用户名: 密码: 验证码:
CO_2-火山碎屑岩相互作用的特征与机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
塔木察格盆地下白垩统铜钵庙组火山碎屑岩中发育较多的片钠铝石自生矿物,是研究CO2—火山碎屑岩相互作用的天然类似物。岩石学与地球化学研究表明,片钠铝石主要赋存于凝灰岩以及沉凝灰岩和凝灰质砂岩之中,含片钠铝石火山碎屑岩成岩共生序列为粘土包壳—方解石—一期微晶石英—一期高岭石—二期微晶石英、二期高岭石、片钠铝石—铁白云石。片钠铝石和铁白云石的形成与幔源—岩浆成因CO2的充注有关。通过CO2—火山碎屑岩和CO2—玄武岩相互作用实验验证和补充了岩石学观察结果。地球化学数值模拟表明,每立方米火山碎屑岩可以以矿物形式固结63kg的CO2,与天然类似物中固结CO2的量基本一致;CO2—火山碎屑岩相互作用总体降低了火山碎屑岩的孔隙度和渗透率,但是在CO2注入点附近孔隙度和渗透率相对较高。研究结果将为CO2地质埋存和火山碎屑岩油气储层研究提供基础地质信息。
The Tamtsag basin, located in eastern Mongolia, is one of a widespread basin system which formed during Late Jurassic and Cretaceous period. The basement of the Tamtsag basin is composed of metamorphic rocks and sedimentary rocks of pre-Paleozoic, Paleozoic, and Triassic, as well as intrusive rocks of Jurassic system. The basin fillings consist of mainly terrigenous detrital rocks of Jurassic, Cretaceous, Tertiary and Quaternary system. The dawsonite-bearing pyroclastic rock occurred in Tongbomiao formation of the Early Cretaceous of Tanan depression in Tamtsag basin, which has been considered as a natural analogue of the CO2-pyroclastic rock interaction.
     By integrating the multi-discipline methods of petrology, stable isotopic geochemistry, CO2 fluid-pyroclastic rock interaction experiments and geochemical simulation, on the basis of research on CO2 fluid-rock interaction in geological record, the dissolution of pyroclastic rock and the CO2 mineral trapping of it. I have clarified the characteristics of the CO2-pyroclastic rock interaction and revealed the mechanism of CO2 mineral trapping, and evaluated the capability of CO2 mineral trapping in pyroclastic rock, which can provide basic geological information for CO2 geological storage and research of pyroclastic rock oil and gas reservoirs.
     Dawsonite has been recognized in tuff, sedimentary tuff and tuffaceous sandstone, especially in tuff as a cement and replacement mineral. Besides dawsonite, the cements in dawsonite-bearing pyroclastic rocks include calcite, microcrystalline quartz, kaolinite, ankerite and clay minerals. Their diagenetic paragenesis includes 7 ordinal diagenetic processes. From earliest to latest, the diagenetic processes are:(a) clay coating formation, (b) calcite formation (c) early generation microcrystalline quartz formation, (d) early generation kaolinite formation, (e) dawsonite formation, late generation microcrystalline quartz formation, late generation kaolinite formation and (f) ankerite formation.
     The stable isotope composition of dawsonite and ankerite are investigated by MAT251, MAT252 and MAT253 stable isotope mass spectrometer, which have been used to investigate the origin of cleat dawsonite and ankerite in the Lower Cretaceous Tongbomiao formation pyroclastic rocks in the Tamtsag Basin, northeast Mongolia. Dawsonite 813C values (-8.15‰~1.3‰) and the calculated values of CO2 gas in isotopic equilibrium with dawsonite (-13.68%o~-3.83%o) are similar to the values in Hailaer basin and BGS basins suggests that CO2 for forming dawsonite almost belong to mantle origin-magma. Ankeriteδ13C values range form-7.29%o to-0.99‰, which are similar to dawsonite, combined with related geological and geochemical simulation examples, suggests that CO2 for forming ankerite also belong to mantle origin-magma.
     Hydro-thermal experiments on CO2-H2O-pyroclastic rock and CO2-H2O-basalt have been carried out to be as supplementary study for petrological observations. CO2-H2O-pyroclastic rock interaction experiments show that feldspar, pyroclastic materials and chlorite are dissolved in different degrees,and microcrystalline quartz, zeolite and carbonate precipitated. CO2-H2O-basalt interaction experiments show that feldspar and pyroxene are dissolved in different degrees, and contemporarily boehmite,kaolinite and some carbonate minerals containing siderite, calcite and dolomite formed. The two experiments verified silicate minerals and feldspar are easily dissolved in CO2 fluid which can supply ion for the formation of carbonate.The difference between petrology observation and experiment on the formation of carbonate is having no dawsonite precipitation in experiment, the reason may be the formation of dawsonite require a longer reaction time which is difficult to measure in experiment.
     Long-term CO2-pyroclastic rock process of interaction has been simulated.Numerical simulation of CO2-pyroclastic rock interaction reveals that after 3200 years, under CO2 injection conditions, K-feldspar, plagioclase and chlorite have been hardly dissolved, and some ion released. After CO2 injection, carbonate minerals include dawsonite, calcite and siderite have formed after 10000 years, the volume fraction of which are3.3%,2.03%and 0.28%respectively, and ankerite is rare. And non-carbonate minerals include albite, Na-montmorillonite, Ca-montmorillonite, illite, microcrystalline quartz and kaolinite formed. Albite volume is up to 15.62%,volume of newly formed illite, kaolinite and quartz isl.227%,3.066%and 2.85%respectively, sodium montmorillonite is reach 4.091%and calcium montmorillonite is rare.
