用户名: 密码: 验证码:
失血性休克大鼠血浆代谢组学与肝脏基因组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     无论是战时还是平时,失血性休克(hemorrhagic shock,HS)均是引起急诊创伤病例死亡的首要因素。随着人们对HS发生、发展病理生理机制认识的日渐深入以及多种救治措施的综合应用,使得HS的救治效果大为改善,救治成功率不断提高。但临床急诊中仍有部分患者,即使救治及时、控制出血、联合应用多种救治措施,却仍然难以摆脱死亡的威胁。原因之一在于HS是一种全身性、多系统、多器官参与的严重综合征,其有效救治的“黄金时间”非常短暂,另外其病程进展的病理生理机制尚未彻底阐明,救治措施尚需进一步完善。
     HS发生后,“炎性瀑布”及多器官功能衰竭是导致病人死亡的主要因素之一,而“炎性瀑布”及多器官功能衰竭与物质及能量代谢的变化密切相关。HS状态下机体的代谢异常,包括糖类、脂类、氨基酸、维生素及核酸等物质,而每种物质的代谢不是彼此孤立的,而是相互联系,或相互转换,或相互依存,构成统一的整体。系统生物学的研究方法—代谢组学可以高通量检测复杂代谢产物并能筛选出变化最为显著的一种或几种代谢物的变化,为系统分析HS中的物质及能量代谢变化提供了可能。目前在HS研究领域,尚未见有关血浆代谢组学的研究报道。
     物质及能量的代谢变化与器官及组织的病理生理变化息息相关,密不可分。而肝脏被誉为“物质代谢中枢”,同时也是HS发生后受累最为严重的器官之一。因此,HS状态肝脏基因组的差异表达,可能是血浆代谢组变化的分子基础之一,将为探讨血浆代谢组变化的可能机制提供佐证。研究目的及方法:
     本研究以HS大鼠为研究模型,应用1H-NMR分析方法,观测HS大鼠血浆代谢组的变化,并用主成分分析(PCA)的方法筛选代谢组主成分(PC);根据筛选出的PC,深入分析PC的变化规律,以期为HS病程进展的监测提供新的靶标;利用大鼠全基因组芯片对HS大鼠肝脏基因表达谱进行分析,以期从基因水平探讨HS代谢变化的分子基础,希望发现新的HS损伤因素,为阐明HS的病理生理机制提供参考依据;并根据代谢组主成分对HS大鼠施行相应的干预措施,观察其对大鼠HS损伤的改善及代谢异常的纠正效果,以期为HS损伤的防治提供新的线索。
     研究内容及结果分析
     1. HS大鼠模型的建立手术后从股动脉放血,以控压模式分别制作重度HS(SHS)及中度HS(MHS)大鼠模型。记录失血量,并在SHS模型制成后60min内,每10min记录一次平均动脉压(MAP);MHS模型制成后120min内,每10min记录一次平均动脉压(MAP)。结果显示SHS模型60min内MAP为51.25±10.77mmHg,失血量占总血量的百分比为45.31±5.34%;MHS模型120min内MAP为80.87±7.42mmHg,失血量占总血量的百分比为32.37±3.36%。建立的HS模型稳定性好,符合HS模型的要求。
     2.基于1H-NMR的HS大鼠血浆代谢组学分析应用核磁共振仪(1H-NMR)对HS及对照(Control, C)组大鼠血浆代谢组进行检测;用PCA的方法,筛选出代谢组的PC。结果显示两组间血浆代谢物含量差异明显。对PC相对应的代谢物谱峰进一步分析表明,与对照组比较,休克组血浆中乳酸、VLDL、LDL、以及不饱和脂肪酸等代谢物发生了明显变化。
     3. HS大鼠血浆脂类代谢分析根据主成分分析的结果提示,分别对重度HS、中度HS及中度HS不同时相大鼠血浆脂类水平进行了进一步分析,包括游离脂肪酸(FFA)、总胆固醇(TC)、甘油三酯(TG)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)、脂类介质—血栓素B2(TXB2)、6-酮-前列腺素F1a(6-Keto-PGF1a)及8-异前列腺素F2a(8-iso-PGF2a)。实验结果显示:①HS大鼠与C组大鼠比较:血浆FFA、TC、HDL-C及HDL-C/LDL-C(H/L)比值均显著降低,TG、LDL-C明显上升;随着HS程度的加重FFA、TG、TC水平及H/L比值呈下降趋势;随着HS时间的延长,FFA水平及H /L比值呈进行性下降,TG呈先上升后下降的趋势。②HS大鼠与C组大鼠比较:血浆TXB2及8-iso-PGF2a水平及TXB2/6-keto-PGF1a(T/K)比值明显上升,且随着HS程度的加重三指标的升高幅度愈加显著;6-Keto-PGF1a水平明显下降,且随着HS程度的加重下降幅度愈加显著。随着HS时间的延长, TXB2、8-iso-PGF2a及T/K比值呈先下降再上升的趋势;而6-Keto-PGF1a呈先上升再下降的趋势。
     4. HS大鼠肝脏基因组学分析利用Affymetrix Rat 230A芯片对大鼠肝脏基因表达进行分析。结果显示HS组与C组比较,共出现差异表达上调基因256条,其中具有明确生物学功能的基因107条;下调基因47条,其中具有明确生物学功能的基因13条。根据基因的生物学功能,差异表达基因主要为:物质转运相关基因、转录调节相关基因、信号转导相关基因、应激反应相关基因、代谢相关基因、发育相关基因、细胞粘附相关基因、细胞增殖、分化及周期调控相关基因、细胞凋亡等。其中与脂类代谢相关的基因有10条,包括SCD1、FASN、ACLY、ELOVL6、HMGCR、CYP7A1、CYP4A12、EGR1、NR1i3及LCN2等,占已知功能差异表达基因的8.33%(10/120)。
