal B treatment group were obviously higher than those in the OGD-R group(P<0.05).After OGD-R 3 h、24 h、the leakage rate of LDH, the level of cellular ROS increased obviously compared with the control group(P<0.05~0.01).In the Sal B treatment group the leakage rate of LDH,the level of cellular ROS were lower than those in the OGD-R group(P<0.05~0.01).The activities of neuronal Mn-SOD、CAT and GSH-PX reduced in the OGD-R group at the two timepoints,there was obvious difference between the control group and the OGD-R group(P<0.05~70.01).The activities of these antioxidases in the Sal B treatment group were higher than those in the OGD-R group (P<0.05~0.01).Moreover,neuronal appearance changed after OGD-R 3 h,neurons shrinked and part of neurons died at OGD-R 24 h.The morphology of neurons in the Sal B treatment group changed slightly.
     4、The study of OGD-R induced neurons apoptosis and the anti-apoptosis mechanisms of Sal B.
     Objective:To study OGD-R induced neurons apoptosis and the anti-apoptosis mechanisms of Sal B.
     Methods:Primary neuron cultures were randomly divided-into the control group,the OGD-R 24 h group and the Sal B treatment group.The cell model was established by depriving of oxygen and glucose for 3 h and reintroducing for 24 h.The cytosolic free calcium was assessed using laser scanning confocal microscopy(LSCM).The MMP and the apoptosis rate were quantitatively analyzed by flow cytometry.The expression of Bcl-2、Bax were observed by immunohistochemical method.The release rate of Cytochrome C was detected by western blot.The morphology of neuronal nuclei was observed by Hoechst 33342 fluorescence staining.The neuronal ultrastructure was observed by TEM.
     Results:The fluorescence intensity of cytosolic free calcium and the apoptosis rate in the OGD-R 24 h group were higher than those in the control group,the fluorescence value of MMP in the OGD-R 24 h group was lower than that in the control group.There was signiflcant difference between the two groups(P<0.01).Compared to the OGD-R 24 h group, the fluorescence intensity of cytosolic free calcium and the apoptosis rate in the Sal B treatment group were significantly decreased(P<0.01),the fluorescence value of MMP in the Sal B treatment group was obviously increased(P<0.01).The expression level of Bcl-2 decreased and the expression level of Bax increased in the OGD-R 24 h group,there was significant difference compared with the control group(P<0.01).In the Sal B treatment group,the level of Bcl-2 expression was higher and the level of Bax expression lower than those in the OGD-R 24 h group(P<0.05).The content of cytosolic Cytochrome C in the control group was very low,Cytochrome C existed in mitochondria mainly.In the OGD-R 24 h group the content of cytosolic Cytochrome C raised markedly compared with the control group(P<0.01),this index decreased in the Sal B treatment group,there was obvious difference between the two groups(P<0.05).In the OGD-R 24 h group the release rate of Cytochrome C was higher than that in the control group(P<0.01),in the Sal B treatment group the release rate was lower than that in the OGD-R 24 h group,there was obvious difference between the two groups(P<0.05).The nuclei showed adqulis blue fluorescence in the control group.Chromatin condensation,intensive blue fluorescence and nuclear fragmentation were observed in the OGD-R 24 h group.In the Sal B treatment group,most of the nuclei had light blue or blue fluorescence similar to the control group,only individual nuclei were stained densely and had bright blue fluorescence.In the OGD-R 24 h group, shrunken nuclei with condensed and marginated chromatin and the intact plasma membrane were observed by TEM,these showed the morphological changes of apoptosis.In the Sal B treatment group,the neuronal ultrastructures changed slighter,in comparison with these in OGD-R 24 h group.
     Conclusion:
     We successfully established a stable and reliable primary neuron cultures system. OGD-induced neuronal injury can be achieved by in vitro model.After OGD 4 h,the content of glutamate in neuron medium increased,cytosolic calcium overload and the fluorescence intensity of MMP reduced.The interventional mechanisms of Sal B in the OGD neurons would be due to the fact that Sal B can diminish the content of glutamate in neuron medium and inhibit calcium overload and maintain the MMP.OGD-R-induced neurons injury is concerned with oxidative stress,Sal B can protect neurons from OGD-R-induced injury through scavenging the cellular ROS and enhancing the activities of Mn-SOD、CAT、GSH-PX. Neurons apoptosis can be induced by OGD-R 24 h,Sal B can reduce neurons apoptosis through conserving the function of mitochondria,elevating the ratio of Bcl-2/Bax, diminishing the release of pro-apoptotic substance.
     To sum up,the pathogenesis of OGD is related to the excitotocitity,calcium overload, the pathogenesis of OGD-R is involved in oxidant stress and neuron apoptosis by the mitochondrial pathway.Sal B can protect the OGD neurons through relieve excitotocitity, inhibit cytosolic calcium overload,it also has neuroprotective effects on the OGD-R neurons by improving the cellular redox state,preserving mitochondria and resisting apoptosis.
引文
[1]杨志新.循证医学与中风临床疗效评价[J].中国临床医生杂志,2007,35(1): 6-9.
    [2]Benveniste H,Drejer J,Schousboe A,et al.Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis[J].J Neurochem,1984,43:1369-1374.
    [3]Goldberg MP,ChoiDW.Combined oxygen and glucose deprivation in cortical cell culture:Calcium-dependent and calcium-independent mechanisms of neuronal injury[J].Neuronscience,1993,13 (8):3510-3524.
    [4]Choi D W,Gedde M M,Kriegstein A R.Glutamate neurotoxicity in cortical cell culture[J].JNeurosci,1987,7 (2):357-368.
    [5]MaragakisNJ,Rothstein J D.Glutamate transporters:animal models to neurologic disease[J].NeurobiolDis,2004,15:461-473.
    [6]Rothstein J,Dykes-Hoberg M,Pardo C A.Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate[J].Neuron,1996,16:675-686.
    [7]Hdei Y T,Mareim H H,Jernams C J,etal.Glutamate transporter function of rat hippocampal astrocytes is impaired following the global ischemia[J].Neurobiol Dis,2005,18:323-328.
    [8]Namura S,Maeno H,Takami S,et al.Inhibition of glial glutamate transporter GLT-1 augments brain edema after transient focal cerebral ischemia in mice[JJ.Neurosci Lett,2002,324:117-120.
    [9]Izumi Y,Shimamoto K,Benz A M.Glutamate transporters and retinal excitotoxicity[J].Glia,2002,39:58-68.
    [10]Selkirk J V,Nottebaum L M,Vana A M.Role of the GLT-1 subtype of glutamate transporter in glutamate homeostasis:The GLT-1-preferring inhibitor WAY-855 produces marginal neurotoxicity in the rat hippocampus[J].Eur J Neurosci,2005,21:3217-3228.
    [11]Brustovetsky T,PurlK,Young A,etal.Dearth of glutamate transporters contributes to striatal excitotoxicity[J].Exp Neurol,2004,189:222-230.
    [12]LiptonP.Ischemic cell death in brain neurons[J].Physiol Rev,1999,79(4):1431-1568.
    [13]Attwell D,Barbour B,Szatkowski M.Nonvesicular release of neuron transmitter[J].Neuron,1993,11:401-407.
    [14]Longuemare M C,Swanson R A.Excitatory amino acid release from astrocytes during energy failure by reversal of sodium-dependent uptake[J].J Neurosci Res,1995,40:379-386.
