用户名: 密码: 验证码:
伊通盆地成藏动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伊通盆地是发育于郯庐断裂带东北段上的新生代走滑—伸展型断陷盆地,位于吉林省的长春市和吉林市之间,盆地西北侧隔大黑山地垒与松辽盆地相邻,东南侧为广阔的那丹哈达岭地体。盆地平面呈NE45°方向延伸的长条形,长160km,宽10-20km,总面积2200km2。
     本论文以伊通盆地油气成藏动力学为主要研究内容,在全面收集、整理、消化研究区现有地质、地球物理、地球化学、分析化验等资料与前人研究成果的基础上,以油气成藏动力学理论为指导,以伊通盆地构造沉积演化史为背景,采用静态与动态、宏观与微观、定性与定量相结合的综合研究技术,系统分析了伊通盆地的油气成藏的基本地质条件、流体动力场特征、油气成藏动力学过程,深入剖析了伊通盆地的输导体系、油气成藏主控因素与油气二次运移演化历史,最终划分与评价油气运聚单元。将为理解本区及类似走滑—伸展型断陷盆地油气成藏规律和预测伊通盆地有利勘探目标区提供借鉴。论文的主要研究内容和成果认识概括为以下4个方面:
     (一)伊通盆地油气成藏地质要素剖析
     1.基于伊通盆地各二级构造单元内烃源岩暗色泥岩分布、有机质丰度、类型及成熟度等方面的评价,揭示了伊通盆地发育始新统双阳组、奢岭组和永吉组三大烃源岩系,其中始新统双阳组暗色泥岩分布范围广,厚度大,源岩有机质丰度和成熟度相对较高,为盆地主力烃源岩系。
     2.通过分析伊通盆地始新统和渐新统储集层的主要沉积相类型、岩石学和物性特征等,指出储集岩以粉细砂岩和砂砾岩为主,储层物性虽随埋深增加逐渐变差,但鹿乡和莫里青断陷局部深度段发育的孔隙度和渗透率异常带可改善深部双阳组储集条件;储层的物性条件主要受沉积环境、成岩作用及构造运动等多种因素的联合影响;总体上,始新统双阳组储层储集条件最好,伊通盆地双阳组为盆地主要含油气层位。
     3.从盖层区域展布特征和盖层封闭机制两方面综合评价伊通盆地盖层封闭条件,发现伊通盆地四套区域性盖层中以永吉组泥质岩含量最高、且单层厚度大、区域上分布稳定,为本区最重要的盖层。本区超压封盖普遍发育,异常高压力(欠压实)的存在强化了泥岩的封盖作用;基于上述成藏地质要素综合评价,指出伊通盆地最重要的生储组合是以双阳组为主要储层的自生自储类型。
     (二)伊通盆地流体动力场分布特征及演化历史研究
     1.通过统计盆地不同部位现今地温梯度和热流值,指出现今地温梯度纵向上浅部地温梯度高于深部;横向上,莫里青断陷和鹿乡断陷的地温梯度较高,岔路河断陷相对较低,且同一断陷不同三级构造单元内,表现为凹陷地温梯度要低于断阶带和凸起的规律;深部断裂的分布及其导热作用对现今地温场的横向分布有很大影响。应用盆地模拟技术反演了各二级构造带代表井的古温度场的演化,结果表明古地温梯度高于现今地温梯度。
     2.通过统计盆地储层和泥岩盖层的实测地层压力数据,发现伊通盆地储层多为常压,超压点主要集中于岔路河断陷和莫里青断陷始新统双阳组内;伊通盆地浅部泥岩表现为正常压实—压力,而地下深处泥岩则一般具有异常压实—压力特征,泥岩欠压实段主要分布于始新统地层中,发现伊通盆地有三种储盖能量配置类型。基于盆地模拟技术恢复了伊通盆地5口单井和13条测线的古超压演化历史,研究发现剖面上古超压集中分布于始新统下部奢岭组和双阳组地层内;单井和剖面剩余压力都具有“积累—释放”演化特征,盆地演化早期以欠压实为主导增压作用,中晚期则以生烃增压为主;构造抬升剥蚀为主要泄压机制。
     3.基于上述13条剖面古压力恢复,结合充注史研究成果对伊通盆地剖面流体势演化特征进行剖析,结果显示盆地现今流体势分布以“重力流特征”为主,区域上生烃凹陷处双阳组地层为流体势高值区;古流体势演化以近西北缘生烃凹陷始新统地层为持续的高势区,沿基底和断层向南东方向的断阶带和隆起区流体势逐渐降低,表明伊通盆地的流体大规模横向运移主要发生始新统双阳组地层内,而在其上部,油气纵向运移主要依靠断层的垂向输导;同一输导层内的流体总体上由凹陷向斜坡高部位运移,高部位是油气运移的区域指向带;油气主成藏期的始新统双阳组地层流体势值普遍较高,且岔路河断陷深凹处双阳组地层流体势显著高于莫里青和鹿乡断陷;古流体势的发育过程受控于古超压的演化,由古至今同样具有旋回性、波动性和减弱性。
     (三)伊通盆地油气成藏动力学过程分析
     1.基于伊通盆地岔路河组底面不整合面以下齐家组和万昌组地层剥蚀厚度(单井)进行恢复结果,通过对伊通盆地10口代表性单井的地层埋藏史模拟重建,发现伊通盆地在其构造-沉积发展历史上表现出多幕演化特征。总体上,盆地演化早期的的沉积和构造沉降速率高于晚期:不同构造单元沉积—沉降特征表现为自古至今差异性逐渐变小。
     2.采用瞬变热流模型(Transit Heat Flow)恢复伊通盆地10口代表性单井的地热演化史,结果表明伊通盆地地层升温速率明显受沉积速率的制约,且两者间呈正比关系。盆地由古至今沉积速率和升温速率都不断减小,与盆地构造演化相一致。
     3.在准确恢复热史的基础上,选用LLNL-Easy%Ro模型来恢复烃类的成熟演化史,结果表明,始新统烃源岩在岔路河断陷热演化程度高于鹿乡断陷和莫里青断陷;其中,始新统双阳组主力烃源岩进入生烃门限较早,现今热演化程度高,多已进入大量生油阶段(Ro=1.0-1.3%),在岔路河断陷内多部分进入高成熟—过成熟阶段;始新统奢岭组烃源岩热演化程度虽小于双阳组,但目前多数地区仍处于大量生油阶段,在岔路河断陷内已进入湿气生成阶段(Ro=1.3-2.0%)。始新统永吉组烃源岩仅在岔路河断陷刚刚进入生油门限。
     4.本次各断陷代表单井主要烃源岩层生烃史模拟采用化学动力学模型,模拟结果表明,始新统双阳组烃源岩的生烃强度最高,奢岭组烃源岩生烃能力次之,永吉组生烃能力微弱;岔路河断陷生气强度均大于生油强度,双阳组和奢岭组烃源岩热演化程度高,产物以气态烃为主。相反地,莫里青断陷和鹿乡断陷烃源岩热演化程度中等,产物以液态烃为主。排烃史模拟结果表现为始新统双阳组的排气和排油强度最大,为伊通盆地的主要排烃层位;岔路河断陷内烃源岩排气强度大于排油强度,产物气态烃为主,鹿乡断陷和莫里青断陷内则以液态烃为主要产物;始新统双阳组源岩开始排烃的时间早于奢领组烃源岩,多在渐新世中期及之前;双阳组烃源岩的排烃效率最大,其排油效率和排气效率多大于50%。
     5.通过对伊通盆地岔路河断陷和鹿乡断陷磷灰石裂变径迹年代学研究表明,自渐新世以来岔路河断陷至少经历了两期构造事件(抬升冷却),分别对应于渐新统万昌组沉积末期和岔路河组沉积末期发育的两期构造抬升事件;自渐新世以来鹿乡断陷至少经历了一期隆升事件,对应于渐新统万昌组沉积末期开始的构造隆升事件。
     6.基于含油气包裹体资料探讨伊通盆地油气充注史发现,伊通盆地岔路河断陷发育三期油气成藏,集中于始新统双阳组和奢岭组。鹿乡断陷和莫里青断陷皆发育两期油气成藏,集中于双阳组。
     (四)伊通盆地油气运聚单元划分及评价
     1.油气特征及来源研究表明伊通盆地不同断陷的油气具有不同特征和来源。岔路河断陷以产气为主,原油以轻质原油为主,都来自于始新统双阳组烃源岩;莫里青和鹿乡断陷主要产油,原油以轻质原油和正常原油为主,主要来自始新统双阳组烃源岩。