     Through comparing petrology study, I have the identified authigenic minerals formed after mantle-magmatic CO2 flooding contain authigenic quartz, kaolinite, dawsonite and ankerite.CO2-pyroclastic rock interaction experiment have shown that injection of CO2 leading to the precipitition of microcrystalline quartz, zeolite, calcite and dolomite. Numerical simulation of CO2-pyroclastic rock interaction have confirmed that authigenic minerals formed after CO2 injection includes kaolinite, quartz, siderite, calcite, dawsonite, ankerite, illite and montmorillonite. The conclusions derived from these three research approaches are broadly consistent.
     The CO2 storage capacity of pyroclastic rocks has been calculated through natural analogs and simulation. CO2 mass captured by natural analogs in pyroclastic rocks can reach 75.8 kg per stere pyroclastic rock. Numerical simulation showed that CO2 that may be sequestered by precipitation of dawsonite, calcite, siderite, and ankerite. After 10 years CO2 mass captured islkg per stere,100 years later is about 3.56kg per stere, after 1000 years is 30 kg per stere, after 10000 years CO2 mass captured is up to 63kg per stere pyroclastic rock, which is coincident with CO2 captured by natural analogs.
     Although CO2 charge leads to porosity and permeability increasing, porosity and permeability in vicinity of CO2 injection are relatively high. Numerical simulation of CO2-pyroclastic rock interaction shows after 10,000 years, the porosity down from 10%to 6.957%and permeability from the 4E-15 m2 reduced to 1.347E-15m2. Porosity and permeability is proportional with the radial distance, away from the CO2 injection point, porosity and permeability decreases in large scale. This means porosity and permeability of the reservoir near the CO2 injection are relatively high which is favorable areas for finding high quality reservoirs.
引文
[1]常丽华,曹林,高福红.火成岩鉴定手册[M].2009,北京:地质出版社.
    [2]车启鹏,孙洪斌,张凤莲,刘敏,李应遏.牛居地区下第三系砂岩储层中自生高岭石成因分析[C].长春地质学院学报,1995,25(3):306-309.
    [3]戴金星,宋岩,戴春森,等.中国东部无机成因气及其气藏形成条件[M].北京:科学出版社,1995,92-102.
    [4]戴金星.论中国东部和大陆架二氧化碳气田(藏)及其气的成因类型[D].天然气地质和地球化学论文集:卷二.北京:石油工业出版社,2000,134-152.
    [5]戴金星,石听,卫延召.无机成因油气论和无机成因的气田(藏)概略[J].石油学报,2001,22(6):5-10.
    [6]党志,侯瑛.玄武岩-水相互作用的溶解机理研究[J].岩石学报,1995,11(1):9~15.
    [7]董林森,刘立,曲希玉,等.松辽盆地南部红岗油田青山口组片钠铝石的结晶特征及成因探讨[J].吉林大学学报:地球科学版,2009,39(6):1031~1041.
    [8]董林森,刘立,曲希玉,等.CO2矿物捕获能力的研究进展[J].地球科学进展,2010,25(9):941~949.
    [9]董林森,刘立,张革,曲希玉.火山碎屑岩对CO2的矿物捕获能力[J].沉积学报,2010,28(3):572~577.
    [10]杜韫华.一种次生的片钠铝石[J].地质科学,1982,4:434~437.
    [11]冯宝华.我国北方石炭~二叠纪火山灰沉积水解改造而成的高岭石[J].沉积学报,1989,7(1):101~108.
    [12]冯子辉,蒙古国塔木察格盆地油气生成及运移成藏特征研究[D].吉林大学.2007.
    [13]冯志强,任延广,张晓东,等.海拉尔盆地油气分布规律及下步勘探方向[J].中国石油勘探,2004,9(4):19~22.
    [14]高明,陈芸.封闭体系中水与玄武岩作用的研究[J].南京大学学报,1995,31(3):476~486.
    [15]高玉巧,刘立,曲希玉.片钠铝石的成因及其对CO2天然气运聚的指示意义[J].地球科学进展,2005,20(10):1083~1087.
    [16]高玉巧,刘立,杨会东,等.松辽盆地孤店二氧化碳气田片钠铝石的特征及成因[J].石油学报,2007,28(4):62~67.
    [17]高玉巧,刘立,曲希玉,等.海拉尔盆地乌尔逊凹陷与松辽盆地孤店C02气田含片钠铝石砂岩的岩石学特征[J].古地理学报,2008,10(2):111-123.
    [18]黄可可,黄思静,佟宏鹏,刘丽红.长石溶解过程的热力学计算及其在碎屑岩储层研究中的意义[J].地质通报,2009,28(4):474-482
    [19]黄善炳.对松辽盆地南部红岗油田砂岩次生孔隙的研究[J].石油勘探与开发,1983(6):37~43.
    [20]黄善炳.金湖凹陷阜宁组砂岩中片钠铝石特征及对物性的影响[J].石油勘探与开发,1996,23(2):32~34.
    [21]黄思静,杨俊杰,张文正等.不同温度条件下乙酸对长石溶蚀过程的实验研究[J].沉积学报.1995,13(1):7-17.
    [22]江怀友,沈平平,王乃举,等.世界二氧化碳减排政策与储层地质埋存展望[J].中外能源,2007,12(5):7-13.
    [23]江怀友,沈平平,李相方,等.世界地质储层二氧化碳理论埋存量评价技术研究[J].中外能源,2008,13(2):93~99.
    [24]李福来,刘立,杨会东,等.松辽盆地南部乾安油田青山口组含片钠铝石砂岩的成岩作用[J].吉林大学学报,2009,39(2):217~224.
    [25]李军,王德发,范洪军.甘肃酒泉盆地青西油田裂缝特征及成因分析[J].现代地质,2007,21(4):691~696.
    [26]李克永,李文厚,陈全红,等.鄂尔多斯盆地镰刀湾地区延长组浊沸石分布与油藏关系[J].兰州大学学报(自然科学版),2010,46(6):23~38.