    [15]Rao V,Dogan A,Todd K G,etal.Antisense knockdown of the glial glutamate transporter GLT-1,but not the neuronal glutamate transporter EAAC1,exacerbates transient focal cerebral ischemia-induced neuronal damage in rat brain[J].J Neurosci,2001,21:1876-1883.
    [16]Trotti D,Danbolt N C,Volterra A.Glutamate transporters are oxidant-vulnerable:A molecular link between oxidative and excitotoxic neurodegeneration[J].Trends Pharmacol Sci,1998,19:328-334..
    [17]Brongholi K,Souza D G,Bainy A C,et al.Oxygenglucose deprivation decreases glutathione levels and glutamate uptake in rat hippocampal slices[J].Brain Research,2006,1083:211-218.
    [18]Budd S L.Mechanisms of neuronal damage in brain hypoxia/ischemia:focus on the role of mitochondrial calcium accumulation[J].Pharmacol Therapeut,1998,80(2):203-229.
    [19]Wahl A S,Buchthal B,Rode F,et al.Hypoxic/ischemic conditions induce expression of the putative pro-death gene clcal via activation of extrasynaptic NMDA receptors[J].Neuroscience,2009,158(1):344-352.
    [20]A.郎斯塔夫著,韩济生主译.Neuroscience[M].北京:科学出版社,2006:442-445.
    [21]David J M,Sten O.The role of calcium in the regulation of apoptosis[J].J Leukocyte Biol,1996,59:775-783.
    [22]Luo J,Wang Y P,Chen X Z,et al.Increased tolerance to ischemic neuronal damage by knockdown of Na~+/Ca~(2+) exchanger isoform-1[J].Ann NY Acad Sci,2007,1099:292-305.
    [23]Lee J M,Zipfel G J,Choi D W.The changing landscape of ischaemic brain injury mechanisms[J].Nature,1999,399:A7-14.
    [24]Choi D W.Excitotoxicity,apoptosis,and ischemic stroke[J].J Biochem Mol Biol,2001,34(1):8-14.
    [25]Jia Y S,Jeng J M,Sensi S L,et al.Zn~(2+) currents are mediated by calcium-permeable AMPA/kainate channels in cultured murine hippocampal neurones[J].J Physiology,2002,543(1):35-48.
    [26]Lee J M,Zipfel G J,Park K H,et al.Zinc translocation accelerates infarction after mild transient focal ischemia[J].Neuroscience,2002,115(3):871-878.
    [27]Wei G,Hough C J,Li Y,et al.Characterization of extracellular accumulation of Zn~(2+)during ischemia and reperfusion of hippocampus slices in rat[J].Neuroscience,2004,125(4):867-877.
    [28]Yin H Z,Sensi S L,Ogoshi F,et al.Blockade of Ca~(2+)-permeable AMPA/kainate channels decreases oxygen-glucose deprivation-induced Zn~(2+) accumulation and neuronal loss in hippocampal pyramidal neurons[J].J Neurosci,2002,22(4):1273-1279.
    [29]Kim A H,Sheline C T,Tian M,et al.L-type Ca channel-mediated Zn toxicity and modulation by ZnT-l in PC12cells[J].Brain Research,2000,886:99-107.
    [30]Tsuda M,Imaizumi K,Katayama T,et al.Expression of zinc transporter gene,ZnT-l,is induced after transient forebrain ischemia in.the gerbil[J].J Neurosci,1997,17 (17):6678-6684.
    [31]Jensen P K.Antimycin-insensitive oxidation of succinate and reduced nicotinamide-adenine dinucleotide in electron-transport particles.I.pH dependency and hydrogen peroxide formation[J].Biochimica et Biophysica Acta,1966,122:157-166.
    [32]FleuryC,MignotteB,Vayssiere J L.Mitochondrial reactive oxygen species in cell deathsignaling[J].Biochimie,2002,84:131-141.
    [33]Tretter L,Adam-Vizi V.Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase[J].J Neurosci,2004,24:7771-7778.
    [34]Brookes S,Yoon Y,Robotham JL,etal.Calcium,ATP,andROS:a mitochondrial love-hate triangle[J].Am J Physiol Cell Ph,2004,287 (4):c817-c833.
    [35]IchasF,MazatJP.From calcium signaling to cell death:Two conformations for the mitochondrial permeability transition pore.Switching from low-to high-conductance state[J].Biochimica et Biophysica Acta,1998,1366 (1-2):33-50.
    [36]Jeffrey N K,Mark S K,Fredrick W H,et al.Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury:suppression of peroxynitrite production,lipid peroxidation,and mitochondrial dysfunction[J].J Neurosci,1998,18 (2):687-697.
    [37]Fujimura M,Morita F Y,Noshita N.The cytosolic antioxidant copper/zinc-superoxide dismutase prevents the early release of mitochondrial cytochrome c in ischemic brain after transient focal cerebral ischemia in mice[J].J Neurosci,2000,20 (8):2817-2824.
    [38]Gwag B J,Koh J Y,Demaro J A,et al.Lowly triggered excitotoxicity occurs by necrosis in cortical cultures[J].Neuroscience,1997,77:393-401.
    [39]Charriaut M C,Ben-Ari Y.A cautionary note on the use of the TUNEL stain to determine apoptosis[J].Neuroreport,1995,7:61-64.
    [40]Charriaut M C.Apoptosis and necrosis after reversible focal ischemia:an in situ DNA fragmentation analysis[J].J Cereb Blood Flow Metab,1996,16(2):186-194.
    [41]Charriaut MC,RemolleauS,Aggoun-ZouaouiD,etal.Apoptosis and programmed cell death:a role in cerebral ischemia[J].Biomed & Pharmacother,1998,52 (6):264-269.
    [42]Dali Y,Changman Z,Ikuyo K,et al.Inhibition of apoptosis by hyperbaric oxygen in a rat focal cerebral ischemic model[J].J Cerebral Blood Flow & Metabolism,2003,23 (7):855-864.
    [43]Tanaka S,Takehashi M,Iida S,et al.Mitochondrial impairment induced by poly (ADP-ribose) polymerase-1 activation in cortical neurons after oxygen and glucose deprivation[J].JNeurochem,2005,95:179-190.
    [44]XuXH,Zheng XX.Potential involvement of calcium and nitric oxide in protective effects of puerarin on oxygen-glucose deprivation in cultured hippocampal neurons[J].J Ethnopharmacol,2007,113 (3):421-426.
    [45]Liou A K F,Clark R S,Henshall D C,et al.To die or not to die for neurons in ischemia,traumatic brain injury and epilepsy:A review on the stress-activated signaling pathways and apoptotic pathways[J].ProgNeurobiol,2003,69:103-142.
    [46]Lakhani S A,Masud A,Kuida K,et al.Caspases 3 and 7:Key mediators of mitochondrial events of apoptosis[J].Science,2006,311:847-851.
    [47]NamuraS,ZhuJ,FinkK,etal.Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia[J].J Neurosci,1998,18:3659-3668.
    [48]Chen J,NagayamaT,JinK,etal.Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia[J].J Neurosci,1998,18:4914-4928.
    [49]GottronF,YingH,Choi D W.Caspase inhibition selectively reduces the apoptotic component of oxygen/glucose deprivation-induced cortical neuronal cell death[J].Mol Cell Neurosci,1997,9:159-169.
    [50]Green DR,Reed J C.Mitochondria and apoptosis[J].Science,1998,281:1309-1312.
    [51]Bossy W E,Newmeyer D D,Green D R.Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization[J].EmboJ,1998,17 (1):37-49.