     2.伊通盆地输导体系主要包括砂体、断层以及基岩不整合面;不同二级构造单元的有不同的输导体系配置,导致其运移特点明显不同。其中莫里青断陷断裂不发育,油气运移以侧向为主;岔路河断陷纵向油气分布范围广,指示本区发育较强烈的垂向输导作用;鹿乡断陷输导体系最为发育且配置良好,侧向和垂向运移共同输导双侧生烃凹陷生成的油气向五星构造带汇聚成藏,形成伊通盆地目前最大规模油气藏—长春油田。
     3.控制伊通盆地油气成藏的主要因素有断裂、基岩不整合、砂岩储层、盖层和温压系统;在不同地区这些因素的影响作用不同,导致了不同的油气成藏模式。
     4.本次应用Basin Mod软件系统中Basin Flow和Basin View模块,模拟恢复伊通盆地E2s—>E2s生储系统油气二次运移演化,结果表明,主成藏期时流体运移最为活跃,此阶段生烃凹陷油气供给充分,运移流线密度大,运移范围广、作用强烈,位于生烃凹陷中心周围的各种岩性、构造及复合圈闭具有最为优越的油气运聚条件。
     5.根据油气运聚的分割槽原理,基于盆地主力生储系统(成藏组合)E2s—>E2s油气主成藏期的油气运移流线图(10Ma),伊通盆地在平面上共可划分为11个油气运聚单元,伊通盆地的油气运聚条件以莫里青断陷运聚单元Ⅰ、鹿乡断陷运聚单元Ⅰ和岔路河断陷运聚单元Ⅱ为最为优越。这些运聚单元内发育生烃富凹,油源条件充足;始新统双阳组优质砂体广泛分布,储集条件优越;断裂-砂体-基岩不整合复合输导体系发育,沟通油气不断汇聚至有利圈闭成藏;加之晚期断裂不甚发育,联合区域优质泥岩盖层封闭下部双阳组的油气,油气保存条件良好。
Yitong Basin is a Cenozoic slip-extensional rift basin that developed in in northeast section of the Tanlu Fault zone, and is located between the Changchun city and Jilin city of Jilin province.
     With the Daheishan horst, which adjacent by the Soliao basin, on the northwest edge of the Yitong basin and the Nadanhadaling terra on the southeast edge, the basin's form looks like a long belt with a length of 160km, width of 10-20km and the total area of 2200km2, and extend for the direction of NE45.
     Based on generally collecting, arranging and studying the present documents in geology, geophysics, geochemistry and analytical experiments and the previous achievements of the research area, guided by the theory of petroleum pool forming dynamics, applying the integrated technique that combining the static with the dynamic, the macroscopic with the microscopic and the qualitative with the quantitative, with the primary content about the dynamics of hydrocarbon accumulation in the Yitong basin, the fundamental reservoir forming conditions, the feature of the fluid dynamic field and the process of the dynamics of hydrocarbon accumulation in the Yitong Basin were systematically analyzed. And the carrier system, the main controlling factors of hydrocarbon accumulation and the evolution history of secondary migration of hydrocarbon in the Yitong Basin were deeply dissected and finally the migration and accumulation units of hydrocarbon were classified and evaluated. It will help to better understand the rules for the hydrocarbon accumulation in the Yitong Basin and the similar slip-extensional rift basin, and provide an example for predicting the favourable exploration targets. The thesis is divided into four parts as follows.
     1. Analysis on the geological elements of hydrocarbon accumulation in the Yitong Basin
     Based on the thickness of dark shale, organic matter abundance, organic matter type and organic matter maturity, the source rocks of secondary tectonic units in the Yitong Basin were comprehensively evaluated. The results indicate that there are three types of source rock named as the Eocene Shuangyang, Sheling and Yongji formations, and the Eocene Shuangyang is supposed to be the major source rock due to the wide distribution and great thickness of the dark shale, relatively richer organic matter abundance and higher maturity.