    [27]李思田,谢习农,王华,等.沉积盆地分析基础与应用[M].2004.北京:高等教育出版社.
    [28]李向博,王建伟.煤系地层中砂岩火山尘填隙物的成岩作用特征—以鄂尔多斯盆地天然气储层为例[J].岩石矿物学杂志,2007,26(1):42~48.
    [29]刘宝瑁,张锦泉.沉积成岩作用[M].北京:科学出版社.1992:138.
    [30]刘立,彭晓蕾,高玉巧,等.东北及华北含油气盆地岩浆活动对碎屑岩的改造与成岩作用贡献[J].世界地质,2003,22(4):319~325.
    [31]刘立,高玉巧,曲希玉,等.海拉尔盆地乌尔逊凹陷无机CO2气储集层的岩石学与碳氧同位素特征[J].岩石学报,2006,22(8):1861~1868.
    [32]刘立,曲希玉,董林森,等.东北及邻区中生代盆地片钠铝石的分布、产状及其油气地质意义[J].吉林大学学报(地球科学版),2009,39(1):1-8.
    [33]刘玉山,张桂兰.250-500℃、100Mpa下海水-玄武岩反应的实验研究[J].地球化学,1996,25(1):53~62.
    [34]罗孝俊,杨卫东,李荣西等.pH值对长石溶解度及次生孔隙发育的影响[J].矿物岩石地球化学通报.2001,20(2):103~107.
    [35]孟庆山.阜新盆地王营矿气藏成因分析[J].中国煤田地质,2003,15(6):24~26.
    [36]曲希玉,刘立,胡大千,马瑞,尤丽.CO2流体对含片钠铝石砂岩改造作用的实验研究[J].吉林大学学报(地球科学版),2007,37(4):691-698.
    [37]曲希玉,刘立,马瑞,等.CO2流体对岩屑长石砂岩的改造作用实验研究[J].吉林大学学报(地球科学版),2008,38(6):959~964.
    [38]曲希玉,刘立,高玉巧,等.中国东北地区幔源-岩浆CO2赋存的地质记录[J].石油学报,2010,31(1):61~67.
    [39]宋荣华,王军,何艳辉,等.荧光图像技术判断储层流体性质研究[J].油气井测试,2000,(4):28~32.
    [40]沈平平,杨永智.温室气体在石油开采中资源化利用的科学问题[J].中国基础科学,2006,3:23-31.
    [41]孙善平,李家振,朱勤文,魏海泉.国内外火山碎屑岩的分类命名历史及现状[J].地球科学-武汉地质学院学报,1987,12(6):571~577.
    [42]孙枢.CO2地下封存的地质学问题及其对减缓气候变化的意义[J].中国基础科学,2008,(3):17~22.
    [43]孙彦达,张民志.海拉尔盆地碳钠铝石特征及其地质意义[J].石油实验地质,2006,28(5):504~506.
    [44]王大锐,张映红.渤海湾油气区火成岩外带储集层中碳酸盐胶结物成因及意义[J].石油勘探与开发,2001,28(2):40~42.
    [45]王江,张宏,林东成.海拉尔盆地乌尔逊含氦CO2气藏勘探前景[J].天然气工业,2002,22(4):109~111.
    [46]王海燕,刘立,高玉巧,等.海拉尔盆地贝尔凹陷南屯组火山碎屑岩成岩作用的讨论[J].世界地质,2005,24(3):219~224.
    [47]王建伟,鲍志东,陈孟晋,等.砂岩中的凝灰质填隙物分异特征及其对油气储集空间影响-以鄂尔多斯盆地西北部二叠系为例[J].地质科学,2005,40(3):429~438.
    [48]王宗华,张军营,徐俊等.CO2矿物碳酸化隔离的理论研究[J].工程热物理学报,2008,29(6):1063~1068.
    [49]伍英,陈均亮,张莹.海拉尔-塔木察格盆地构造带与油气关系[J].大庆石油学院学报,2009,33(3):31~35.
    [50]吴运强,常秋生,蒋宜勤,等.气孔状火山碎屑岩储集层成因特征及油气勘探意义[J].新疆石油地质,2006,27(4):166~168.
    [51]向廷生,蔡春芳,付华娥.不同温度、羧酸溶液中长石溶解模拟实验[J].沉积学报,2004,22(4):597~602.
    [52]薛永超,程林松,彭仕宓.新立油田泉三、四段储层成岩储集相研究[J].特种油气藏,2006,13(2),19~22.
    [53]徐衍彬,陈平,徐永成.海拉尔盆地碳钠铝石分布与油气的关系[J].石油与天然气地质,1994,15(4):322~327.
    [54]杨俊杰,黄月明,张文正等.乙酸对长石砂岩溶蚀作用的实验模拟[J].石油勘探与开发,1995,22(4):82-86.
    [55]杨晓萍,张宝民,等.含油气盆地中浊沸石的形成与分布及其对油气勘探的意义[J].石油地质,2006.2:33~38.
    [56]姚锦梅,周训,李娟等.广东雷州半岛玄武岩地下水水文地球化学特征及演化模拟[J].地质通报,2007,26(3):327~334.
    [57]郁东良.青海省满丈岗地区金地球化学特征及找矿方向探索[J].黄金科学技术,2008,16(1):52~55.
    [58]张凡芹,王伟锋,王建伟,等.苏里格庙地区凝灰质溶蚀作用及其对煤成气储层的影响[J].吉林大学学报(地球科学版),2006,36(3):365-369.
    [59]张辉.蒙古国塔南凹陷近岸水下扇沉积特征及控制因素[J].中国西部科技,2010,9(6):39~41.
    [60]张吉光,张宝玺,陈萍.海拉尔盆地苏仁诺尔成藏系统[J].石油勘探与发.1998,25(1):25-28.