    [52]Otera H,Ohsakaya S,Nagaura Z.Export of mitochondrial AIF in response to proapoptotic stimuli depends on processing at the intermembrane space[J].Embo J,2005,24:1375-1386.
    [53]PolsterBM,BasanezG,EtxebarriaA,etal.Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria[J].JBiolchem,2005,280:6447-6454.
    [54]Cregan S P,Dawson V L,Slack R S.Role of AIF in caspasedependent and caspase-independent cell death[J].Oncogene,2004,23:2785-2796.
    [55]Loeffler M,Daugas E,Susin S A,et al.Dominant cell death induction by extramitochondrially targeted apoptosis-inducing factor[J].JFASEB,2001,15:758-767.
    [56]Delettre C,Yuste V J,Moubarak R S.AIFsh,a novel apoptosis-inducing factorC AIF) pro-apoptotic isoform with potential pathological relevance in human cancer[J].J Biol Chem,2006,281:6413-6427.
    [57]KranticS,MechawarN,ReixS.Apoptosis-inducing factor:A matter of neuron life and death[J].Prog Neurobiol,2007,81:179-196.
    [58]Miramar M D,Costantini P,Ravagnan L,et al.NADH oxidase activity of mitochondrial apoptosis-inducing factor[J].JBiolChem,2001,276:16391-16398.
    [59]Gross A,McDonnell J M,Korsmeyer S J.Bcl-2 family members and the mitochondria in apoptosis[J].Genes Development,1999,13:1899-1911.
    [60]Korsmeyer S J.Regulators of cell death[J].Trends Genet,1995,11:101-105.
    [61]Kitagawa K,Matsumoto M,Tsujimoto Y,et al.Amelioration of hippocampal neuronal damage after global ischemia by neuronal overexpression of Bcl-2 in transgenic mice[J].Stroke,1998,29:2616-2621.
    [62]Krajewski S,Mai J K,Krajewska M,et al.Upregulation of bax protein levels in neurons following cerebral ischemia[J].J Neurosci,1995,15:6364-6376.
    [63]Shi Y.A structural view of mitochondria-mediated apoptosis[J].Nat Struct Biol,2001,8:394-401.
    [64]Yuan J,YanknerBA.Apoptosis in the nervous system[J].Nature,2000,407:802-809.
    [65]Kluck R M,Bossy W E,Green D R,et al.The release of cytochrome c from mitochondria:A primary site for Bcl-2 regulation of apoptosis[J].Science,1997,275 (5303):1132-1136.
    [66]Satoh T,Enokido Y,Aoshima H,et al.Changes in mitochondrial membrane potential during oxidative stress-induced apoptosis in PC 12 cells[J].J Neurosci Res,1997,50:413-420.
    [67]Susnow N,Zeng L,Margineantu D,et al.Bcl-2 family proteins as regulators of oxidative stress[J].Semin in Cancer Biol,2009,19:42-49.
    [68]Becker E B,Bonni A.Beyond proliferation-cell cycle control of neuronal survival and differentiation in the developing mammalian brain[J].Semin Cell Dev Biol,2005,16:439-448.
    [69]Rashidian J,Iyirhiaro G,Aleyasin H,et al.Multiple cyclin-dependent kinases signals are critical mediators of ischemia/hypoxic neuronal death in vitro and in vivo[J].Proc Natl Acad Sci,2005,102 (39):14080-14085.
    [70]Katchanov J,Harms C,Gertz K,et al.Mild cerebral ischemia induces loss of cyclin-dependent kinase inhibitors and activation of cell cycle machinery before delayed neuronal cell death[J].J Neurosci,2001,21:5045-5053.
    [71]Verdaguer E,Garcia J E,Canudas A M,et al.Kainic acidinduced apoptosis in cerebellar granule neurons:an attempt at cell cycle re-entry[J].NeuroReport,2002,13:413-416.
    [72]Verdaguer E,Jorda E G,Stranges A,et al.Inhibition of cdks:A strategy for preventing kainic acid-induced apoptosis in neurons[J].Ann NY Acad Sci,2003, 1010:671-674.
    [73]VerdaguerE,Jimenez A,Canudas A M,et al.Inhibition of cell cycle pathway by flavopiridol promotes survival of cerebellar granule cells after an excitotoxic treatment[J].J Pharmacol Exp Ther,2004,308:609-616.
    [74]Gendron T F,Mealing G A,Paris J,et al.Attenuation of neurotoxicity in cortical cultures and hippocampal slices from e2fl knockout mice[J].J Neurochem,2001,78:316-324.
    [75]Takman R,Jiang H,Schaefer E,et al.Nerve growth factor pretreatment attenuates oxygen and glucose deprivation-induced c-Jun amino-terminal kinase 1 and stress-activated kinases p38 and p38 activation and confers neuroprotection in the pheochromocytomaPC12model[J].J Mol Neurosci Lett,2004,22:237-250.
    [76]Jiang Z,Zhang Y,ChenX,etal.Activation of Erk 1/2 and Akt in astrocytes under ischemia[J].Biochem Biophy Res Co,2002,294:726-733.
    [77]Yuan J Y.Neuroprotective strategies targeting apoptotic and necrotic cell death for stroke[J].Apoptosis,2009,14:469-477.
    [78]Gao Y Q,Signore A P,Yin W,et al.Neuroprotection against focal ischemic brain injury by inhibition of c-Jun N-terminal kinase and attenuation of the mitochondrial apoptosis-signaling pathway[J].J Cerebral Blood Flow & Metabolism,2005,25:694-712.
    [79]Kuan C Y,Whitmarsh A J,Yang D D,et al.A critical role of neural-specific JNK3 for ischemic apoptosis[J].PNAS,2003,100 (25):15184-15189.
    [80]Zhang Q G,Wang R M,Han D,et al.Preconditioning neuroprotection in global cerebral ischemia involves NMDA receptor-mediated ERK-JNK3 crosstalk[J].J Neurosci Res,2009,63:205-212.
    [81]Gary D S,Mattson M P.PTEN regulates Akt kinase activity in hippocampal neurons and increases their sensitivity to glutamate and apoptosis[J].Neuromol Med,2002,2:261-269.
    [82]Ning K,Pei L,Liao M,et al.Dual neuroprotective signaling mediated by downregulating two distinct phosphatase activities of PTEN[J].J Neurosci,2004,24:4052-4060.
    [83]Hong K W,Lee J H,Kima K Y,et al.Cilostazol:therapeutic potential against focal cerebral ischemic damage[J].CurrPharm Design,2006,12:565-573.
    [84]Zhu Y,Hoell P,Ahlemeyer B,et al.PTEN:a crucial mediator of mitochondria-dependent apoptosis[J].Apoptosis,2006,11:197-207.
    [85]Zhu Y,Hoell P,Ahlemeyer B,et al.Implication of PTEN in production of reactive oxygen species and neuronal death in in vitro models of stroke and Parkinson's disease[J].Neurochem Int,2007,50:507-516.
    [1]王盛民.中药原色鉴别图谱[M].学苑出版社,2005:44.
    [2]Ai C B,Li L N.Stereostructure of Salvianolic Acid-B and isolation of Salvianolic Acid-C from Salvia-Miltiorrhiza[J].J Nat Products,1988,51(1):145 - 149.
    [3]黄诒森,张均田.丹参中三种水溶性成分的体外抗氧化作用[J].药学学报,1992,27(2):96-100.