     Based on the analysis of the the sedimentary facies, lithological and physical properties of the Eocene and Oligocene reservoirs in the Yitong Basin, the results suggest that the siltstones, fine sandstones and sandy conglomerates are the major reservoir rocks. Although the physical properties of the reservoirs are gradually destroyed due to the increase of burial depth, the reservoir conditions of Shuangyang Formation in deep depth may be improved by possible development of the abnormal porosity and permeability in partial intervals in the Luxiang fault depression and the Moliqing fault depression. Reservoir conditions were mainly controlled by multiple factors such as sedimentary environment, diagenesis and tectonic movements. In a word, with the most favorable reservoir conditions, the Eocene Shuangyang formation is the major oil bearing interval in the Yitong Basin.
     The sealing conditions of cap rocks were intregratelly evaluated on two aspects:regional distribution characteristcs and seal mechanism of cap rocks, which indicates that the Yongji formation is the most important cap rock in theYitong Basin due to its highest shale content, greatest single thickness and stable regional distribution. Excess pressure generally exsits in cap rocks from the study area, therefore, the sealing condition is improved by abnormal high pressure (undercompacted) in the shale. Based on the comprehensive evaluation of the above geological elements of hydrocarbon accumulation, it can be concluded that the type of authigenic reservoir is the most important one in the Yitong Basin.
     2. The distribution characterictics and evolution history for the fluid dynamic field
     Based on the statistics of the geothermal gradient and heat flow at present all around the basin, it indicates that the average geothermal gradient within the shallow layers is higher than the deep ones. Laterally, the average geothermal gradient is relatively higher within the Moliqing fault depression and Luxiang fault depression but relatively lower within the Chaluhe fault depression. Within the different tertiary tectonic units in the same fault depression, the sag always has higher geothermal gradient than the structural high. The distribution and thermal conductivity of the major faults plays an important role on the lateral distribution of geothermal field at present. By using the technique of BasinMod, the evolution history of the geothermal field was rebuilt based on the representative wells from the different secondary tectonic units, the results suggested that the geothermal gradient gradually went down in the evolution history.
     By caculating the measured formation pressure data within the reservoirs and cap rocks, it can be concluded that the reservoir geopressure is mostly normal in the Yitong Basin, and the overpressure mainly develop within the Shuangyang famation of the Chaluhe and Moliqing fault depressions. The deep shales usually have the overpressure while the shallow shales show the normal compaction trend. The uncompacted zone in the shale is mostly distributed in the Eocene formation, and there are three types of reservoir-seal energy assemblage in the Yitong basin. By using the technique of BasinMod, the evolution history of the excess pressure was rebuilt based on 5 wells and 13 lines, the results indicated that the excess pressure was mainly distributed within the Eocene Sheling and Shuangyang formations. The 1D and 2D modeling results both showed that the formation pressure evolution in the study area has obviously undegone cycles of accumulation and expulsion, the mechanism for pressure accumulation was undercompaction in the early period but hydrocarbon generation in the late period. The tectonic uplift was the main mechanism for pressure release.
     Base on the modeling of excess pressure evolution history for the above 13 2D lines, combined with filling history, the evolution chatacteristics of fluid potential was analyzed in the Yitong basin. The results indicated that the current distribution of fluid potential is characterized by "gravity flow" feature, and the high-value area of fluid potential is within the Shuangyang formation of the hydrocarbon generation kichen. The evolution history of fluid potential can be featured by the continuing developing high fluid potential within the Eocene formations in northwest of the hydrocarbon generation kichen, the fluid potential gradually decreased along the basement and fault towards the uplift in the Southeast area, which suggested that the large-scale lateral migration mainly happened within the Shuangyang Formation. And the fault should be the major vertical pathway for hydrocarbon migration. As a whole, the hydrocarbon migration always happened in at the same transport layer from the depression to slope high, and the structural high should be the favorable area for hydrcarbon migration during all the stages. In the critical period for the hydrocarbon accumulation, the fluid potential is relatively higher within the Shuangyang Formation, and the hydrocarbon generation kichen within the Chaluhe fault depression had a remarkable higher fluid potential than the depression within the Luxiang and Moliqing fault depression. Futhermore, the development of paleo-fluid potential was controlled by the evolution of palaeo-overpressure, both of them have cycling, Volating and decreasing trend.
     3. The study on the dynamics of hydrocarbon accumulation in the Yitong Basin
     Based on the results of erosion thickness restoration for the Qijia and Wanchang formations in the Yitong Basin, the burial history of 10 wells was rebuilt and the modeling results indicated that the tectonic-sedimentation development in the Yitong Basin was characterized by multiphasic evolution. Generally, the Yitong Basin had a higher sedimentation rate and tectonic subsidence rate in early period compared with the late period. The tectonic-sedimentation development in different tectonic units gradually became more and more similar.
     Based on the model of transit heat flow, the geothermal evolution history was rebuilt based on the 10 representative single wells in the Yitong Basin, the result showed that formation temperature rate was obviously controlled by sedimentation rate and they have proportional relationship. The basin sedimentation rate and formation temperature rate both decreased in the geological period, which are correspondent to the structural evolution of the Yitong Basin.
     In this study, chemical kinetics model was used for hydrocarbon generation history modeling of the main hydrocarbon source rocks of each representative single well in fault depression. Simulation results showed that, source rocks of Shuangyang Formation had the highest hydrocarbon-generating intensity, Sheling Formation took the second place, Yongji Formation had weak hydrocarbon generation capacity. Generation intensity of gas in Chaluhe fault depression was higher than oil, hydrocarbon source rocks of Shuangyang Formation and Sheling Formation had high thermal evolution degree, while product was dominated by gaseous hydrocarbon. Conversely, Moliqing fault depression and Luxiang fault depression had moderate thermal evolution degree, with liquid hydrocarbon as the main product. The simulation result of hydrocarbon expulsion history was consistent with hydrocarbon generation history and manifested as Shuangyang Formation had the highest gas expulsion intensity and oil expulsion intensity, which was the major hydrocarbon expulsion horizon. gas expulsion intensity of source rocks was higher than oil expulsion intensity in Chaluhe Fault Depression, while product was dominated by gaseous hydrocarbon, while Luxiang Fault Depression and Moliqing Fault Depression took liquid hydrocarbon as the main product. the source rocks of Shuangyang Formation began to expell hydrocarbon ealier than Sheling Formation, mostly in middle Oligocene. the source rocks of Shuangyang Formation had the highest hydrocarbon expulsion efficiency, the oil expulsion efficiency and gas expulsion efficiency was mostly larger than fifty percent.