    [61]张金亮.陆东凹陷九佛堂组储层岩石学及成岩作用[J].西安石油学院学报(自然科学版),1995,10(2):4-10.
    [62]张瑞林.超基性岩的碳酸盐化-硅化及其成矿作用[J].西北地质,1977,(1):64~67.
    [63]张文正,杨华,解丽琴等.鄂尔多斯盆地上古生界煤成气低孔渗储集层次生孔隙形成机理-乙酸溶液对钙长石、铁镁暗色矿物溶蚀的模拟实验[J].石油勘探与开发,2009,36(3):383~391.
    [64]张永旺,曾溅辉,张善文,王永诗,张守鹏,陈冬.长石溶解模拟实验研究综述[J].地质科技情报,2009,28(1):31-37
    [65]Alexandra N G, Paul F C, Daniel R P. Influence of localised igneous activity on cleat dawsonite formation in Late Permian coal measures, Upper Hunter Valley, Australia[J]. International Journal of Coal Geology,2006,66:296~304.
    [66]Allard P A. CO2-rich gas trigger of explosive paroxysms at Stromboli basaltic volcano, Italy[J]. Journal of Volcanology and Geothermal Research,2010.189:363-374.
    [67]Arnorsson S, Stefansson A. Assessment of feldspar solubility constants in water in the range 0℃to 350℃ at vapor saturation pressures[J]. Am. J. Sci.,1999,299:173~209.
    [68]Bachu S, Gunter W D, Perkins E H. Aquifer disposal of CO2:Hydrodynamic and mineral trapping[J]. Energy Converse Management,1994,35:269~279.
    [69]Bachu S. Sequestration of CO2 in geological media in response to climate change:road map for site selection using the transform of the geological space into the CO2 phase space[J]. Energy Conversion& Management,2002,43:87~102.
    [70]Baker J C. Diagenesis and reservoir quality of the Aldebaran Sandstone, Denison Trough, east-central Queensland, Australia[J].Sedimentology,1991,38:819~838
    [71]Baker J C, Bai G P, Hamilton P J, et al. Continental-scale magmatic carbon dioxide seepage recorded by dawsonite in the Bowen-Gunnedah-Sydney basin system, eastern Australia. Journal of Sedimentary Research[J],1995,A65(3):522~530.
    [72]Be'ne'zeth P, Donald A P, Lawrence M A, et al. Dawsonite synthesis and reevaluation of its thermodynamic properties from solubility measurements:Implications for mineral trapping of CO2[J]. Geochimica et Cosmochimica Acta,2007,71:4438~4455.
    [73]Beydoun 2 R, AsSaruri M, Baraba R S. Sedimentary basins of the Republic of Yemen:their structural evolution and geological characteristics. Revue de l'Istitut Francais du Petrole[J], 1996,51(6):763~775.
    [74]Blake R E, Walter L M. Effects of organic acids on the dissolution of orthoclase at 80℃ and pH 6[J]. Chemical Geology,1996,132:91~102.
    [75]Blatt H, Middleton G, Murray R. The Origin of Sedimentary Rocks[M]. Second edition. Englewood Cliffs, New Jersey:Prentice2 Hall, Inc.,1980:332~362.
    [76]Boles J R. Clay diagenisis and effects on sandstone cementation(case histories from the Gulf Coast Tertiary), in:Longstaffe F J. Clays and the Resource Geologist. Mineralogical Association of Canada:Short Course Handbook[M].1981,1075~1078.
    [77]Brady P V, Walther J V. Controls on silicate dissolution rates in neutral and basic pH solutions at 25℃[J]. Geochimical et Cosmochimica Acta.1989,53(11):2823~2830.
    [78]Brady P V. The effect of silicate weathering on global temperature and atmospheric CO2[J]. Geophys.Res.1991,96:18101~1810.
    [79]Bruant R G, Celia M A, Guswa A J, et al. Safe storage of CO2 in deep saline aquifers[J]. Environmental Science& Technology,2002,36(11):240~245.
    [80]Burch T E, Nagy K L, Lasaga A C. Free energy dependence of ablate disslutoin kinetic at 80℃ and pH 8.8[J]. Chemical Geology,1993,105:137~162.
    [81]Carroll S A, Knauss K G. Dependence of labradorite dissolution kinetics on CO2(aq), Al(aq), and temperature[J]. Chem.Geol,2005,217:213~225.
    [82]Casey W H,Westrich H R.Holdren G R.Dissolution rates of plagioclase at pH=2 and 3[J].Amer.Mineral,1991 (76):211-217.
    [83]Chen C A, Marshall W L. Amorphous silica solubilities behavior in pure water and aqueous sodium chloride, sodium sulfide, magnesium chloride, and magnesium sulfate solutions up to 350℃[J]. Geochim. Cosmochim. Acta,1982,46:279~287.
    [84]Chesworth W. Laboratory synthesis of dawsonite and its natural occurrences [J]. Natural and Physical Sciences,1971,231:40~41.
    [85]Corey A T. The interrelation between gas and oil relative permeabilities[J]. Prod. Mon.,1954, 38~41.
    [86]Coveney R M, Kelly W C. Dawsonite as a daughter mineral in hydrothermal fluid inclusions[J]. Contributions to Mineralogy and Petrology,1971,32(4):334~342.
    [87]Czernichowski-Lauriol I, Goldstejn S. Simulation of CO2 migration in a sandstone formation[C]. (in European Union of Geosciences 8; oral and poster presentations, Anonymous). Terra Abstracts,1995,7, Suppl.1~199
    [88]Dibble Jr W E, Potter J M. Non-equilibrium water-rock interactions[C]..57th Annunal Falt Technical Conference and Exhibition of the Society of Petroleum Engineer of AIME, Abstract. Washington D C:AIMPE,1982.