    [4]柳艳,李磊,赵鸿雁.丹酚酸B清除DPPH有机自由基活性及影响因素研究[J].时珍国医国药,2006,17(12):2406-2408.
    [5]柳艳,李磊,刘王莹,等.丹酚酸抗氧化活性及其对DNA损伤保护作用[J].中国公共卫生,2007,23(4):448-449.
    [6]杜冠华,张均田.丹参水溶性有效成分--丹酚酸研究进展[J].基础医学与临床,2000,20(5):394-398.
    [7]张均田.脑缺血 、葡萄糖/能量代谢障碍与神经退行性疾病[J].中国药理学通报,2000,16(3):241-246.
    [8]Du G H,Qiu Y,Zhang J T.Salvian01ic acid B protects the memory function against transient cerebral ischemia in mice[J].J Asia Nat Prod Res,2000,2(2):145 - 152.
    [9]Chen Y H,Du G H,Zhang J T.Salvianolic acid B protects brain against injuries caused by ischemia-reperfusion in rats[J].Acta Pharmacol Sin,2000,21(5):463-466.
    [10]杜冠华,陈永红,张均田.丹酚酸B对局灶性脑缺血再灌注所致线粒体损伤的保护作用[J].中国药理通讯,2003,20(2):14.
    [11]赵旭,范英昌,杜云.丹酚酸B对局灶性脑缺血再灌注大鼠血清超氧化物歧化酶活力和丙二醛含量的影响[J].天津中医药,2008,25(1):63-65.
    [12]赵旭,范英昌,郭茂娟,等.丹酚酸B抗神经细胞凋亡的实验研究[J].实用老年医学,2008,22(2):108-110.
    [13]蒋玉凤,王秋华,刘智勤,等.丹酚酸B对脑缺血小鼠脑能荷和三磷酸腺苷酶活性的影响[J].中国中药杂志,2007,32(18):1903-1906.
    [14]张颖,蒋玉凤,刘智勤,等.丹酚酸B对小鼠脑缺血不同时间脑能量代谢及脑水肿的作用[J].药学学报,2007,42(12):1250-1253.
    [15]蒋玉凤,王秋华,刘智勤,等.丹酚酸B对缺血小鼠脑能量代谢和脑水肿的影响[J].中国病理生理杂志,2007,23(12):2300-2303.
    [16]庹菁菁,郭国庆,山爱景.丹酚酸B诱导分化的小鼠胎脑神经干细胞膜结构特征[J].暨南大学学报,2007,28(4):337-340.
    [17]钟静,唐民科,张妍,等.丹酚酸B对脑缺血再灌注大鼠神经细胞损伤和神经发生的影响[J].药学学报,2007,42(7):716-721.
    [18]TianJW,LiGS,ZhangSM,etal.SMND-309,aNovelDerivateofSalvianolic Acid B,attenuates apoptosis and ameliorates mitochondrial energy metabolism in rat cortical neurons[J].Basic & Clin Pharmacol & Toxicol,2009,104(2):176 - 184.
    [19]Timothy J S,William D A.Transmitter,ion channal and receptor properties of pheochromocytoma(PC12) ':cells:A model for neurotoxicological studies[J].Neurotoxicology,1991,12:473-492.
    [20]刘雯,张艳,左伋.丹酚酸B对PC12细胞缺糖损伤的保护作用及机制[J].上海中医药杂志,2006,40(10):66-68.
    [21]张均田.丹酚酸B防治神经退行性疾病的研究进展[J].药学学报,2007,26(2):107-110.
    [22]Ishige K,Schubert D,Sagara Y.Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms[J].Free Radic Biol Med,2001,30:433 - 446.
    [23]Liu C S,Chen N H,Zhang J T.Protection of PC12 cells from hydrogen peroxide-induced cytotoxicity by salvianolic acid B,a new compound isolated from Radix Salvide miltiorrhizae[J].Phytomedicine,2007,14(7 - 8):492 - 497.
    [24]冯征,张均田.丹酚酸B对β-淀粉样蛋白介导原代培养皮层神经元毒性的保护作用[J].药学学报,2000,35(12):881-885.
    [25]Lin Y H,Liu A H,Wu H L,et al.Salvianolic acid B,.an antioxidant from Salvia miltiorrhiza,prevents Aβ(25-35) -induced reduction in BPRP in PC12 cells[J].Biochem BiophRes Co,2006,348(2):593-599.
    [26]Tang M K,Zhang J T.Prostate apoptosis response-4 involved in the protective effect of salvianolic acid B against amyloid beta peptide-induced damage in PC12 cells[J].Jap J Pharmacol,2002,88(4):422- 427.
    [27]Guo Q,Fu W,Xie J,et al.Par-4 is a mediator of neuronal degeneration associated with the pathogenesis of Alzheimer disease[J].Nat Med,1998,4:957 - 962.
    [28]刘长锁,胡金凤,陈乃宏,等.丹酚酸B和银杏叶提取物EGb761对p-淀粉样蛋白神经毒性抑制作用的比较[J].药学学报,2006,41(8):706-711.
    [29]Durairajan S S K,Yuan Q J,Xie LX,et al.Salvianolic acid B inhibits Aβ fibril formation and disaggregates preformed fibrils and protects against Aβ-induced cytotoxicty[J].Neurochem Int,2008,52(4 - 5):741 - 750.
    [30]Tian L L,Wang X J,Sun Y N,et al.Salvianolic acid B,an antioxidant from Salvia miltiorrhiza,prevents 6-hydroxydopamine induced apoptosis in SH-SY5Y cells[J].Int J Biochem & Cell B,2008,40(3):409 - 422.
    [31]Bi X B,Deng Y B,Gan D H,et al.Salvianolic acid B promotes survival of transplanted mesenchymal stem cells in spinal cord-injured rats[J].Acta Pharmacol Sin,2008,29(2):169-176.
    [32]徐江平,孙莉莎,吴宇航,等.丹酚酸B对大鼠心肌缺血再灌注损伤的保护作用[J].中国药学杂志,2003,38(8):595-597.
    [33]王保和,伟傅,李竹庭.丹酚酸B对急性心肌缺血再灌注损伤大鼠心肌保护作用的机制研究[J].天津中医学院学报,2004,23(3):132-133.
    [34]武骏,徐立,许立.丹酚酸B对兔离体心脏缺氧再复氧损伤的保护作用[J].中 国药理学与毒理学杂志,2007,21(3):212-216.
    [35]赵桂峰,李竹庭,范英昌.丹酚酸B对缺氧再复氧心肌细胞内Ca~(2+)浓度变化的影响[J].现代中西医结合杂志,2004,13(1):19-20.
    [36]杜嵘,张萌,郭利平,等.丹酚酸B预适应对心肌细胞保护在蛋白激酶C转导途径中的作用[J].天津中医药,2005,22(5):420-422.
    [37]徐秀梅,郭茂娟,赵旭,等.丹酚酸B体外诱导骨髓间充质干细胞向心肌样细胞分化的实验研究[J].时珍国医国药,2008,19(3):574-576.
    [38]陈嘉,孙京臣,邹移海,等.丹酚酸B诱导骨髓间充质干细胞向心肌样细胞分化[J].第四军医大学学报,2007,28(23):2152-2155.
    [39]陈嘉,孙京臣,邹移海,等.丹酚酸B对骨髓问充质干细胞表达的影响[J].解放军医学杂志,2008,33(3):276-278.