     The results of the apatite fission-track chronology for the Chaluhe Fault-Depression and Luxiang Fault Depression in the Yitong Basin showed that Chaluhe Fault Depression had experienced two stages of tectonic movement (uplift-cooling) since the Oligocene, respectively corresponding to the tectonic uplift event at the sedimentary end of Wanchang Formation and that of Chaluhe Formation. Luxiang Fault Depression had experienced at least one stage of tectonic uplift event since Oligocene, corresponding to the tectonic uplift event at the sedimentary end of Wanchang Formation.
     Study on hydrocarbon filling history of the Yitong Basin based on oil and gas bearing inclusion showed, Chaluhe Fault Depression in the Yitong Basin developed three stages of hydrocarbon accumulation, and mostly concentrated in Shuangyang Formation and Sheling Formation. Moliqing fault depression and Luxiang fault depression both had two stages of hydrocarbon accumulation, which mostly developed in the Shuangyang Formation.
     4. The classification and evaluation for the migration and accumulation units of hydrocarbon
     Characteristics of hydrocarbons and oil-source correlation has been analyzed in the study, the results suggested that hydrocarbons in different secondary tectonic units have different characteristics and origin. The natural gas is the main product within the Chaluhe fault depression, whose oil is dominated by light crude oil. The oil and natural gas both originated from the source rock of the Eocene Shuangyang Formation. By contrast, the oil is the main product within the Moliqing and Luxiang fault depressions. The oil mainly originated from the source rock of the Eocene Shuangyang Formation as well and was dominated by light and normal crude oil.
     The hydrocarbon carrier system within the Yitong Basin mainly includes sand body, fault and basement unconformity, and different secondary tectonic units have its unique configurations of hydrocarbon carrier system, which result in obvious different migration styles. Because of the lack of faults within the Moliqing fault depression, this area is dominated by lateral hydrocarbon migration. By contrast, the hydrocarbon is vertically wide distributed within the Chaluhe fault depression, indicating that vertical hydrocarbon migration intensively developed in this area. The Luxiang fault depression has the most developed hydrocarbon carrier system and favorable configuration, therefore, the oils from the two hydrocarbon-generation kitchens could continuously accumulated towards the traps within the Wuxing structural high through the lateral and vertical hydrocarbon carrier system. Finally the biggest hydrocarbon reservoir formed as Changchun Oil Field in the Yitong Basin.
     The main controlling factors for hydrocarbon accumulation within the Yitong Basin are fault, basement unconformity, sandstone reservoir, seal and temperature-pressure system. These characters have different influential actions in different areas, which lead to different hydrocarbon accumulation patterns.
     In this study, the module of BasinFlow and Basin View was used as a simulator for recovering the evolution of hydrocarbon secondary migration within the E2S—>E2S source-reservoir system in the Yitong Basin, it can be concluded that The hydrocarbon secondary migration became the most intensive during the main period of oil and gas accumulation and in this phase oil and gas was sufficiently provided by hydrocarbon-generation kitchen, the hydrocarbon secondary migration can be characterized by the big density of flow line, the wide distribution of hydrocarbon migration and the strong affect of hydrocarbon migration. Therefore, the wide distributed lithologic, structural and complex traps, which are located within or nearby the hydrocarbon-generation kitchen, will be the most favorable targets for hydrocarbon migration and accumulation in the Yitong Basin.
     According to the concept for dividing trough of hydrocarbon migration and the source-reservoir system (E2S—>E2S) of the flow chart during the main period of oil and gas accumulation (10Ma), the Yitong Basin can be divided into 11 hydrocarbon migration-accumulation units. and the best units are the hydrocarbon migration-accumulation unitⅠin the Moliqing fault depression, the hydrocarbon migration-accumulation unitⅠin the Luxiang fault depression and the hydrocarbon migration-accumulation unitⅡin the Chaluhe fault depression. These hydrocarbon migration-accumulation units have some common features:the favorable hydrocarbon-generating kitchens were developed and sufficient oil source was supplied, the high-quality sand body in the Shuangyang Formation was highly developed and good reservoir condition was provided, the favorable complex conduit system of fault-sand body-basement unconformity were developed within these areas. Besides, the lack of tensing faults in the late period, the good sealing condition was provided, so the preservation condition for hydrocarbon is perfect.
引文
[1]孙万军,刘宝柱,李本才,等.伊通地堑断层系统与构造样式[J].现代地质,2004,18(4):505-601.
    [2]陈红汉,叶加仁,孙家振,等.伊通盆地构造,沉积及油气成藏综合评价[R].武汉:中国地质大学(武汉)资源学院石油系,2008.
    [3]童亨茂,纪洪勇,宋立忠,等.伊通地堑构造样式及其油气分布规律[J].西安石油学院学报(自然科学版),2002,17(5):9-14.
    [4]梁春秀,魏志平,李本才,等.伊兰-伊通盆地输导体系与油气运聚[J].天然气工业,2002,22(1):31-32.
    [5]黄湘通,方石,许海华.伊通地堑莫里青盆地双阳组储层敏感性研究[J].世界地质,2002,21(4):347-352.
    [6]何玉平,刘招君,董清水,等.吉林伊通盆地莫里青断陷古近系双阳组储层成岩作用研究[J].古地理学报,2006,8(1):75-82.
    [7]刘鸿友,彭苏萍,魏志平,等.伊通地堑原油特征与成熟度[J].石油勘探与开发,2002,29(3):21-24.
    [8]黄志龙,高岗,刘鸿友.伊通地堑天然气地球化学特征与运移效应[J].地质地球化学,2002,30(3):59-63.
    [9]黄志龙,高岗.莫里青断陷天然气成因与运聚模式[J].天然气地球科学,2005,16(3):2-5.
    [10]王永春.伊通地堑含油气系统与油气成藏[M].北京:石油工业出版社,2002.
    [11]李本才,刘鸿友,杜怀旭,等.伊通盆地含油气系统与油气藏[J].中国石油勘探,2003,8(3):38-46.