    [89]Dessert C, Dupre B, Gaillardet J, et al. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle[J]. Chemical Geology,2003,202:257~273.
    [90]Davis T L, Terrell M J, Benson R D, et al. Multicomponent seismic characterization and monitoring of the CO2 flood at Wey-burn field,Saskatchewan[J]. The Leading Edge,2003, 22(7):696~697.
    [91]De Ros L F, Anjos M S. Authigenesis of amphibole and its relationship to the diagenetic evolution of Lower Cretaceous sandstones of the Potiguar rift basin, northeastern Brazil [J]. Sedimentary Geology,1994,88(3-4):253~266.
    [92]Eileen Vard, Anthony E. Williams-Jones. A fluid inclusion study of vug minerals in dawsonite-altered phonolite sills, Montreal, Quebec:implications for HFSE mobility[J]. Contrib Mineral Petrol,1993,113:410~423.
    [93]Flaathen T K, GislasonS R, OelkersE H, et al. Chemical evolution of the Mt. Hekla. Iceland, groundwaters:A natural analogue for CO2 sequestration in basaltic rocks[J]. Applied Geochemistry,2009,24:463~474.
    [94]Franks S G, Forester R W. Relationships among secondary porosity, pore fluid chemistry and carbon dioxide,Texas Gulf Coast[J]. AAPG Bulletin,1984,68(4):478.
    [95]Gaus I, Cecile Le Guern, Pearce J, et al. Comparison of long-term Geochemical interactions at two natural CO2-analogues:Montmiral (Southeast basin, France) and Messokampos (Florina basin, Greece) case studies[J]. Greenhouse Gas Control Technologies,2005,1:561~569.
    [96]Gaillardet J, Dupre B, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of the large rivers[J].Chemical Geology,1999,159:3-30.
    [97]Geerdts P, Vogler M, Davaa B, Henk A. Evolution of the Tamtsag Basin/NE-Mongolia— part I:basin fill[J]. Gottingen,2006,1~3.
    [98]Giammar D E, Bruant Jr R G, Peters C A.Forsterite dissolution and magnesite precipitation at conditions relevant for deep saline aquifer storage and sequestration of carbon dioxide[J]. Chemical Geology,2005,217:257-276.
    [99]Gislason S R, Hans P E. Meteoric water-basalt interactions. I:A laboratory study[J]. Geochimica et Cosmochimica Acta,1987,51(10):2827~2840.
    [100]Gislason S R, Arnorsson S, Armannsson H. Chemical weathering of basalt in Southwest Iceland; effects of runoff, age of rocks and vegetative/glacial cover[J]. American Journal of Science,1996,296:837~907.
    [101]Graham S A, Hendrix M S, Johnson C L, et al. Sedimentary record and tectonic implications of Mesozoic rifting in Southeast Mongolia[J]. Geological Society of America Bulletin,2001, 113:1560~1579.
    [102]Goff F, Lackner K S. Carbon dioxide sequestering using ultramafic rocks[J]. Environ. Geosci.,1998,5(3):89~101.
    [103]Golab A N, Carr P F, Palamara D R. Influence of localised igneous activity on cleat dawsonite formation in Late Permian coal measures, Upper Hunter Valley, Australia[J]. International Journal of Coal Geology,2006,66:296~304.
    [104]Golubev S V, Pokrovsky O S, Schott J. Experimental determination of the effects of dissolved CO2 on the dissolution kinetics of Mg and Ca silicates at 25℃[J]. Chemial Geology, 2005,217:227~238.
    [105]Gudmundsson A, Fjeldskaar I, Brenner S L. Propagation pathways and fluid transport of hydrofractures in jointed and layered rocks in geothermal fields[J]. Journal of Volcanology and Geothermal Research.2002,116(3-4):257~278.
    [106]Gunter W D, Wiwchar B, Perkins E H. Aquifer disposal of CO2-rich greenhouse gases: extension of the time scale of experiment for CO2-sequestering reactions by geochemical modeling [J]. Mineral Petrology,1997,59:121~140.
    [107]Gysi A P, Stefansson A. Numerical modelling of CO2-water-basalt interaction[J]. Mineralogical Magazine,2008,72(1):55~59.
    [108]Hajash A, Archer P. An experimental seawater/basalt interaction:effects of cooling[J]. Contrib Miner Petrol,1980,75:1~13.
    [109]Hay R L. Zeolite weathering in Olduvai gorge, Tanganyik[J]. Bulletin of Geological Society of America,1963,74:1281~1286.
    [110]Hellevang H, Aagaard P, Oelkers E H, et al. Can dawsonite permanently trap CO2? [J]. Environ. Sci. Technol.2005,39:8281~8287.
    [111]Hendry J P, Wilkinson M, Fallick A E, et al. Ankerite cementation in deeply buried Jurassic sandstone reservoirs of the central North sea[J]. Journal of Sedimentary Research,2000.70: 227~239.
    [112]Hitchon B. Aquifer disposal of carbon dioxide[M]. Geoscience Publishing, Ltd, Sherwood Park, Alberta, Canada,1996.
    [113]Hitchon B, Gunter W D, Gentzis T,et al. Sedimentary basins and greenhouse gases:a serendipitous association[J]. Energy Conversion& Management,1999,40:825~843.
    [114]Huang W L, LongoJ M. The effect of organics on feldspar dissolution and the development of secondary porosity[J]. Chem.Geol,1992,98:271~292.
    [115]John P K, David R J, Marjorie G S. Carbon dioxide reaction processes in a model brine aquifer at 200℃ and 200 bars:implications for geologic sequestration of carbon[J]. Applied Geochemistry.2003,18:1065~1080.