    [40]杜嵘,张伯礼,高秀梅,等.丹酚酸B对缺氧损伤心脏微血管内皮细胞细胞间粘附分子表达的影响[J].中国新药与临床杂志,2004,23(9):616-618.
    [41]张晗,郭利平.丹酚酸B预适应对心脏微血管内皮细胞保护作用的研究[J].天津中医药,2004,21(6):499-502.
    [42]郭利平,杜嵘,张萌,等.丹酚酸B预适应对缺氧/复氧损伤的心脏微血管内皮细胞蛋白激酶C mRNA表达的影响[J].天津中医药,2004,21(4):325-327.
    [43]郭利平,张萌,杜嵘,等.丹酚酸B预适应对缺氧复氧损伤细胞热休克蛋白70mRNA表达的影响[J].天津中医药,2004,21(4):455-458.
    [44]Luo W B,Wang Y P.Magnesium lithospermate B inhibits hypoxia-induced calcium influx and nitric oxide release in endothelial cells[J].Acta Pharmacol Sin,2001,22(12):1135-1142.
    [45]Zhao G R,Zhang H M,Ye T X,et al.Characterization of the radical scavenging and antioxidant activities of danshensu and salvianolic acid B[J].Food and Chem Toxicol,2008,46(1):73-81.
    [46]王晓斌,于锋,刘飞.丹酚酸B对内皮细胞氧化损伤的保护作用及机制研究[J].东南大学学报,2008,27(1):42-46.
    [47]Wu H L,Li Y H,Lin Y H,et al.Salvianolic acid B protects human endothelial cells from oxidative stress damage:a possible protective role of glucose-regulated protein 78 induction[J].Cardiovasc Res,2009,81(1):148 - 158.
    [48]Guo J,Sun K,Wang C S,et al.Protective effects of dihydroxylphenyl lactic acid and salvianolic acid B on lps-induced mesenteric microcirculatory disturbance in rats[J].Shock,2008,29(2):205-211.
    [49]LiM,Zhao M,Durairajan S.Protective effect oftetramethylpyrazine and salvianolic acid B on apoptosis of rat cerebral microvascular endothelial cell under high shear stress[J].Clin Hemorheol Micro,2008,38(3):177-187.
    [50]Zhang H S,Wang S Q.Salvianolic acid B from Salvia miltiorrhiza inhibits tumor necrosis factor-alpha(α-TNF) - induced MMP-2 upregulation in human aortic smooth muscle cells via suppression of NAD(P)H oxidase-derived reactive oxygen species[J].J Mol and Cel Cardiology,2006,41(1):138 - 148.
    [51]Lin S J,Lee I T,Chen Y H,et al.Salvianolic acid B attenuates MMP-2 and MMP-9expression in vivo in apolipoprotein-E-deficient mouse aorta and in vitro in LPS-treated human aortic smooth muscle cells[J].J Cell Biochem,2007,100(2):372 - 384.
    [52]Chen Y L,Hu C S,Lin F Y,et al.Salvianolic acid B attenuates cyclooxygenase-2expression in vitro in LPS-treated human aortic smooth muscle cells and in vivo in the apolipoprotein-E-deficient mouse aorta[J].J Cell Biochem,2006,98(3):618 - 631.
    [53]Chen Y H,Lin S J,Ku H H,et al.Salvianolic acid B attenuates VCAM-1 and ICAM-1 expression in TNF-alpha-treated human aortic endothelial cells[J].J Cell Biochem,2001,82(3):512-521.
    [54]Wu Y J,Hong C Y,Lin S J,et al.Increase of vitamin E content in LDL and reduction of atherosclerosis in cholesterol-fed rabbits by a water-soluble antioxidant-rich fraction of Salvia miltiorrhiza[J].Arterioscl Throm Vas Biol,1998,18(3):481 -486.
    [55]Shi C S,Huang H C,Wu H L,et al.Salvianolic acid B modulates hemostasis properties of human umbilical vein endothelial cells[J].Thromb Res,2007,119(6):769 - 775.
    [56]Zhou Z,Liu Y,Miao A D,et al.Salvianolic acid B attenuates plasminogen activator inhibitor type 1 production in TNF-α treated human umbilical vein endothelial cells[J].J Cell Biochem,2005,96(1):109-116.
    [57]韩纪举,吴亚平,赵晓民,等.体外灌注实验测定丹酚酸B对小鼠血小板粘附功能的影响[J].中国动脉硬化杂志,2007,15(12):903-905.
    [58]Wu Y P,Zhao X M,Pan S D,et al.Salvianolic Acid B inhibits platelet adhesion under conditions of flow by a mechanism involving the collagen receptor α2β1[J].Thromb Res,2008,123(2):298-305.
    [59]Lam F F Y,Yeung J H K,Kwan Y W,et al.Salvianolic acid B,an aqueous component of danshen(Salvia miltiorrhiza),relaxes rat coronary artery by inhibition of calcium channels[J].Eur J Pharmacol,2006,553(1-3):240 - 245.
    [60]Lam F F Y,Seto S W,Kwan Y W,et al.Activation of the iberiotoxin - sensitive BKCa channels by salvianolic acid B of the porcine coronary artery smooth muscle cells[J].Eur J Pharmacol,2006,546(1 - 3):28 - 35.
    [61]Luk J M,Wang X L,Liu P,et al.Traditional Chinese herbal medicines for treatment of liver fibrosis and cancer:From laboratory discovery to clinical evaluation[J].Liver Int,2007,27(7):879-890.
    [62]Lin Y L,Wu C H,Luo M H,et al.In vitro protective effects ofsalvianolic acid B on primary hepatocytes and hepatic stellate cells[J].J Ethnopharmacology,2006,105 (1-2):215-222.
    [63]Cui Y,Wang X.,Liu Q,et al.Influences of anti-oxidation of salvianolic acid B on proliferation of rat cultured hepatic stellate cells[J].World Chin J Digestol,2002,10:317-319.
    [64]Cui Y,Wang X,Yan Z,et al.Effects ofsalvianolic acid B for cellular oxidation and PCNA of hepatic stellate cell in rat[J].Chin J Integr Trad West Med Liver Dis,2003,13:210- 212.
    [65]Liu P,Liu C H,Wang H N,et al.Effect of salvianolic acid B on collagen production and mitogen-activated protein kinase activity in rat hepatic stellate cells[J].Acta PharmacolSin,2002,23(8):733-738.
    [66]刘成海,刘平,胡义扬,等.丹酚酸B盐对转化生长因子-β1刺激肝星状细胞活化与胞内信号转导的作用[J].中华医学杂志,2002,82(18):1267-1272.
    [67]陶艳艳,王晓玲,刘成海.丹酚酸B对NIH/3T3成纤维细胞TGF-β1/ERK胞内信号转导的影响[J].首都医科大学学报,2007,28(2):192-195.
    [68]徐列明,刘成,刘平.丹参酚性酸B对大鼠传代肝贮脂细胞增殖 、形态和合成细胞外基质的影响[J].中华肝脏病杂志,1996,4(2):86-89.
    [69]Liu P,Hu Y Y,Liu C,et al.Clinical observation of Salvianolic acid B in treatment of liver fibrosis in chronic hepatitis B[J].World Journal of Gastroenterology,2002,8(4):679-685.
    [70]刘青,骆斯慧,陈灵.丹酚酸B对马兜铃酸干预作用的研究[J].复旦学报,2007,46(6):996-1000.
    [71]何立群.丹酚酸B对马兜铃酸诱导的大鼠肾纤维化的拮抗研究[J].上海中医药杂志,2007,41(7):3-6.