     5.脂肪乳干预对HS大鼠的影响根据前面实验结果提示,设对照组、重度HS组及重度HS脂肪乳干预组。分别对各组大鼠存活时间及存活率及平均动脉压(MAP)进行比较;对各组大鼠肝、脾、肾及肠系膜淋巴结细菌培养及菌落计数,比较肠道细菌移位情况;分别对各组血浆肿瘤坏死因子(TNF-a)进行检测,以了解干预措施对炎症反应的影响;对各组血浆TG、TC、HDL-C、LDL-C及FFA进行测定,以了解干预措施对脂类代谢水平的影响。结果显示重度HS脂肪乳干预组与HS组比较,大鼠存活时间明显延长,120min及180min存活率显著提高;在观察期MAP明显升高;大鼠肝、脾、肾及肠系膜淋巴结四部位的细菌移位量明显降低;血浆TNF-a的水平显著降低;血浆TG及FFA水平明显提高,而HDL-C、LDL-C水平及H /L比值无显著变化。
     综上说明HS状态,脂类代谢明显异常,尤其是作为能量底物的FFA随HS程度加重或/和时间的延长而显著降低,而TG随HS时间的延长呈先上升后下降的趋势,提示机体的代偿机制难以纠正能量供应的相对不足;肝脏差异表达基因中,有10条与脂类代谢相关,可能是脂类代谢变化的分子基础;脂肪乳干预能显著提高HS大鼠血浆FFA及TG水平,明显延长HS大鼠的存活时间,显著降低炎症反应,提示脂肪乳干预可能是纠正或缓解HS的有效措施之一。
     结论:
     1. HS大鼠血浆代谢组与对照组比较存在显著性差异,其PC为脂类及乳酸;
     2. HS大鼠与对照组大鼠比较:血浆FFA、TC、HDL-C及H/L比值均显著降低,TG、LDL-C明显上升;随着HS程度的加重FFA、TG、TC水平及H/L比值呈下降趋势;随着HS时间的延长,FFA水平及H/L比值呈进行性下降,TG呈先上升后下降的趋势。
     3. HS大鼠与对照组比较:血浆TXB2及8-iso-PGF2a水平及T/K比值明显上升,且随着HS程度的加重三指标的升高幅度愈加显著;6-Keto-PGF1a水平明显下降,且随着HS程度的加重下降幅度愈加显著。随着HS时间的延长, TXB2、8-iso-PGF2a及T/K比值呈先下降再上升的趋势;而6-Keto-PGF1a呈先上升再下降的趋势。
     4. HS大鼠肝脏基因组呈现多基因差异表达,与脂类代谢相关基因有10条,占已知功能差异表达基因的8.33%(10/120)。
     5.脂肪乳干预大鼠抗HS能力提高,其存活时间明显延长,120min及180min存活率显著提高,肠道细菌移位量降低,血浆FFA及TG水平显著升高,TNF-a水平显著降低。
     6.本研究结果提示血浆脂类水平异常可能是失血性休克病程进展的重要标志之一,对脂类代谢进行干预可能是纠正或缓解HS的有效措施之一。
Background:
     Hemorrhagic shock(HS) is generally precipitated by traumatic event that results in an acute loss of blood from the intravascular space. It remains a major cause of death and disability in battlefield injuries, as well as in civilian trauma. With the deeper recognition of mechanism and development of treatment for HS, treatment success rate tend to ascend in recent years. But many of these people with severe HS will reach hospitals in salvageable condition but will still die. One of the reasons is that the syndrome of hemorrhagic shock in humans leads to cardiovascular failure and death by impairing the several important organs including heart, liver, spleen, lung, kidney and brain. Another reason for the continued deaths from injury is an incomplete understanding of the human response to hemorrhagic shock, and new therapeutic approaches need to be explored.
     The main factors leading HS to refractory are cascade effects and multiple organ dysfunction syndrome, and they are correlated with variations of substance and energy metabolism. The rapid development of HS is accompanied by a series of abnormal metabolism implicated in many different pathways, such as sugar, lipid, amino acid, vitamin, nucleotide and other metabolism. 1H-nuclear magnetic resonance (1H-NMR)-based metabonomic approach is a newly developed technology that can be exploited to be a useful tool for disease diagnosis. And it has been widely used in many fields, but no report is found in HS so far.