    [116]Johnson J W, Nitao J J, Steefel C I, Knaus K G. Reactive transport modeling of geologic CO2 sequestration in saline aquifers:the influence of intra-aquifer shales and the relative effectiveness of structural, solubility, and mineral trapping during prograde and retrograde sequestration[C]. In Proc.:1st Nat. Conf. Carbon Sequestration. Washington DC.,2001.
    [117]Johnson J W, Nitao J J, Steefel C I. Fundamental elements of geologic CO2 sequestration in saline aquifers[J]. ACS Fuel Chemistry Division Symposia Preprints,2002,47:41~42.
    [118]Kaiser W R. Predicting Reservoir Quality and Diagenetic History in the Frlo Formation(Oligocene of Texas[J]. Clastic Diagenesis, AAPG Memoir,1984,37:207~212.
    [119]Kaszuba J P, Janecky D R, Snow M G. Carbon dioxide reaction processes in a model brine aquifer at 200℃ and 200bars:implications for geologic sequestration of carbon[J]. Applied Geochemistry,2003,18:1065~1080.
    [120]Ketzer J M, Lglesias R, Einloft S,et al. Water-rock-CO2 interactions in saline aquifers aimed for carbon dioxide storage:experimental and numerical modeling studies of the Rio Bonito Formation (Permian), southern Brazil[J]. Applied Geochemistry,2009,24:760~767.
    [121]Kitahara S. The solubility of quartz in aqueous sodium chloride solution at high temperatures and pressures[J]. Rev.Phys. Chem. Japan,1960,30:115~121.
    [122]Koljonen T, Siikavirta H, Zevenhoven R, et al. CO2 capture, storage and reuse potential in Finland[J]. Energy 2004,29:1521~7.
    [123]Korbol R, Kaddour A. Sleipner vest CO2 disposal-injection of removed CO2 into the Utsira Formation[J].Energy Convers. Manag.,1995,36:509~512.
    [124]Lihui Liu, Yuko Suto, Greg Bignal,I et al. CO2 injection to granite and sandstone in experimental rock/hot water systems[J]. Energy Conversion and Management,2003,44: 1399-1410.
    [125]Limantsevaa O A, Makhnachb A A, Ryzhenkoa B N,et al. Formation of Dawsonite Mineralization at the Zaozernyi Deposit, Belarus[J]. Geochemistry International,2008,46: 62-76.
    [126]Lohuis J A O. Carbon dioxide disposal and sustainable development in the Netherlands[J]. Energy Conversion&Management,1993,34 (9-11):815~821.
    [127]Loucks R G, Richmann D L, Milliken K L. Gactors controlling reservoir quality in Tertial sandstones and their signigicance to geopressured geothermal production[B]. Austin, University of Texas, Bureau of Economic Geology Report of Investigations.1981,111,41.
    [128]Loughnan F C, See G T. Dawsonite in the Greta coal measures at Muswellbrook, New South Wales[J]. American Mineralogist,1967,52:1216~1219.
    [129]Lupton J E. Terrestrial inert gases:isotope tracer studies and clues to primordial components in the mantle[J]. Ann.Rev. Earth Planet Sci.1983,11:371~414.
    [130]Marchetti C. On Geoengineering and the CO2 problem[J]. Climate Change,1977,1:59~68.
    [131]Marini L. Geological sequestration of carbon dioxide:Thermodynamics, kinetics and reaction path modeling[J]. Elsevier, Amsterdam,2007,470pp.
    [132]McGrail B P, Schaef H T, Ho A M, et al. Potential for carbon dioxide sequestration in flood basalts[J]. Journal of Geophysical Research,2006,111:B12201.
    [133]McPherson B J O L, Lichtner, P C. CO2 sequestration in deep aquifers[B]. In Proceedings: 1st Nat. Conf. Carbon Sequestration. Washington, DC.2001.
    [134]Megahan W F,Clayton J L.Saturated hydraulic conductivities of granitic materials of the Idaho batholith[J].Journal of Hydrology,1986,84(1-2):167-180
    [135]Meng Q R, Hu J M, Jin J Q, et al. Tectonics of the Late Mesozoic wide extensional basin system in the China-Mongolia border region[J]. Basin Research,2003,15:397~415.
    [136]Metz B, Davidson O, de Coninck H,et al. (eds) IPCC Special Report on Carbon Dioxide Capture and Storage[C]. Cambridge University Press, New York,2005,431~442.
    [137]Morad S, Ketzer J M, De Ros L F. Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks:implications for mass transfer in sedimentary basins[J]. Sedimental, 2000,47:95~120.
    [138]Moore J, Adams M, Allis R, et al. Mineralogical and geochemical consequences of the long-term presence of CO2 in natural reservoirs:an example from the Springerville-St. Johns Field, Arizona, and New Mexico, USA[J]. Chemial Geology,2005,217:365~385.
    [139]Mottle M J, Holland H D, Corr R F. Chemical exchange during hydrothermal alteration of basalt by seawater-Ⅱ[J]. Geochim Cosmochim Acta,1979,43:869~884.
    [140]Nagy K L. Dissolution and precipitation kinetics of sheet silicates[J]. Chem. Weath. Rates Silicate Minerals,1995,31:291~351.
    [141]Neves R, et al. Mongolia, Tamtsag Basin, evidence for widespread, high quality, mature Lower Cretaceous Source Rock[C]. Abstract, AAPG International Conference& Exhibition. 2000
    [142]Oelkers E H,Schott J.Experimental study of anorthite disso-lution and the relative mechanism of feldspar hydrolysis[J].Geochimica et Cosmochimica Acta,1995, 59:5039-5053.
    [143]Oelkers E H, Gislason S R. The mechanism, rates and consequences of basaltic glass dissolution:I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si, and oxalic acid concentration at 25℃ and pH= 3 and 11 [J]. Geochim et Cosmochim. Acta,2001,65:3671-3681.