    [72]Luo P,Tan Z H,Zhang Z F,et al.Inhibitory effects of salvianolic acid B on the high glucose-induced mesangial proliferation via NF-κB-dependent pathway[J].Biol &Pharm Bull,2008,31(7):1381-1386.
    [73]罗培,谭正怀.丹酚酸B对高糖培养人肾小球系膜细胞的作用[J].中国药理通讯,2007,24(3):39.
    [74]Liu Y R,Qu S X,Maitz M F,et al.The effect of the major components of Salvia Miltiorrhiza Bunge on bone marrow cells[J].J Ethnopharmacol,2007,111(3):573 - 583.
    [75]Cui L,Pang T T,Liu Y Y,et al.Effects of Salvianolic acid B on Sirtl-PPAR gamma pathway in marrow stromal cells of rats in vitro.International Conference on Osteoporosis and Bone Research,Beijing,2008:S51 - S51.
    [76]Lay I S,Chiu J H,Shiao M S,et al.Crude extract of Salvia miltiorrhiza and salvianolic acid B enhance in vitro angiogenesis in murine SVR endothelial cell line[J].Planta Med,2003,69(1):26 - 32.
    [77]Lay I S,Hsieh C C,Chiu J H,et al.Salvianolic acid B enhances in vitro angiogenesis and improves skin flap survival in Sprague-Dawley rats[J].J Surg Res,2003,115(2):279- 285.
    [78]Zhou Z T,Yang Y,Ge J P.The preventive effect of Salvianolic acid B on malignant transformation of DMBA-induced oral premalignant lesion in hamsters[J].Carcinogenesis,2006,27(4):826-832.
    [79]程铎,储茂泉,宋馨,等.应用量子点纳米探针研究丹酚酸B与肿瘤细胞间的直接作用[J].中国药学杂志,2007,42(18):1389-1393.
    [1]王永炎,刘炳林.中风病研究进展述评[J].中国中医急症,1995,4(2):51-54.
    [2]许沛虎.中医脑病学[M].北京:中国医药科技出版社,1998:322-323,345.
    [3]陈国成.从历代对中风病认识的演变看中医学理论的发展[J].吉林中医药,2008,28(6):394-396.
    [4]缪晓路,朱颖文.中医“中风”辨证方法评述[J].中华中医药学刊,2008,26(6):1282-1283.
    [5]张年顺.李东垣医学全书[M].北京:中国中医药出版社,2006:295.
    [6]刘素芝,包祖晓,张锐利.缺血性中风气虚血瘀病机学说的理论探讨[J].中华中医药学刊,2007,25(1):97-98.
    [7]宋乃光.刘完素医学全书[M].北京:中国中医药出版社,2006:311-325.
    [8]丁元庆.近20年中风病研究的回顾[J].中国中医急症,2002,11(4):292-293,299.
    [9]田思胜.朱丹溪医学全书[M].北京:中国中医药出版社,2006:543,565-566.
    [10]余瀛鳌,林菁,田思胜,等.景岳全书集要[M].沈阳:辽宁科学技术出版社,2007:1,50-56.
    [11]年莉,刘种羽,王学岭.《内经》络脉络病理论整理研究[J].天津中医药大学学报,2008,27(4):241-245.
    [12]吴以岭.络病学概要[J].疑难病杂志,2004,3(1):37-39.
    [13]李岩,赵雁,黄启福,等.中医络病的现代认识[J].北京中医药大学学报,2002,25(3):1-5.
    [14]赵建新,田元祥.《内经》络脉 、络病理论初探[J].陕西中医,2005,26(1):79-80.
    [15]程革.《金匮要略》络病理论探讨[J].中医药学刊,2004,22(12):2308-2309.
    [16]谢忠礼,韦大文.从《临证指南医案》探讨叶天士络病学说的主要思想[J].河南中医学院学报,2006,21(122):15-17.
    [17]吴以岭.络病病机探析[J].中医杂志,2005,46(4):243.245.
    [18]吴以岭.络病的十大临床表现(二)[J].疑难病杂志,2005,4(3):155-156.
    [19]吴以岭.络病的十大临床表现(一)[J].疑难病杂志,2005,4(2):88-90.
    [20]王永炎,杨宝琴,黄启福.络脉络病与病络[J].北京中医药大学学报,2003,26(4):1-2.
    [21]江厚万.遵循中医学基本原理探究络病分子生态机制[J].疑难病杂志,2004,3(6):343-344.
    [22]吴以岭.络病与血管病变的相关性研究及治疗[J].中医杂志,2006,47(3):163-165.
    [23]袁国强,魏聪,贾振华,等.缺血性脑血管病的中医络病理论探析[J].疑难病杂志,2007,6(2):92-94.
    [24]王永炎.关于提高脑血管疾病疗效难点的思考[J].中国中西医结合杂志,1997,17(4):195-196.
    [25]李澎涛,王永炎,黄启福.“毒损脑络”病机假说的形成及其理论与实践意义[J].北京中医药大学学报,2001,24(1):1-6,16.
    [26]李维革,韩宁.从络病理论探讨中风病微观病机[J].辽宁中医药大学学报,2006,8(6):23-25.
    [27]常富业,王永炎,张允岭,等.毒损络脉诠释[J].北京中医药大学学报,2006,29(11):729-731.
    [28]常富业,张允岭,王永炎,等.毒的概念诠释[J].中华中医药学刊,2008,26(9):1897-1899.
    [29]王永炎,张伯礼.中医脑病学[M].北京:人民卫生出版社,2007:1004.1007.
    [30]张允岭,郭蓉娟,常富业,等.论中医毒邪的特性[J].北京中医药大学学报,2007,30(12):800-801.
    [31]张锦,张允岭,娄金丽,等.从急性多发性脑梗死大鼠海马缺血损伤探讨毒损脑络机制[J].天津中医药,2006,23(4):316-319.
    [32]雷燕,黄启福,王永炎.论瘀毒阻络是络病形成的病理基础[J].北京中医药大学学报,1999,22(2):8-10.
    [33]张允岭,白文,韩振蕴.9601颗粒对急性多发脑梗死大鼠海马皮层MARCKS 磷酸化调节作用的研究[J].北京中医药大学学报,2005,28(1):45-48.
    [34]袁拯忠,朱陵群.浅谈解毒法治疗中风病[J].中国中医基础医学杂志,2004,10(11):19-20.
    [35]任丽,曹晓岚,王芳.中风病毒损脑络释义[J].中华中医药学刊,2008,26(8):1703-1704.
    [36]王永炎.继承、验证、质疑、创新[J].上海中医药杂志,2000,14(8):1-3.
    [37]郑春叶,卢明,黄燕.中风从毒论治浅议[J].中国中医药信息杂志,2007,14(8):5-6.
    [38]王永炎.创新是中医学术发展的必然要求[J].继续医学教育,1997,21(19):10-11.
    [1]Cervosnavarro J,Diemer N H.Selective vulnerability in brain hypoxia[J].Critical Reviews In Neurobiology,1991,6(3):149-182.
    [2]Goldberg M P,Choi D W.Combined oxygen and glucose deprivation in cortical cell culture:calcium-dependent and calcium-independent mechanisms of neuronal injury[J].Neuroscience,1993,13(8):3510-3524.
    [3]王天佑,阎军,彭亮,等.体外培养的中枢神经细胞的“缺血”性损害[J].中国病理生理杂志,1989,5(5):293-297.