     The liver is responsible for maintaining homeostasis in the body and is the main source of energy to peripheral organs. Hence, it is readily susceptible to the ischemic injury associated with hemorrhagic shock. Disturbances in liver function profoundly affect other body systems leading to multiple organ failure and death. Therefore, the elucidation of hepatic responses to shock is of great importance in the pathogenesis and treatment of HS.
     Objective and methods:
     First, to detect the plasma metabonomic profile of rats subjected to HS and Control group by 1H-NMR analyzer. The 1H-NMR spectra of two groups is analyzed and the principal components(PC) are recognized by principal components analysis(PCA). Second, to analysis the PC detailed. Third, to detect differential gene expressions in mouse liver of HS and Control group used Affymetrix Gene Chip Rat 230 2.0 Array. Finally, to evaluate the effect of fat emulsion(FE) on rats subjected to HS.
     Contents and results:
     1. Establish rat model in HS
     After rat model being operated and lying quietly for 10 minutes, Hemorrhage was performed through the femoral arterial catheter. The total amount of blood withdrawn and the mean artery blood pressure(MAP) was recorded. The amount of blood withdrawn were 45.31±5.34% and 32.37±3.36% of total blood respectively in model of severe HS(SHS) and moderate HS(MHS); the MAP were 51.25±10.77mmHg and 80.87±7.42mmHg respectively in SHS and MHS.
     2. Analysis of plasma metabonomics of Rats Subjected to HS based on 1H-NMR.
     Plasma was collected and its 1H-NMR spectra were acquired. The metabonomic profile of two groups were able to be distinguished after the data being processed by principal components analysis(PCA). The remarkable differenceso?f plasma metabonomic profile between two groups were lactate and lipids,such as very low density lipoprotein(VLDL), low density lipoprotein(LDL) and unsaturated fatty acid.
     3. Analysis of plasma lipid profile of rats subjected to HS.
     Following the results indicated by PCA, plasma lipid profile of rat subjected to SHS and MHS were measured, such as free fatty acids(FFA), total cholesterol(TC), triglyceride(TG), high density lipoprotein cholesterol(HDL-C), low density lipoprotein cholesterol(LDL-C), thromboxane B2(TXB2), 6-keto-prostaglandin Fla(6-Keto-PGF1a) and 8-iso-prostaglandin F2a (8-iso-PGF2a).
     Results of plasma lipid profile:
     ①Compared with Control, the levels of FFA、TC、HDL-C and the ratio of HDL-C/LDL-C(H/L) decreased, and the levels of TG、LDL-C increased significantly. The severer of the HS was, the more the levels of FFA、TG、TC and H/L decreased. The longer the time of HS lasting, the more the FFA levels and H/L decreased. With the time of HS lasting, the levels of TG increased first, then decreased.
     ②Compared with Control, the levels of TXB2, 8-iso-PGF2a and the ratio of TXB2/6-keto-PGF1a(T/K) increased, and the severer of HS was, the more the items increased. The levels of 6-Keto-PGF1a decreased, and the severer of HS was, the more the items decreased. Compared among three group of MHS-30, MHS-60 and MHS-120, the levels of TXB2, 8-iso-PGF2a and the ratio of T/K decreased first, then increased in MHS-120. The levels of 6-Keto-PGF1a increased first, then decreased in MHS-120.
     4. Hepatic gene expression of rats subjected to hemorrhagic shock.
     Hepatic gene expression profiles of each group were detected by Affymetrix Gene Chip Rat 230 2.0 Array and 9 genes were selected to undergo semi-quantitative RT-PCR. The gene chip arrays results showed that 303 genes expression in the HS group was significantly different from the Control group; and of the 303 genes, 256 genes were up-regulated and 47 genes were down-regulated. Their biological function of 107 up-regulated genes and 13 down-regulated genes were known. Differentially expressed genes were categorized based on the best available information regarding their biological functions. Genes with multiple functions were assigned to a single category. These included many genes of transport, transcription, signaling, response to stress, metabolism, biosynthesis, development, cell adhesion, proliferation, differentiation, cell cycle and apoptosis. 10 genes of them were related with lipid metabolism, such as SCD1、FASN、ACLY、ELOVL6、HMGCR、CYP7A1、CYP4A12、EGR1、NR1i3 and LCN2, which occupied 8.33% of genes whose biological function were known.
     5. Effect of fat emulsion(FE) on rats subjected to HS.
     60 male Wistar rats were randomly divided into a Control group, HS group, and HS-F group, with 20 rats in each group. The survival time, survival rate and mean artery blood pressure(MAP) were recorded. The bacteria translocation of liver, spleen, kidney and mesenteric lymph nodes were detected. The levels of serum TNF-a, FFA, TG, TC, HDL-C and LDL-C were measured. Result: compared with the HS group, survival time prolonged and elevated survival rate in 120min and 180min increased significantly in the HS-F group; the MAP was increased significantly; bacterial translocation was lower in HS-F rats; serum levels of TNF-a were lower in HS-F rats compared with HS rats, and those of FFA and TG were elevated in HS-F rats compared with HS rats, but no difference of HDL-C and LDL-C was shown between them.