    [12]邓守伟,曹强,叶加仁.伊通盆地莫里青断陷烃源岩特征及生排烃史[J].地质科技情报,2007,26(6):66-70.
    [13]曹强,叶加仁.伊通盆地莫里青断陷地温-地压系统与油气成藏关系[J].海洋地质与第四纪地质,2007,27(3):99-104.
    [14]曹强,叶加仁,唐大卿.伊通盆地渐新世以来构造活动历史的裂变径迹分析[J].矿物岩石,2009,29(2):66-71.
    [15]曹强,叶加仁,郭飞飞,等.伊通盆地莫里青断陷地层压力演化与油气运聚[J].吉林大学学报(地球科学版),2009,39(4):642-649.
    [16]金之钧,王清晨.中国典型叠合盆地与油气成藏研究新进展—以塔里木盆地为例[J].中国科学:D辑地球科学,2004,34(S1):1212.
    [17]刘新社,席胜利,黄道军,等.鄂尔多斯盆地中生界石油二次运移动力条件[J].石油勘探与开发,2008,35(2):143-147.
    [18]Schegg R,Cornford C.and Leu W. Migration and accumulation of hydrocarbons in the Swiss molasse basin: Implications of a 2D basin modeling study[J]. Marine and Petroleum Geology,1999,16(6):511-531.
    [19]Vannucchi P. Monitoring paleo-fluid pressure through vein microstructures[J]. Journal of Geodynamics,2001,32(4-5):567-581.
    [20]Ye J R,Hao F,and Chen J Y. Development of overpressure in the Tertiary Damintun depression,Liaohe basin,northern China[J]. Acta Geologica Sinica English Edition,2003,77(3):402-412.
    [21]Dow W G. Application of oil correlation and source rock data to exploration in Williston basin (abs) [J]. AAPG Bulletion,1972,56:615.
    [22]Perrodon A. Dynamics of oil and gas accumulation[A]. Bulletin Des Centres De Recherches Exp loration Production Elf Aquitaine[C]. MEMS,1983.187-210.
    [23]Meissner F F. Petroleum geology of the Bakken Formation, Willistion basin, North Dakota and Montana [A]. In:Demaison G,Murris R. J.,eds. Petroleum geochemistry and basin evaluation[C]. AAPG Memoir 35,1984. 159-179.
    [24]Ulmishek G. Stratigraphic aspects of petroleum resource assessment[A]. In:Rice D D,eds. Oil and gas assessment methods and application[C]. AAPG Studies in Geology,1986.21:59-68.
    [25]Demaison G,The generative basin concept,In:Demaison G,and Murris R. J.,eds.,Petroleum geochemistry and basin evaluation [J]. AAPG Memoir 35,1984,1-14.
    [26]Demaison G,and Huizinga B. J.,Genetic classification of petroleum systems[J]. AAPG Bulletin,1991,75 (10): 1626-1643.
    [27]Magoon L. B.,The petroleum system classification scheme for research,resource assessment,and exploration (abs) [J]. AAPG Bulletin,1987,71(5),587.
    [28]Magoon L B,Dow W G. The petroleum system:form source to trap [J]. AAPG Memoir 60,1994.
    [29]Magoon L B,DowW G.含油气系统—从烃源岩到圈闭[M].张刚,蔡希源,高泳生,等译.北京:石油工业出版社,1998.
    [30]张厚福,方朝亮.盆地油气成藏动力学初探—21世纪油气地质勘探新理论探索[J].石油学报,2002.23(4):7-12.
    [31]Magoon L B.含油气系统及其研究方法[M].杨瑞召,译.北京:地质出版社,1994.
    [32]费琪.成油体系分析[J].地学前缘,1995,2(4):164-170.
    [33]吴云燕,吕修祥.利用含油气系统认识油气分布[J].石油学报,1995,16(4):17-22.
    [34]田世澄,陈建渝,张树林,等.论成藏动力学系统[J].勘探家,1996,1(2):20-25.
    [35]赵文智,何登发,李伟,等.含油气系统的内涵与描述方法[A].见:胡建义.中国含油气系统的应用与进展[C].北京:石油工业出版社,1997.
    [36]宋建国,张光亚.中国油气系统分类与勘探方向[A].见:胡见义.中国含油气系统的应用与进展[C].北京:石油工业出版社,1997.
    [37]田世澄,毕研鹏.论成藏动力学系统[M].北京:地震出版社,2000.
    [38]岳伏生,郭彦如,李天顺,等.成藏动力学系统的研究现状及发展趋向[J].地球科学进展,2003,18(1):122-126.
    [39]张厚福.石油地质学新进展[M].北京:石油工业出版社,1998.
    [40]何登发,赵文智,雷振宇,等.中国叠合型盆地复合含油气系统的基本特征[J].地学前缘,2000,7(3):23-37.
    [41]赵文智,何登发.中国复合含油气系统的概念及意义[J].勘探家,2000,5(3):1-12.
    [42]郝芳,李思田,龚再升,等.莺歌海盆地底辟发育机理与流体幕式充注[J].中国科学,2001,31(6):471-476.
    [43]罗晓容.油气成藏动力学研究之我见[J].天然气地球科学,2008,19(2):149-170.
    [44]张树林,田世澄,陈建渝.断裂构造与成藏动力系统[J].石油与天然气地质,1997,18(4):261-266.
    [45]张树林,叶加仁,杨香华,等.著.断陷盆地的断裂构造与成藏动力系统[M].第一版,北京:地震出版社,1997.1-83.
    [46]田世澄,张树林,袁国礼,等.论成藏动力学系统的划分和类型[A].见:胡见义.含油气系统研讨会论文集[C].北京:石油工业出版社,1998.10-17.
    [47]张树林,田世澄,陈建渝陆相断陷盆地的成藏动力系统[A].见:成油体系与成藏动力学论文集[C].北京:地震出版社,1999.
    [48]吴冲龙,王夔培,何光玉.论油气系统与油气系统动力学[J].地球科学—中国地质大学学报,2000,12(3):605-609.
    [49]田世澄,陈永进,张兴国,等.论成藏动力系统中的流体动力学机制[J].地学前缘,2001,8(4):329-336.
    [50]赵文智,张光亚,汪泽成.复合含油气系统的提出及其在叠合盆地油气资源预测中的应用[J].地学前缘,,2005,5(3):458-467.