    [4]吴燕,丁爱石,吴丽颖,等.大鼠海马神经元体外缺糖缺氧模型的建立[J].中国应用生理学杂志,2003,19(2):197-200.
    [5]宋岳涛.培养大鼠星形胶质细胞对拟脑缺血再灌注损伤神经元的作用和抗呆Ⅰ号的影响[D].北京中医药大学博士学位论文,2004,70.
    [6]吴俊芳,刘忞.现代神经科学研究方法[M].北京:中国协和医科大学出版社,2006:5-6.
    [7]洪庆涛,唐一鹏.新生大鼠大脑皮层神经细胞的体外原代培养[J].神经解剖学杂志,1994,10(3):259-262.
    [8]Brewer G J,Torricelli J R,Evege E K,el at.Optimized survival of hippocampal-neurons in B27-supplemented neurobasal(Tm),A new serum-free medium combination[J].J Neurosci Res,1993,35(5):567- 576.
    [9]丁爱石,王福庄.新生大鼠海马神经细胞在无血清培养液中的生长特性[J].细胞生物学杂志,1993,15(2):88-90.
    [10]郑志竑,林玲.神经细胞培养理论与实践[M].北京:科学出版社,2002:50.
    [11]杨玲艳,何一平.神经元特异性烯醇化酶与神经系统疾病[J].医学综述,2004,10(12):742-743.
    [12]李云庆,王智明.神经科学基础实习指导[M].西安:第四军医大学出版社,2003:41,135-138.
    [13]Tian L L,Wang X J,Sun Y N,el at.Salvianolic acid B,an antioxidant from Salvia miltiorrhiza,prevents 6-hydroxydopamine induced apoptosis in SH-SY5Y cells[J].Int J Biochem & Cell B,2008,40(3):409 - 422.
    [14]Liu C S,Chen N H,Zhang J T.Protection of PC12 cells from hydrogen peroxide-induced cytotoxicity by salvianolic acid B,a new compound isolated from Radix Salvide miltiorrhizae[J].Phytomedicine,2007,14(7- 8):492 - 497.
    [1]刘雯,张艳,左伋.丹酚酸B对PC12细胞缺糖损伤的保护作用及机制[J].上海中医药杂志,2006,40(10):66-68.
    [2]杜冠华,陈永红,张均田.丹酚酸B对局灶性脑缺血再灌注所致线粒体损伤的保护作用[J].中国药理通讯,2003,20(2):14.
    [3]蒋玉凤,刘智勤,张颖,等.丹酚酸B对小鼠脑缺血高能磷酸化合物和乳酸含量的影响[J].北京中医药大学学报,2007,30(8):522-524.
    [4]洪庆涛,宋岳涛,唐一鹏,等.细胞培养液乳酸脱氢酶漏出率的比色测定及其应用[J].细胞生物学杂志,2004,26(1):89-92.
    [5]Cory A H,Owen T C,Barltrop J A,el at.Use of an aqueous soluble tetrazolium formazan assay for cell-growth assays in culture[J].Cancer Communications,1991,3(7):207-212.
    [6]司徒镇强,吴军正.细胞培养[M].西安:世界图书出版公司出版,2004:250-252.
    [7]Koh J Y,Choi D W.Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay[J].J Neurosci Meth,1987,20(1):83-91.
    [8]Goldberg M P,Choi D W.Combined oxygen and glucose deprivation in cortical cell culture:calcium-dependent and calcium-independent mechanisms of neuronal injury[J].Neuroscience,1993,13(8):3510-3524.
    [9]He Z,Lu Q,Xu X L,el at.DDPH ameliorated oxygen and glucose deprivation-induced injury in rat hippocampal neurons via interrupting Ca~(2+) overload and glutamate release[J].Eur J Pharmacol,2009,603(1- 3):50 - 55.
    [10]Rossi D J,Oshima T,Attwell D.Glutamate release in severe brain ischaemia is mainly by reversed uptake[J].Nature,2000,403:316 - 321.
    [11]Roettger V,Lipton P.Mechanism of glutamate release from rat hippocampal slices during in vitro ischemia[J].Neuroscience,1996,75:677-685.
    [12]David J M,Sten O.The role of calcium in the regulation of apoptosis[J].J Leukoc Biol,1996,59:775-783.
    [13]Vandenberghe P A,Ceuppens J L.Flow cytometric measurement of cytoplasmic free calcium in human peripheral-blood lymphocytest with fluo-3,a new fluorescent calcium indicator[J].J Immunol Methods,1990,127(2):197 - 205.
    [14]张艺.流式细胞仪构成与工作原理[J].医疗设备信息,2005,20(8):25-26.
    [15]张琰,温浩,张朝霞.流式细胞仪在医学中的应用[J].新疆医科大学学报,2005,28(1):92-93.
    [16]Morin C,Simon N.Mitochondria:a target for neuroprotective interventions in cerebral ischemia-reperfusion[J].Curr Pharm Design,2006,12:1 - 19.
    [17]Hengartner M.The biochemistry of apoptosis[J].Nature,2000,407(12):770 - 776.
    [18]Gwag B J,Koh J Y,Demaro J A,et al.Slowly triggered excitotoxicity occurs by necrosis in cortical cultures[J].Neuroscience,1997,77:393 - 401.
    [1]柳艳,李磊,刘王莹,等.丹酚酸抗氧化活性及其对DNA损伤保护作用[J].中国公共卫生,2007,23(4):448-449.
    [2]柳艳,李磊,赵鸿雁.丹酚酸B清除DPPH有机自由基活性及影响因素研究[J].时珍国医国药,2006,17(12):2406-2408.
    [3]杜冠华,张均田.丹参水溶性有效成分——丹酚酸研究进展[J].基础医学与临床,2000,20(5):394-398.
    [4]杜冠华,陈永红,张均田.丹酚酸B对局灶性脑缺血再灌注所致线粒体损伤的保护作用[J].中国药理通讯,2003,20(2):14.
    [5]Du G H,Qiu Y,Zhang J T.Salvianolic acid B protects the memory functions against transient cerebral ischemia in mice[J].J Asian Nat Prod Res,2000,2(2):145-152.
    [6]Chen Y H,Du G H,Zhang J T.Salvianolic acid B protects brain against injuries caused by ischemia-reperfusion in rats[J].Acta Pharmacol Sin,2000,21(5):463-466.
    [7]Charriaut M C.Apoptosis and necrosis after reversible focal ischemia:an in situ DNA fragmentation analysis[J].J Cerebr Blood Flow Met,1996,16(2):186-194.
    [8]Tian Y Y,An L J,Jiang L,et al.Catalpol protects dopaminergic neurons from LPS-induced neurotoxicity in mesencephalic neuron-glia cultures[J].Life Sci,2006,80(3):193-199.
    [9]Kristi(?)n T,Siesj(O|¨) B.Calcium in ischemic cell death[J].Stroke,1998,29:705-718.
    [10]刘井波,彭双清.脂质过氧化作用与线粒体损伤[J].中国预防医学杂志,2005,6(2):167-170.
    [11]赵保路.自由基天然抗氧化剂和健康[J].北京:中国科学文化出版社,2007:15.
    [12]王稳定,徐广智,刘庆泰,等.自旋捕捉剂α-苯基-N-叔丁基氮氧化物(PBN)合成方法的比较与改进[J].化学试剂,1991,13(6):337-339.
    [13]郑国灿,肖尚友,穆小静,等.自由基检测技术进展[J].广州化学,2006,31(3):37-44.