     Conclusion:
     1. The remarkable differences of plasma metabonomic profile between two groups were lactate and lipids.
     2. The serum levels of FFA, TC, TG, HDL-C, LDL-C and the ratio of H/L were closely related to the severity and the lasting time of HS.
     3. The serum levels of TXB2, 6-Keto-PGF1a, 8-iso-PGF2a and the ratio of T/K were closely related to the severity and the lasting time of HS.
     4. Multiple hepatic genes differentially expressed in rats subjected to HS, and 10 genes were related to lipid metabolism, which occupied 8.33% of genes whose biological function were known.
     5. FE intervention on HS rats prolonged survival time and elevated survival rate, decreased bacterial translocation and TNF-a, increased FFA and TG after hemorrhage.
     6. Our study indicated that lipid metabolism maybe is an important item monitoring the course of HS, and to interfere lipid metabolism may effect on HS.
引文
[1].罗正曜,金惠铭,唐朝枢.休克学[M].天津:科学技术出版社. 2001;1:665-699.
    [2]. Torpey DJ, Jr. Resuscitation and anesthetic management of casualties. JAMA. 1967;202(10):955-959.
    [3]. Anderson RW, Simmons RL, Collins JA, et al. Plasma volume and sulfate spaces in acute combat casualties. Surg Gynecol Obstet. 1969;128(4):719-724.
    [4]. Cloutier CT, Lowery BD, Strickland TG, et al. Fat embolism in Vietnam battle casualties in hemorrhagic shock. Mil Med. 1970;135(5):369-373.
    [5]. Tien H, Nascimento B, Jr., Callum J, et al. An approach to transfusion and hemorrhage in trauma: current perspectives on restrictive transfusion strategies. Can J Surg. Vol 50. 2007/06/15 ed; 2007:202-209.
    [6]. Mackenzie CF, Morrison C, Jaberi M, et al. Management of hemorrhagic shock when blood is not an option. J Clin Anesth. 2008;20(7):538-541.
    [7]. Suda S. [Hemodynamic and pulmonary effects of fluid resuscitation from hemorrhagic shock in the presense of mild pulmonary edema]. Masui. 2000;49(12):1339-1348.
    [8]. Shih HC, Wei YH, Lee CH. Differential gene expression after hemorrhagic shock in rat lung. J Chin Med Assoc. 2005;68(10):468-473.
    [9].郑伟,黄灵芝,赵莲,等.失血性休克大鼠肝脏蛋白质的差异分析.中国生物化学与分子生物学报. 2007;23(4):316-322.
    [10].郑伟,李晓峰,王波,等.失血性休克大鼠血浆蛋白质的差异分析.医学分子生物学杂志. 2008;5(5):377-382.
    [11]. Nicholson JK, Lindon JC, Holmes E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29(11):1181-1189.
    [12]. Thomas GH. Metabolomics breaks the silence. Trends Microbiol. 2001;9(4):158.
    [13]. Robertson DG, Reily MD, Sigler RE, et al. Metabonomics: evaluation of nuclear magnetic resonance (NMR) and pattern recognition technology for rapid in vivo screening of liver and kidney toxicants. Toxicol Sci. 2000;57(2):326-337.
    [14]. Taylor J, King RD, Altmann T, et al. Application of metabolomics to plant genotypediscrimination using statistics and machine learning. Bioinformatics. 2002;18 Suppl 2:S241-248.
    [15]. Schmidt CW. Metabolomics: what's happening downstream of DNA. Environ Health Perspect. 2004;112(7):A410-415.
    [16]. Rensing H, Bauer I, Datene V, et al. Differential expression pattern of heme oxygenase-1/heat shock protein 32 and nitric oxide synthase-II and their impact on liver injury in a rat model of hemorrhage and resuscitation. Crit Care Med. 1999;27(12):2766-2775.
    [17]. Paxian M, Rensing H, Geckeis K, et al. Perflubron emulsion in prolonged hemorrhagic shock: influence on hepatocellular energy metabolism and oxygen-dependent gene expression. Anesthesiology. 2003;98(6):1391-1399.
    [18]. Sundar SV, Li YY, Rollwagen FM, et al. Hemorrhagic shock induces differential gene expression and apoptosis in mouse liver. Biochem Biophys Res Commun. 2005;332(3):688-696.
    [19]. Silomon M, Rose S. Effect of sodium bicarbonate infusion on hepatocyte Ca2+ overload during resuscitation from hemorrhagic shock. Resuscitation. 1998;37(1):27-32.
    [20]. Rabinovici R, Rudolph AS, Vernick J, et al. A new salutary resuscitative fluid: liposome encapsulated hemoglobin/hypertonic saline solution. J Trauma. 1993;35(1):121-126; discussion 126-127.