    [51]龚再升,杨甲明.油气成藏动力学及油气运移模型[J].中国海上油气(地质),1999,13(4):235-239.
    [52]杨甲明,龚再升,吴景富,等.油气成藏动力学研究系统概要(上)[J].中国海上油气(地质),2002,16(2):92-97.
    [53]郝芳,邹华耀,姜建群.油气成藏动力学及其研究进展[J].地学前缘,,2000,,7(3):11-21.
    [54]叶加仁,顾惠荣.势能理论与油气勘探[J].海洋石油,2001,4,6-9.
    [55]Person M,Garven G Hydrologic constraints on petroleum generation within continental rift basins:theory and application to the Rhine Graben[J]. AAPG Bulletin,1992,76:468-488.
    [56]Person M,Toupin D.Eadington P J. Effects of convective heat transfer on the thermal history of sediments and petroleum generation within continental rift basins[J]. Basin Research,1995,8:81-96.
    [57]Person M, Raffensperger J,GE S, et al. Basin-scale hydrogeological modeling[J]. Reviews of Geophysics,1996,34:61-87.
    [58]Duddy I R, Green P F,Bray R J,et al. Recognition of the thermal effects of fluid flow in sedimentary basins[A]. Parnell J,ed. Geofluids:Origin,Migration and Evolution of Fluids in Sedimentary Basins[C]. Geological Society Special Publication.1994,78:325-345.
    [59]Toupin D,Eadington P J,Person M,et al.Petroleum hydrogeology of the Cooper and Eromanga basins,Australia:some insights from mathematical modeling and fluid inclusion data[J]. AAPG Bulletin,1997.81:577-603.
    [60]Hao Fang,Li Sitian,Dong Weiliang, et al. Abnormal organic matter maturation in the Yinggehai Basin,offshore South China Sea:implications for hydrocarbon expulsion and fluid migration from overpressured systems[J]. Journal of Petroleum Geology,1998,21:427-444.
    [61]Green P F,Duddy I R,Duddtt G M,et al. Thermal annealing of fission tracks in apatite:quantitative modeling techniques and extension to geological timescales[J].Chemical Geology,1989,79:155-182.
    [62]Kohn B P,Green P F. Low Temperature Thermochronology:From Tectonics to Landscape Evolution[J]. Tectonophysics,2002,349(124):1-4.
    [63]Holford S P,Turner J P,Green P F. Reconstructing the Mesozoic-Cenozoic exhumation history of the Irish Sea basin system using apatite fission-track analysis and vitrinite reflectance data[J]. Petroleum Geology of Northwest Europe:Proceedings of the 6th petroleum geology Conference,2005,6,1095-1107.
    [64]Gleadow A J W, Gleadow S J,Belton,D X,et al. Fully-automated counting for fission track dating and thermochronology [J]. Geochimica et Cosmochimica Acta,2006,70(18S),A205.
    [65]Sweeney J J,Burnham A K. Evolution of a simple model of vitrinite reflectance based on chemical kinetics[J]. AAPG Bulletin,1990,74:1559-1570.
    [66]杜栩,郑洪印,焦秀琼.异常压力与油气分布[J].地学前缘,1995,2(3-4):137-148.
    [67]Osborne M J,Swarbrick R E. Mechanisms for generating overpressure in sedimentary basins:a reevaluation[J]. AAPG Bulletin,1997,81:1023-1041.
    [68]Dickinson,G Geological aspects of abnormal reservoir pressure in Gulf Coast Louisiana. [J]. AAPG Bulletin,1953,37:410-432.
    [69]Eaton,B.A. Graphical method predicts geopressures worldwide[J]. World Oil,1976,183(1):100-104.
    [70]Fillippone,W. R. On the prediction of abnormally pressured sedimentary rocks from seismic data[J]. OTC 3662,1979:2667-2676
    [71]Fillippone W R. Estimation of formation parameters and the prediction of overpressures from seismic data[J]. Geophysics,1983,48(4):482-483.
    [72]刘震,张万选,张厚福,等.辽西凹陷北洼下第三系异常地层压力分析[J].石油学报,1993,14(1):14-23.
    [73]Roedder E and Bodnor R J. Geological pressure determinating from fluid inclusion studies[J]. Annual Review of Earth Planetary Science,1980,8:263-301.
    [74]Aplin A C,Larter S R,and Bigge M A. PVTX history of the North Seas Judy oilfield[J]. Journal of Geochemical Exploration,2000,69-70:641-644.
    [75]Swarbrick R E.Osborne M J,Grunberger D,et al. Integrated study of the Judy Field (Block 30/7a):an overpressured central North Sea oil/gas field[J]. Marine and Petroleum Geology,2000,17(9):993-1010.
    [76]米敬奎,肖贤明,刘德汉,等.利用储层流体包裹体的PVT特征模拟计算天然气藏形成的古压力-以鄂尔多斯盆地上古生界深盆气藏为例[J].中国科学(D辑),2003,33(7):679-685.
    [77]邹海峰.大港探区前第三系古流体和古温压特征及演化[D].长春:吉林大学博士论文,2000.
    [78]刘福宁.异常高压区的古沉积厚度和古地层压力恢复方法探讨[J].石油与天然气地质,1994,15(2):180-185.
    [79]李善鹏,邱楠生.利用盆地模拟方法分析昌潍坳陷古压力[J].新疆石油学院学报,2003,15(4):5-8.
    [80]解习农,焦赳赳,熊海河.松辽盆地十屋断陷异常低压体系及其成因机制[J].地球科学—中国地质大学学报,2003,29(5):589-595.
    [81]谢文彦,姜建群,史建南,等.大民屯凹陷压力场演化及其成藏意义[J].石油学报,2004,25(6):48-52.
    [82]叶加仁,王连进,邵荣.油气成藏动力学中的流体动力场[J].石油与天然气地质,1999,20(2):182-185.
    [83]HuntJ. M. Generation and migration of petroleum from abnormally pressured fluid compartments[J]. AAPG Bulletin,1990,74(1):1-12.
    [84]Hunt,J. M. Generation and migration of petroleum from abnormally pressured fluid compartments:reply. AAPG Bulletin,1991,75(2):336-338.
    [85]Swarbrick R E. AADE forum:pressure regimes in sedimentary basins and their prediction[J]. Marine and Petroleum Geology,1999,16:483-486.