    [144]Oelkers E H, Cole D R. Carbon dioxide sequestration:a solution to a global problem[J]. Elements,2008,4:305-310
    [145]Ohmoto H, Rye R O. Isotopes of sulfur and carbon. In bames H L. Geochemistry of Hydrothermal Ore Diposits[M].2nd Edition:New York, Wiley Press,1979,509~567.
    [146]Omole O, Osoba J S. Carbon dioxide±dolomite rock interaction during CO2 flooding process[C]. Petrol. Soc. Canadian Inst. Min. Metal.1-13, Banff Alberta,1983.
    [147]Ortoleva P J, Dove P, Richter F. Geochemical perspectives on CO2 sequestration [A]. In:US Department of Energy Workshop on "Terrestrial Sequestration of CO2-An Assessment of Research Needs"[C]. Wawersik W R and Rudnicki J W, Editors,1998:20-28.
    [148]Palandri J L, Kharaka Y K. A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling[B]. U.S. Geological Survey. Menlo Park, California,2004, p70.
    [149]Pascal M L, A nderson G M. Speciation of Al, Si and K in supercritical solutions: experimental study and interpretation[J]. Geochim. Cosmochim. Acta,1989,53:1843-1855
    [150]Patterson K W. Fighting downhole corrosion and scale in food CO2 at SACROC[J]. Petrol. Eng. Intl.1979,50:36-44.
    [151]Pawar R, Warpinski B, Byrer C, et al. Geologic sequestration of CO2 in West Pearl Queen field:results of a field demonstration project[C]. Proceedings of the 3rd Annual Conference on Carbon Capture and Sequestration, Alexandria, VA,2004,May 3-5.
    [152]Pearce J M, Holloway S, Wacker H, et al. Natural occurrences as analogues for the geological disposal of carbon dioxide[J]. Energy Convers. Manag.1996,37:1123~1128.
    [153]Pettijohn F J. Sedimentary rocks(Third edition)[M].1975, New York, Harper and Row,268P.
    [154]Pettijohn F J, Potter P E, Siever R. Sand and Sandstone[M]. Springer-Verlag, New York. 1987.
    [155]Pittman. Recent advances in sandstone diagenesis[J].Ann.Rev.Earth Plant,Sci.,1979,7: 39-62.
    [156]Pruess K, Xu T, Apps J, Garcia J, Numerical Modeling of Aquifer Disposal of CO2[C]. Paper SPE-66537, presented at SPE/EPA/DOE Exploration and Production Environmental Conference, San Antonio, TX, USA.2001.
    [157]Pohl D C, Liou J G. Flow-through reaction of basalt glass and seawater at 300 degree C and 200 degree C,250 bars pressure. Extended Abstract. Ⅳ Inter-Symp Water-Rock Interaction. Misasa, Japan,1983:389-392.
    [158]Remy R R. Porosity reduction and major controls on diagenesis of Cretaceous-Paleocene volcaniclastic and arkosic sandstone, Middle Park basin, Colorado [J]. Journal of Sedimentary Research,1994,64(4):797~806.
    [159]Robert J R, Koksalan T, Palandri J L, et al. Experimental investigation of CO2-brine-rock interactions at elevated temperature and pressure:Implications for CO2 sequestration in deep-saline aquifers[J]. Fuel Processing Technology,2005, (86):1581~1597.
    [160]Rochelle C A, Bateman K, Pearce J M. Fluid-rock interactions resulting from the underground disposal of carbon dioxide[C]. In Bottrell, S. H. (ed.), Proc.,4th Internat.Symp. Geochemistry of the Earth's Surface. University of Leeds, Dept. of Earth Sciences, Leeds, UK.,1996, pp.448~452.
    [161]Roger N, McLean D, Bate R H, et al. Mongolia, Tamtsag basin, evidence for widespread, high quality, mature Lower Cretaceous Source Rock[J]. AAPG Bulletin,2000,84(9):1469.
    [162]Rogers K L, Neuhoff P S, Pedersen A K,et al. CO2 metasomatism in a basalt-hosted reservoir, Nuusuuaq, West Greenland[J]. Lithos,2006,92:55~82.
    [163]Ross G D, Todd A C, Tweedie J A. The effect of simulated CO2 flooding on the permeability of reservoir rocks[C]. In:Proc.3rd European Symp. Enhanced Oil Recovery,1981: 351~366.
    [164]Shiraki R, Thomas L. Experimental study on water±rock interactions during CO2 fooding in the Tensleep Formation, Wyoming, USA[J]. Applied Geochemistry.2000,15:265-279.
    [165]Ryzhenko B N. Genesis of dawsonite mineralization:thermodynamic analysis and alternatives[J]. Geochemistry International,2006,44(8):835-840.
    [166]Sass B N, Gupta J, Ickes J, Eagelhard M, Bergman P, Byaer C. Interaction of rock minerals with CO2 and brine:a hydrothermal investigation[C]. In:Conference Proceedings CD,1st National Conference on Carbon Sequestration,Washington, DC, May 15~17,2001.
    [167]Sayegh S G, Krause F F Girard, Marcel, et al. Rock/fluid interactions of carbonated brines in a sandstone reservoir Pembina Cardium, Alberta, Canada[J]. SPE Formation Evaluation,1990, 5(4):399~405.
    [168]Schaef H T,McGrail B P. Dissolution of Columbia River Basalt under mildly acidic conditions as a function of temperature:experimental results relevant to the geological sequestration of carbon dioxide[J]. Applied Geochemistry,2009,24:980~987.
    [169]Schuiling R D. Mineral sequestration of CO2 and recovery of the heat of reaction[C]. in: Macro-engineering:a challenge for the future.2006, pp.318 p.