    [21]. Schultz SC, Hamilton IN, Jr., Malcolm DS. Use of base deficit to compare resuscitation with lactated Ringer's solution, Haemaccel, whole blood, and diaspirin cross-linked hemoglobin following hemorrhage in rats. J Trauma. 1993;35(4):619-625; discussion 625-616.
    [22].付春晓,王广义,卜凤荣.一种大鼠失血性休克模型的建立.中国应用生理学杂志. 2000;16(02):188-190.
    [23]. Jagdip S. Jaswal, Cadete. VJJ, Lopaschuk. GD. Optimizing cardiac energy substrate metabolism: a novel therapeutic intervention for ischemic heart disease. Heart Metab. 2008(38):5-14.
    [24]. Dhalla NS, Elimban V, Rupp H. Paradoxical role of lipid metabolism in heart function and dysfunction. Mol Cell Biochem. 1992;116(1-2):3-9.
    [25]. van Gorp EC, Suharti C, Mairuhu AT, et al. Changes in the plasma lipid profile as a potential predictor of clinical outcome in dengue hemorrhagic fever. Clin Infect Dis. 2002;34(8):1150-1153.
    [26]. Suvarna JC, Rane PP. Serum lipid profile: a predictor of clinical outcome in dengue infection. Trop Med Int Health. 2009.
    [27]. Levine DM, Parker TS, Donnelly TM, et al. In vivo protection against endotoxin by plasma high density lipoprotein. Proc Natl Acad Sci U S A. 1993;90(24):12040-12044.
    [28]. Wu A, Hinds CJ, Thiemermann C. High-density lipoproteins in sepsis and septic shock: metabolism, actions, and therapeutic applications. Shock. 2004;21(3):210-221.
    [29]. Barter PJ, Nicholls S, Rye KA, et al. Antiinflammatory properties of HDL. Circ Res. 2004;95(8):764-772.
    [30]. Navab M, Ananthramaiah GM, Reddy ST, et al. The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J Lipid Res. 2004;45(6):993-1007.
    [31]. Navab M, Hama SY, Anantharamaiah GM, et al. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: steps 2 and 3. J Lipid Res. 2000;41(9):1495-1508.
    [32]. Navab M, Hama SY, Hough GP, et al. A cell-free assay for detecting HDL that is dysfunctional in preventing the formation of or inactivating oxidized phospholipids. J Lipid Res. 2001;42(8):1308-1317.
    [33]. Navab M, Berliner JA, Subbanagounder G, et al. HDL and the inflammatory response induced by LDL-derived oxidized phospholipids. Arterioscler Thromb Vasc Biol. 2001;21(4):481-488.
    [34]. Barter PJ, Baker PW, Rye KA. Effect of high-density lipoproteins on the expression of adhesion molecules in endothelial cells. Curr Opin Lipidol. 2002;13(3):285-288.
    [35]. Cockerill GW, McDonald MC, Mota-Filipe H, et al. High density lipoproteins reduce organ injury and organ dysfunction in a rat model of hemorrhagic shock. FASEB J. 2001;15(11):1941-1952.
    [36]. Roberts CK, Ng C, Hama S, et al. Effect of a short-term diet and exercise intervention on inflammatory/anti-inflammatory properties of HDL in overweight/obese men with cardiovascular risk factors. J Appl Physiol. 2006;101(6):1727-1732.
    [37]. Navab M, Ananthramaiah GM, Reddy ST, et al. The double jeopardy of HDL. Ann Med. 2005;37(3):173-178.
    [38]. Dorinsky PM, Gadek JE. Multiple organ failure. Clin Chest Med. 1990;11(4):581-591.
    [39]. Zikria BA, Bascom JU. Multiple organ failure syndrome. JAMA. 1994;272(3):202-203.
    [40]. Murugesan G, Sa G, Fox PL. High-density lipoprotein stimulates endothelial cell movement by a mechanism distinct from basic fibroblast growth factor. Circ Res. 1994;74(6):1149-1156.
    [41]. Sugatani J, Miwa M, Komiyama Y, et al. High-density lipoprotein inhibits the synthesis of platelet-activating factor in human vascular endothelial cells. J Lipid Mediat Cell Signal. 1996;13(1):73-88.
    [42]. Epand RM, Stafford A, Leon B, et al. HDL and apolipoprotein A-I protect erythrocytes against the generation of procoagulant activity. Arterioscler Thromb. 1994;14(11):1775-1783.
    [43]. Ko Y, Haring R, Stiebler H, et al. High-density lipoprotein reduces epidermal growth factor-induced DNA synthesis in vascular smooth muscle cells. Atherosclerosis. 1993;99(2):253-259.
    [44]. Viswambharan H, Ming XF, Zhu S, et al. Reconstituted high-density lipoprotein inhibits thrombin-induced endothelial tissue factor expression through inhibition of RhoA and stimulation of phosphatidylinositol 3-kinase but not Akt/endothelial nitric oxide synthase. Circ Res. 2004;94(7):918-925.