    [86]Yardley,GS. and Swarbrick,R.E. Lateral transfer:a source of additional overpressure[J]. Marine and Petroleum Geology,2000,17(4):523-537.
    [87]Wangen,M. A quantitative comparison of some mechanisms generating overpressure in sedimentary basins[J]. Tectonophysics,2001,334:211-234.
    [88]He,S.,Middleton,M. Pressure seal and deep overpressure modelling in the Barrow Sub-basin,North West Shelf, Australia[J]. The Sedimentary Basins3:Proceedings of the petroleum exploration society of Australia Symposium,Perth,WA.2002,531-549.
    [89]Gutierreza,M.,Wangen,M. Modeling of compaction and overpressuring in sedimentary basins[J]. Marine and Petroleum Geology,2005,22:351-363.
    [90]Hunt J M,Whelan J K,Eglinton L B,et al. Gas generation—a major cause of deep gulf coast overpressures[J]. Oil &Gas Journal,1994,18:59-62.
    [91]Hunt J M. Petroleum Geology and Geochemistry[M].2nd ed.San Francisco:Freeman and Company,1996,743.
    [92]Spencer C W. Hydrocarbon generation as a mechanism for overpressuring in Rocky Mountain region[J]. AAPG Bulletin,1987,71:368-388.
    [93]郝芳,邹华耀,方勇.隐蔽油气藏研究的难点和前沿[J].地学前缘,2005,12(4):481-488.
    [94]陶一川.油气运移聚集的流体动力学机理问题[J].石油与天然气地质,1983,4(3):254-268.
    [95]Hubbert M K. The theory of ground-water motion[J]. Journal of Geology,1940,48:783-944.
    [96]Hubbert M K. Entrapment of petroleum under hydrodynamic conditions[J]. AAPG Bulletin,1953,37(8): 1954-2026.
    [97]Dahlberg E C. Applied hydrodynamics in petroleum exploration[M]. New York:Springer-Verlag,1982.
    [98]Dahlberg E C. Applied hydrodynamics in petroleum exploration[M].2nd ed. New York: Spinger-Verlag,1995.295.
    [99]查明.断陷盆地油气二次运移与聚集[M].北京:地质出版社,1997.9-1.
    [100]Hindle A D. Petroleum migration pathways and charge concentration:a three-dimensional model. AAPG Bulletin,1997,81(9):1451-1481.
    [101]楼章华,高瑞祺,蔡希源,等.流体动力场演化与地层流体低压成因[J].石油学报,1999,20(6),27-31.
    [102]杜强,胡伏生,万力,等.鄂尔多斯北部盆地古流体动力场的演化特征[J].煤田地质与勘探,2000,28(6),23-27.
    [103]杨金侠.海拉尔盆地乌尔逊凹陷古流体动力场数值模拟[J].长安大学学报(地球科学版),2003,25(3),41-47.
    [104]陈荣书主编.石油及天然气地质学[M].武汉:中国地质大学出版社,1994.62.
    [105]石广仁.油气盆地数值模拟方法[M].北京:石油工业出版社,1994.
    [106]郭秋麟,米石云,石广仁,等.盆地模拟原理方法[M]北京:石油工业出版社,1998.
    [107]Sclater J G,and Christie P A F,1980,Continental Stretching:An Explanation of the Post-Mid-Cretaceous Subsidence of the Central North Sea Basin[J]. Journal of Geophysical Research,85,3711-3739.
    [108]Falvey D A,and Middleton M F,1981,Passive Continental Margins:Evidence for a Prebreakup Deep Crustal Metamorphic Subsidence Mechanism[J]. Oceanologic Acta,SP,103-114.
    [109]Baldwin B. and Butler CO,1985,Compaction Curves[J]. AAPG Bulletin,69(4):April 1985,622-626.
    [110]Van Hinte J E,1978,Geohistory Analysis—Application of Micropaleontology in Exploration Geology[J]. AAPG Bulletin,62:201-222.
    [111]McKenzie D,1978,Some remarks on the development of sedimentary basins[J]. Earth and Planetary Science Letters,40,pp.25-32.
    [112]Royden L, and Keen C E,1980, Rifting process and thermal evolution of the continental margin of eastern Canada determined from subsidence curves[J]. Earth and Planetary Science Letters,51:343-361.
    [113]Lerche I,1990, Basin Analysis-Quantitative Methods[M].1 and 2,Academic Press, Inc.,San Diego.
    [114]Lopatin N V,1971,Temperature and Geologic Time as Factors in Coalification, Izvestiya Akademii Nauk USSR[J]. Seriya Geologicheskaya,(3):95-106.
    [115]Waples D W,1980,Time and Temperature in Petroleum Formation:Application of Lopatin's Method to Petroleum Exploration[J]. AAPG Bulletin,64(6):916-926.
    [116]Burnham AK,and Sweeney J J.1989, A chemical kinetic model of vitrinite maturation and reflectance[J],Geochim. et Cosmochim. Acta,53:2649-2657.
    [117]Suzuki N,Matsubayashi H,Waples D W. A simpler kinetic model of vitrinite reflectance [J]. AAPG Bulletin,1993,77(9):1502-1508.
    [118]Yukler M A,Corford C,and Welte D H. One-dimensional model to simulate geologic, hydrodynamic and thermo-dynamic development of a sedimentary basin[J]. Geol.Rundschau,1978,67(4):960-979.
    [119]石广仁,郭秋麟等.盆地模拟方法及综合勘探系统[M].见:含油气盆地地质学研究进展[C].西安出版社,1993.
    [120]石广仁,郭秋麟,米石云,等.盆地模拟系统BASIMS[J].石油学报,1996,17(1):12-19
    [121]Ungerer P,Burrus J,and Doligez B,et al.1990,Basin Evaluation by Integrated Two-Dimensional Modeling of Heat Transfer, Fluid Flow, Hydrocarbon Generation, and Migration[J],AAPG,74(3):309-335.
    [122]郝芳,邹华耀,王敏芳,等.油气成藏机理研究进展和前沿研究领域[J].地质科技情报,2002,21(4):7-14.
    [123]Sandvik E I,Mercer J N.Primary migration by bulk hydrocarbon flow[J].Organic Geochemistry,1990,16(1): 83-89.