    [14]任继刚,刘沛霖,赵保路,等.用自旋捕集和电子自旋共振技术观察雷公藤对氧自由基的影响[J].同济医科大学学报,1997,26(2):112-115.
    [15]Aabdallah D M,Eid N I.Possible neuroprotective effects of lecithin and alpha-tocopherol alone or in combination against ischemia/reperfusion insult in rat brain[J].J Biochem Mol Toxic,2004,18(5):273 - 278.
    [16]Nita D A,Nita V,Spulber S,et al.Oxidative damage following cerebral ischemia depends on reperfusion - a biochemical study in rat[J].J Cel Mol Med,2001,5(2):163 - 170.
    [17]Shah Z A,Gilani R A,Sharma P,et al.Cerebroprotective effect of Korean ginseng tea against global and focal models of ischemia in rats[J].J Ethnopharmacol,2005,101(1-3):299 - 307.
    [18]Ozerol E,Bilgic S,Iraz M,et al.The protective effect of erdosteine on short-term global brain ischemia/reperfusion injury in rats[J].Prog Neuro Psychopharmacol Biol Psychiatry,2009,33(1):20 - 24.
    [19]Taylor J M,Crack P J.Impact of oxidative stress on neuronal survival[J].Clin Exp Pharmacol Physiol,2004,31:397 - 406.
    [20]Almeida A,Delgado-Esteban M,Bolanos J P,et al.Oxygen and glucose deprivation induces mitochondrial dysfunction and oxidative stress in neurones but not in astrocytes in primary culture[J].J Neurochem,2002,81:207 - 217.
    [21]黄诒森,张均田.丹参中三种水溶性成分的体外抗氧化作用[J].药学学报,1992,27(2):96-100.
    [1]Charriaut M C,Remolleau S,Aggoun Z D.Apoptosis and programmed cell death:a role in cerebral ischemia[J].Biomed & Pharmacother,1998,52(6):264 - 269.
    [2]Tang M K,Zhang J T.Prostate apoptosis response-4 involved in the protective effect of salvianolic acid B against amyloid beta peptide-induced damage in PC12 cells[J].Jap J Pharmacol,2002,88(4):422-427.
    [3]Xu X H,Zheng X X.Potential involvement of calcium and nitric oxide in protective effects of puerarin on oxygen-glucose deprivation in cultured hippocampal neurons[J].J Ethnopharmacol,2007,113(3):421-426.
    [4]Rayner B S,Duong H,Myers S J,et al.Protective effect of a synthetic anti-oxidant on neuronal cell apoptosis resulting from experimental hypoxia re-oxygenation injury[J].J Neurochem,2006,97(1):211-221.
    [5]Iijima T,Mishima T,Akagawa K,et al.Neuroprotective effect of propofol on necrosis and apoptosis following oxygen-glucose deprivation- relationship between mitochondrial membrane potential and mode of death[J].Brain Research,2006,1099:25 - 32.
    [6]聂荣庆,李扣华,胡国柱,等.黄芪抗新生大鼠大脑皮层神经细胞缺氧性凋亡研究[J].中国中医基础医学杂志,2004,10(11):34-37.
    [7]Kristi(?)n T,SiesjO|¨ B.Calcium in ischemic cell death[J].Stroke,1998,29:705 - 718.
    [8]Brookes S,Yoon Y,Robotham J L,et al.Calcium,ATP,and ROS:A mitochondrial love-hate triangle[J].Am J Physiol Cell Physiol,2004,287(4):c817 - c833.
    [9]Ichas F,Mazat J P.From calcium signaling to cell death:two conformations for the mitochondrial permeability transition pore,switching from low- to high- conductance state[J].Biochimica et Biophysica Acta,1998,1366(1 - 2):33 - 50.
    [10]Scarlett J L,Sheard P W,Hughes G,et al.Changes in mitochondrial membrane potential during staurosporine-induced apoptosis in Jurkat cells[J].FEBS Lett,2000,475:267-272.
    [11]Andrabi S A,Sayeed I,Siemen D,et al.Direct inhibition of the mitochondrial permeability transition pore:A possible mechanism responsible for antiapoptotic effects of melatonin[J].FASEB J,2004,18(3):869-871.
    [12]Crompton M.The mitochondrial permeability transition pore and its role in cell death[J].BiochemJ,1999,341:233-249.
    [13]EnariM,SakalliraH,YokoyamaH,et al.A caspase-activated DNase that degrades DNA during apoptosis,and its inhibitor IC AD[J].Nature,1998,391:43-50.
    [14]Vermes I,HaanenC,NakkenHS,et al.A novel assay for apoptosis flow cytometric detection of phosphatidylserine early apoptotic cells using fluorescein labelled expression on AnnexinV[J].J Immunol Methods,1995,184:39-51.
    [15]EarnshawWC.Nuclear changes in apoptosis[J].CurrOpin Cell Biol,1995,7:337-343.
    [16]Hsu S Y,Hsueh A J.Tissue-specific Bcl-2 protein partners in apoptosis:An ovarian paradigm[J].Physiol Rev,2000,80 (2):593-614.
    [17]Krajewski S,Mai J K,Krajewska M,et al.Up-regulation of bax protein-levels in neurons following cerebral-ischemia[J].J Neurosci,1995,15 (10):6364-6376.
    [18]Green D R,Kroemer G.The pathophysiology of mitochondrial cell death[J].Science,2004,305 (5684):626-629.
    [19]Antonsson B.Bax and other pro-apoptotic Bcl-2 family “killer-preteins” and their victim the mtochondrion[J].Cell Tissue Res,2001,306 (2):341-361.
    [20]Green D,Reed J C.Mitochondria and apoptosis[J].Science,1998,281:1309-1312.
    [21]Marzo I,Brenner C,Zamzami N,et al.Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis[J].Science,1998,281:2027-2031.
    [22]NaritaM,ShimizuS,ItoT,etal.Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondrial].PNAS,1998,95:14681-14686.
    [23]Yang J,Liu X S,Bhalla K,et al.Prevention of apoptosis by Bcl-2:release of cytochrome c from mitochondria blocked[J].Science,1997,275(5303):1129-1132.
    [24]Martinou J C,Duboisdauphin M,Staple J K,et al.Overexpression of bcl-2 in transgenic mice protects neurons from naturally-occurring cell death and experimental-ischemia[J].Neuron,1994,13(4):1017-1030.
    [25]Koubi D,Jiang H,Zhang L J,etal.Role of Bcl-2 family of proteins in mediating apoptotic death of PC 12 cells exposed to oxygen and glucose deprivation[J].Neurochem Int,2005,46 (1):73-81.
    [26]Hockenbery D M,Oltvai Z N,Yin X M,et al.Bcl-2 functions in an antioxidant pathway to prevent apoptosis[J].Cell,1993,75 (2):241-251.
    [27]Myers K M,Fiskum G,Liu Y B,et al.Bcl-2 protects neural cells from cyanide/ aglycemia-induced lipid oxidation,mitochondrial injury,and loss of vitality[J].J Neurochem,1995,65:2432-2440.
    [28]Satoh T,Enokido Y,Aoshima H,et al.Changes in mitochondrial membrane potential during oxidative stress-induced apoptosis in PC 12 cells[J].JNeurosciRes,1997,50:413-420.
    [29]Susnow N,Zeng L,Margineantu D,et al.Bcl-2 family proteins as regulators of oxidative stress[J].Semin Cancer Biol,2009,19:42-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700