    [45]. Fleisher LN, Tall AR, Witte LD, et al. Stimulation of arterial endothelial cell prostacyclin synthesis by high density lipoproteins. J Biol Chem. 1982;257(12):6653-6655.
    [46]. Yui Y, Aoyama T, Morishita H, et al. Serum prostacyclin stabilizing factor is identical to apolipoprotein A-I (Apo A-I). A novel function of Apo A-I. J Clin Invest. 1988;82(3):803-807.
    [47]. Dichtl W, Nilsson L, Goncalves I, et al. Very low-density lipoprotein activates nuclear factor-kappaB in endothelial cells. Circ Res. 1999;84(9):1085-1094.
    [48]. Ting HJ, Stice JP, Schaff UY, et al. Triglyceride-rich lipoproteins prime aortic endothelium for an enhanced inflammatory response to tumor necrosis factor-alpha. Circ Res. 2007;100(3):381-390.
    [49]. Kawakami A, Aikawa M, Libby P, et al. Apolipoprotein CIII in apolipoprotein B lipoproteins enhances the adhesion of human monocytic cells to endothelial cells. Circulation. 2006;113(5):691-700.
    [50]. Kawakami A, Aikawa M, Nitta N, et al. Apolipoprotein CIII-induced THP-1 cell adhesion to endothelial cells involves pertussis toxin-sensitive G protein- and protein kinase C alpha-mediated nuclear factor-kappaB activation. Arterioscler Thromb Vasc Biol. 2007;27(1):219-225.
    [51]. Coppack SW. Pro-inflammatory cytokines and adipose tissue. Proc Nutr Soc. 2001;60(3):349-356.
    [52]. Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab. 1998;83(3):847-850.
    [53]. Path G, Bornstein SR, Gurniak M, et al. Human breast adipocytes express interleukin-6 (IL-6) and its receptor system: increased IL-6 production by beta-adrenergic activation and effects of IL-6 on adipocyte function. J Clin Endocrinol Metab. 2001;86(5):2281-2288.
    [54]. Petersen EW, Carey AL, Sacchetti M, et al. Acute IL-6 treatment increases fatty acid turnover in elderly humans in vivo and in tissue culture in vitro. Am J Physiol Endocrinol Metab. 2005;288(1):E155-162.
    [55]. Bruce CR, Dyck DJ. Cytokine regulation of skeletal muscle fatty acid metabolism: effect of interleukin-6 and tumor necrosis factor-alpha. Am J Physiol Endocrinol Metab. 2004;287(4):E616-621.
    [56]. van Hall G, Steensberg A, Sacchetti M, et al. Interleukin-6 stimulates lipolysis and fat oxidation in humans. J Clin Endocrinol Metab. 2003;88(7):3005-3010.
    [57]. Carey AL, Steinberg GR, Macaulay SL, et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes. 2006;55(10):2688-2697.
    [58]. Ryden M, Dicker A, van Harmelen V, et al. Mapping of early signaling events in tumor necrosis factor-alpha -mediated lipolysis in human fat cells. J Biol Chem. 2002;277(2):1085-1091.
    [59]. Zhang HH, Halbleib M, Ahmad F, et al. Tumor necrosis factor-alpha stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP. Diabetes. 2002;51(10):2929-2935.
    [60]. Botion LM, Brasier AR, Tian B, et al. Inhibition of proteasome activity blocks the ability of TNF alpha to down-regulate G(i) proteins and stimulate lipolysis. Endocrinology. 2001;142(12):5069-5075.
    [61]. Gasic S, Tian B, Green A. Tumor necrosis factor alpha stimulates lipolysis in adipocytes by decreasing Gi protein concentrations. J Biol Chem. 1999;274(10):6770-6775.
    [62]. Green A, Dobias SB, Walters DJ, et al. Tumor necrosis factor increases the rate of lipolysis in primary cultures of adipocytes without altering levels of hormone-sensitive lipase. Endocrinology. 1994;134(6):2581-2588.
    [63]. Souza SC, de Vargas LM, Yamamoto MT, et al. Overexpression of perilipin A and B blocks the ability of tumor necrosis factor alpha to increase lipolysis in 3T3-L1 adipocytes. J Biol Chem. 1998;273(38):24665-24669.
    [64]. Fon Tacer K, Kuzman D, Seliskar M, et al. TNF-alpha interferes with lipid homeostasis and activates acute and proatherogenic processes. Physiol Genomics. 2007;31(2):216-227.
    [65]. Popa C, Netea MG, Radstake T, et al. Influence of anti-tumour necrosis factor therapy on cardiovascular risk factors in patients with active rheumatoid arthritis. Ann Rheum Dis. 2005;64(2):303-305.
    [66]. Nishimoto N, Yoshizaki K, Miyasaka N, et al. Treatment of rheumatoid arthritis with humanized anti-interleukin-6 receptor antibody: a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum. 2004;50(6):1761-1769.