    [124]Stainforth J G,Reinders J E A.Primary migration of hydrocarbons by diffusion through organic matter networks,and its effect on oil and gas generation[J]. Organic Geochemistry,1990,16(1):61-74.
    [125]Rhea,L.,Person,M.,de Marsily,G.,Ledoux,E.,Galli,A.,1994.Geostatistical models of secondary oil migration within heterogeneous carrier beds:a theoretical example[J]. AAPG Bulletin 78,1679-1691.
    [126]Bekele, E.,Person,M.,de Marsily,G.,1999. Petroleum migration pathways and charge concentration:a three-dimensional model:discussion[J]. AAPG Bulletin 83,1015-1019.
    [127]Bekele, E.,Person, M.,Rostron, B.,Barnes,R.,2002. Modeling secondary oil migration with core-scale data: Viking formation,Alberta basin[J]. AAPG Bulletin 86,55-74.
    [128]Hindle A D. Petroleum migration pathways and charge concentration:a three-dimensional model[J]. AAPG Bulletin,1997,81(9):1451-1481
    [129]龚再升,李思田.南海北部大陆边缘盆地分析与油气聚集[M].北京:科学出版社,1997.
    [130]Sylta O,Pedersen J I,Hamborg M. On the vertical and lateral distribution of hydrocarbon migration velocities during secondary migration[A]. In:Parnell J.Dating and Duration of Fluid Flow and Fluid-rock Interaction(Vol.144)[C][s.l.]:Geological Society Special Publication,1998.221-232.
    [131]Dembicki H J,Anderson M J. Secondary migration of oil:Experiments supporting efficient movement of separate.buoyant oil phase along limited conduits[J]. AAPG Bulletin,1989,73(8):1018-1021.
    [132]Catalan L,Xiaowen F,Chatzis I,et al. An experimental study of secondary oil migration[J]. AAPG Bulletin,1992,76(4):638-650.
    [133]Thomas M M,Clouse J A.Scaled physical model of secondary migration[J]. AAPG Bulletin,1995,79(1):19-59.
    [134]Carruthers D,Ringose P. Secondary oil migration:Oil-rock contact volumes,flow behavior and rates[A].In: Parnell J. Dating and Duration of Fluid Flow and Fluid-rock Interaction (Vol.144)[C].[s.l.]:Geological Society Special Publication,1998.205-220.
    [135]Gussow,W.C.,1968. Migration of reservoir fluids[J]. Journal of Petroleum Technology 20,353-363.
    [136]Momper,J.A.,1978. Oil migration limitations suggested by geological and geochemical considerations: physical and chemical constraints on petroleum migration[J]. AAPG Short Course.
    [137]Momper, J.A.,Williams, J.A.,1984. Geochemical exploration in the Powder River basin. In:Demaison, G.D.,Murris,R.J. (Eds.), Petroleum Geochemistry and Basin Evaluation,35[J]. AAPG Memoir,181-191.
    [138]Pratsch, J.C.,1983. Gasfields,NW German basin:secondary migration as a major geologic parameter[J]. Journal of Petroleum Geology 5,229-244.
    [139]Pratsch,J.C.,1986. The distribution of major oil and gas reserves in regional basin structures—an example from the Powder River basin,Wyoming,USA[J]. Journal of Petroleum Geology 9,393-412.
    [140]Pratsch,J.C.,1988. Focused gas migration and concentration of deep gas accumulations, NW German basin. In:Beaumont,E.A.,Foster,N.H. (Eds.),Geochemistry,8[J]. AAPG Treatise of Petroleum Geology,613-619.
    [141]Pratsch,J.C.,1994. The location of major oil-and gasfields:examples from the Andean foreland[J]. Journal of Petroleum Geology 17,327-338.
    [142]Sylta,1991. Modeling of secondary migration and entrapment of a multi-component hydrocarbon mixture using equation of state and ray-tracing modeling techniques. In:England, W.A.,Fleet,A.J.,(Eds.), Petroleum Migration[J]. Geological Society, Special Publication,59,111-122.
    [143]Hermans, L.,van Kuyk,A.D.,Lehner,F.K.,Featherstone,P.S.,1992. Modeling secondary hydrocarbon migration on Haltenbanken,Norway,In:Larsen, R.M.,Brekke,H.,Larsen,B.J.,Talleraas,E. (Eds.),Structural and Tectonic Modeling and its Applications to Petroleum Geology[J]. Norwegian Petroleum Society,Special Publication,1,305-323.
    [144]丘比特,英格兰,著.油藏储层地球化学[M].王铁冠,张枝焕,译.北京:石油工业出版社,1997.
    [145]Parnell J. Introduction:approaches to dating and duration of fluid flow and fluid-rock interaction[A]. Parnell J, ed.Dating and Duration of Fluid Flow and Fluid-Rock Interaction[C]. Geological Society Special Publication,1998,144:1-8.
    [146]Dewers T,Ortoleva P. Nonlinear dynamical aspects of deep basin hydrology:fluid compartment formation and episodic fluid release[J]. American Journal of Science,1994,294:713-755.
    [147]Wojcik K M,Goldstein R H,Walton A W. Regional and local controls of diagenesis driven by basin-wide flow system:Pennsylvanian sandstones and limestones,Cherokee Basin, southeastern Kansas[A]. Montanez I P,Gregg J M.Shelton K I,eds.Basin-Wide Diagenetic Patterns:Integrated Petrologic,Geochemical,and Hydrologic Considerations[C]. SEPM Special Publication,1997(57):235-252.
    [148]Whelan J K,Kennicutt ⅡM C,Brooks J M,et al. Organic geochemical indicators of dynamic fluid flow process in petroleum basins[J]. Organic Geochemistry,1994,22:587-615.
    [149]Hao Fang,Li Sitian, Gong Zaisheng,et al. Thermal regime, inter-reservoir compositional heterogeneities,and reservoir-filling history of the Dongfang gas field, Yinggehai Basin, South China Sea:Evidence for episodic fluid Injections in overpressured basins[J]. AAPG Bulletin,2000,84(5).
    [150]Holm G. How abnormal pressures affect hydrocarbon exploration, exploitation[J]. Oil&Gas Journal,1998,96: 79-84.
    [151]唐大卿.伊通盆地构造特征与构造演化[D].中国地质大学(武汉),2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700