    [67]. Hrnciarikova D, Hyspler R, Vyroubal P, et al. Serum lipids and neopterin in urine as new biomarkers of malnutrition and inflammation in the elderly. Nutrition. 2009;25(3):303-308.
    [68]. Wood LG, Fitzgerald DA, Gibson PG, et al. Increased plasma fatty acid concentrations after respiratory exacerbations are associated with elevated oxidative stress in cystic fibrosis patients. Am J Clin Nutr. 2002;75(4):668-675.
    [69]. Dietrich M, Block G, Hudes M, et al. Antioxidant supplementation decreases lipid peroxidation biomarker F(2)-isoprostanes in plasma of smokers. Cancer EpidemiolBiomarkers Prev. 2002;11(1):7-13.
    [70]. Kumar A, Kingdon E, Norman J. The isoprostane 8-iso-PGF2alpha suppresses monocyte adhesion to human microvascular endothelial cells via two independent mechanisms. FASEB J. 2005;19(3):443-445.
    [71]. Varma S, Janesko KL, Wisniewski SR, et al. F2-isoprostane and neuron-specific enolase in cerebrospinal fluid after severe traumatic brain injury in infants and children. J Neurotrauma. 2003;20(8):781-786.
    [72]. Inder T, Mocatta T, Darlow B, et al. Elevated free radical products in the cerebrospinal fluid of VLBW infants with cerebral white matter injury. Pediatr Res. 2002;52(2):213-218.
    [73]. Brault S, Martinez-Bermudez AK, Marrache AM, et al. Selective neuromicrovascular endothelial cell death by 8-Iso-prostaglandin F2alpha: possible role in ischemic brain injury. Stroke. 2003;34(3):776-782.
    [74]. Miyazaki M, Gomez FE, Ntambi JM. Lack of stearoyl-CoA desaturase-1 function induces a palmitoyl-CoA Delta6 desaturase and represses the stearoyl-CoA desaturase-3 gene in the preputial glands of the mouse. J Lipid Res. 2002;43(12):2146-2154.
    [75]. Wakil SJ, Stoops JK, Joshi VC. Fatty acid synthesis and its regulation. Annu Rev Biochem. 1983;52:537-579.
    [76]. Jung A, Hollmann M, Schafer MA. The fatty acid elongase NOA is necessary for viability and has a somatic role in Drosophila sperm development. J Cell Sci. 2007;120(Pt 16):2924-2934.
    [77]. Chiang JY. Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms. J Hepatol. 2004;40(3):539-551.
    [78]. Miyake JH, Wang SL, Davis RA. Bile acid induction of cytokine expression by macrophages correlates with repression of hepatic cholesterol 7alpha-hydroxylase. J Biol Chem. 2000;275(29):21805-21808.
    [79]. Davis RA, Miyake JH, Hui TY, et al. Regulation of cholesterol-7alpha-hydroxylase: BAREly missing a SHP. J Lipid Res. 2002;43(4):533-543.
    [80]. Honeck H, Gross V, Erdmann B, et al. Cytochrome P450-dependent renal arachidonic acid metabolism in desoxycorticosterone acetate-salt hypertensive mice. Hypertension. 2000;36(4):610-616.
    [81]. Muller DN, Schmidt C, Barbosa-Sicard E, et al. Mouse Cyp4a isoforms: enzymatic properties, gender- and strain-specific expression, and role in renal 20-hydroxyeicosatetraenoic acid formation. Biochem J. 2007;403(1):109-118.
    [82]. Mikkers H, Nawijn M, Allen J, et al. Mice deficient for all PIM kinases display reduced body size and impaired responses to hematopoietic growth factors. Mol Cell Biol. 2004;24(13):6104-6115.
    [83]. Popivanova BK, Li YY, Zheng H, et al. Proto-oncogene, Pim-3 with serine/threonine kinase activity, is aberrantly expressed in human colon cancer cells and can prevent Bad-mediated apoptosis. Cancer Sci. 2007;98(3):321-328.
    [84]. Boutin H, LeFeuvre RA, Horai R, et al. Role of IL-1alpha and IL-1beta in ischemic brain damage. J Neurosci. 2001;21(15):5528-5534.
    [85]. Ramji DP, Foka P. CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J. 2002;365(Pt 3):561-575.
    [86]. Niehof M, Streetz K, Rakemann T, et al. Interleukin-6-induced tethering of STAT3 to the LAP/C/EBPbeta promoter suggests a new mechanism of transcriptional regulation by STAT3. J Biol Chem. 2001;276(12):9016-9027.
    [87]. Fan J, Kapus A, Li YH, et al. Priming for enhanced alveolar fibrin deposition after hemorrhagic shock: role of tumor necrosis factor. Am J Respir Cell Mol Biol. 2000;22(4):412-421.
    [88]. Zhang F, Lin M, Abidi P, et al. Specific interaction of Egr1 and c/EBPbeta leads to the transcriptional activation of the human low density lipoprotein receptor gene. J Biol Chem. 2003;278(45):44246-44254.
    [89]. Wang X, Le Roy I, Nicodeme E, et al. Using advanced intercross lines for high-resolution mapping of HDL cholesterol quantitative trait loci. Genome Res. 2003;13(7):1654-1664.
    [90]. Zhang J, Huang W, Qatanani M, et al. The constitutive androstane receptor and pregnane X receptor function coordinately to prevent bile acid-induced hepatotoxicity. J Biol Chem. 2004;279(47):49517-49522.
    [91]. Wieneke N, Hirsch-Ernst KI, Kuna M, et al. PPARalpha-dependent induction of the energy homeostasis-regulating nuclear receptor NR1i3 (CAR) in rat hepatocytes: potential role in starvation adaptation. FEBS Lett. 2007;581(29):5617-5626.
    [92]. Reschly EJ, Krasowski MD. Evolution and function of the NR1I nuclear hormone receptor subfamily (VDR, PXR, and CAR) with respect to metabolism of xenobiotics and endogenous compounds. Curr Drug Metab. 2006;7(4):349-365.
    [93]. Hu BR, Wieloch T. Tyrosine phosphorylation and activation of mitogen-activated protein kinase in the rat brain following transient cerebral ischemia. J Neurochem. 1994;62(4):1357-1367.
    [94]. Hirai S, Yamanaka M, Kawachi H, et al. Activin A inhibits differentiation of 3T3-L1 preadipocyte. Mol Cell Endocrinol. 2005;232(1-2):21-26.
    [95]. Chen YH, Yet SF, Perrella MA. Role of heme oxygenase-1 in the regulation of blood pressure and cardiac function. Exp Biol Med (Maywood). 2003;228(5):447-453.
    [96]. Murphy PM, Baggiolini M, Charo IF, et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev. 2000;52(1):145-176.
    [97]. Yoshie O, Imai T, Nomiyama H. Chemokines in immunity. Adv Immunol. 2001;78:57-110.
    [98]. Couillard M, Guillaume R, Tanji N, et al. c-myc-induced apoptosis in polycystic kidney disease is independent of FasL/Fas interaction. Cancer Res. 2002;62(8):2210-2214.
    [99]. Chu ST, Lin HJ, Huang HL, et al. The hydrophobic pocket of 24p3 protein from mouse uterine luminal fluid: fatty acid and retinol binding activity and predicted structural similarity to lipocalins. J Pept Res. 1998;52(5):390-397.
    [100]. Devireddy LR, Teodoro JG, Richard FA, et al. Induction of apoptosis by a secreted lipocalin that is transcriptionally regulated by IL-3 deprivation. Science. 2001;293(5531):829-834.
    [101]. Cowland JB, Borregaard N. Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans. Genomics. 1997;45(1):17-23.
    [102]. Roudkenar MH, Kuwahara Y, Baba T, et al. Oxidative stress induced lipocalin 2 gene expression: addressing its expression under the harmful conditions. J Radiat Res (Tokyo). 2007;48(1):39-44.
    [103]. Mak SK, Kultz D. Gadd45 proteins induce G2/M arrest and modulate apoptosis in kidney cells exposed to hyperosmotic stress. J Biol Chem. 2004;279(37):39075-39084.
    [104]. Yamasawa K, Nio Y, Dong M, et al. Clinicopathological significance of abnormalities in Gadd45 expression and its relationship to p53 in human pancreatic cancer. Clin Cancer Res. 2002;8(8):2563-2569.
    [105]. Mori M, Benotmane MA, Tirone I, et al. Transcriptional response to ionizing radiation in lymphocyte subsets. Cell Mol Life Sci. 2005;62(13):1489-1501.
    [106]. Granato D, Blum S, Rossle C, et al. Effects of parenteral lipid emulsions with different fatty acid composition on immune cell functions in vitro. JPEN J Parenter Enteral Nutr. 2000;24(2):113-118.
    [107]. Harris HW, Grunfeld C, Feingold KR, et al. Human very low density lipoproteins and chylomicrons can protect against endotoxin-induced death in mice. J Clin Invest. 1990;86(3):696-702.
    [108]. Read TE, Grunfeld C, Kumwenda Z, et al. Triglyceride-rich lipoproteins improve survival when given after endotoxin in rats. Surgery. 1995;117(1):62-67.
    [109]. Read TE, Grunfeld C, Kumwenda ZL, et al. Triglyceride-rich lipoproteins prevent septic death in rats. J Exp Med. 1995;182(1):267-272.
    [110]. Harris HW, Grunfeld C, Feingold KR, et al. Chylomicrons alter the fate of endotoxin, decreasing tumor necrosis factor release and preventing death. J Clin Invest. 1993;91(3):1028-1034.
    [111]. Mero N, Syvanne M, Eliasson B, et al. Postprandial elevation of ApoB-48-containing triglyceride-rich particles and retinyl esters in normolipemic males who smoke. Arterioscler Thromb Vasc Biol. 1997;17(10):2096-2102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700