    [170]Sebastian Teir, Sanni Eloneva, Carl-Johan Fogelholm,et al. Fixation of carbon dioxide by producing hydromagnesite from serpentinite[J]. Applied Energy,2009,86:214-218.
    [171]Seyfried W E, Bischoff J L. Low temperature basalt alteration by seawater:An experimental study at 70℃ and 150℃[J]. Geochim Cosmochim Acta,1979,43:1937~1947.
    [172]Shuler P J, Freitas E A, Bowker K A. Selection and application of barium sulfate scale inhibitors for a carbon dioxide food, Rangely Weber sand unit, Rangely, Colorado[J]. Proc. SPE Joint Rocky Mountain Regional/Low Permeability Reservoirs Symp,1989:451~464.
    [173]Shuler P J, Freitas E A, Bowker K A. Selection and application of barium sulfate scale inhibitors for a carbon dioxide flood, Rangely Weber sand unit, Rangely, Colorado[C]. Proc. SPE Joint Rocky Mountain Regional/Low Permeability Reservoirs Symp,1989:451~464 (SPE 18973).
    [174]Smith L K.Carbonate Cement Dissolution during a Cyclic CO2 Enhanced Oil Recovery Treatment[C]. In:Morad(ed.). Carbonate Cement in sandstone reservoirs.Special Publication of the International Association of Sedimentologists,1998, No 26,483~499.
    [175]Sonnenthal E L, Spycher N. Drift-Scale coupled processes (DST and THC seepage) models[E]. AMR N0120/U0110 Rev.O1, Yucca Mountain Project. Lawrence Berkeley National Laboratory, Berkeley, California,2001.
    [176]Soong Y, Goodman A L, McCarthy-Jones J R, Baltrus J P. Experimental and simulation studies on mineral trapping of CO2 with brine[J]. Energy Conversion and Management,2004, 45:1845~1859.
    [177]Steefel C I. Software for modeling multicomponent, multidimensional reactive transport[E]. Lawrence Livermore National Laboratory, UCRL-MA-143182.2001.
    [178]Stevenson J S, Stevenson L S. Contrasting dawsonite occurrences from Mont ST.Bruno, Quebec[J]. Canadian Mineralogist,1978,16:471~474.
    [179]Stevens S H, Pearce J M, Rigg A A J. Natural Analogs for Geologic Storage of CO2:An Integrated Global Research Program[C]. In:Conference Proceedings CD,1st National Conference on Carbon Sequestration, Washington, D.C, May 15-17,2001.
    [180]Stilling L L, Brantley S L. Feldspar dissolution at 25C and pH 3:Reaction stoichiometry and the effect of cations[J].Geochim et Cosmochim Acta,1995,59:1483~1496.
    [181]Siever R. Plate-tectonic controls on diagenesis[J]. The Journal of Geology,1979,87(2): 127~155.
    [182]Teir S, Eloneva S, Fogelholm C J, et al. Fixation of carbon dioxide by producing hydromagnesite from serpentinite[J]. Applied Energy,2009, (86):214~218.
    [183]Tobin K J, Colwell F S, Onstott T C, et al. Recent calcite spar in an aquifer waste plume:a possible example of contamination driven calcite precipitation[J]. Chemical Geology, 2000,169:449~460.
    [184]Turekian K K, Wedepohl K H. Distribution of the elements in some majore units of Earth's crust[J]. Geological Society of America Bullentin,1961,72:175~192.
    [185]Van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Sci. Soc. Am. J.,1980,44:892~898.
    [186]Vard E, Williams-Jones A E. A fluid inclusion study of vug minerals in dawsonite-altered phonolite sills, Montreal, Quebec:implications for HFSE mobility[J]. Contrib Mineral Petrol, 1993,113:410~423
    [187]Volkova A N, Rekshinskaya L G. Dawsonite in the Balakhonska series of the Kuznetsk basin[J]. Lithology and Mineral Resources (USSR),1973,8:88~93.
    [188]Watson M N, Zwingmann N, Lemon N M. The Ladbroke Grove-Katnook carbon dioxide natural laboratory. A recent CO2 accumulation in a lithic sandstones reservoir[J]. Energy. 2004,29:1457~1466.
    [189]White S P, Weir G J, Kissling W M. Numerical simulation of CO2 sequestration in natural CO2 reservoirs on the Colorado Plateau[C]. In Proc.1st Nat. Conf. Carbon Sequestration. Washington, DC.,2001.
    [190]Wigand M, Carey J W, Schuett H, et al. Geochemical effects of CO2 sequestration in sandstones under simulated in-situ conditions of deep saline aquifers[J]. Applied Geochemistry,2008.23:2735-2745.
    [191]Wilson T H,Wells A W, Diehl J R, et al. Ground penetrating radar survey and lineament analysis of the West Pearl Queen carbon sequestration pilot site, New Mexico[J]. The Leading Edge,2005,24:718~722.
    [192]Wolff-Boenisch D, Gislason S R, Oelkers E H.The effect of crystallinity on dissolution rates and CO2 consumption capacity of silicates[J]. Geochimica et Cosmochimica Acta 2006,70: 858~870.
    [193]Worden R H, Burley S D. Sandstone diagenesis:the evolution of sand to stone[B]. In: Burley S D,Worden R H(eds), Sandstone diagenesis:recent and ancient.2003. Blackwell Pub. 1~44.
    [194]Worden R H. Dawsonite cement in the Triassic Lam formation, Shabwa basin, Yemen:A natural analogue for a potential mineral product of subsurface CO2 storage for greenhouse gas reduction[J]. Marine and Petroleum Geology,2006,23:61~77.
    [195]Wolery T J. EQ3/6:Software package for geochemical modeling of aqueous systems: Package overview and installation guide (version 7.0) [B]. Lawrence Livermore National Laboratory Report UCRL-MA-110662 PT I, Livermore,California,1992.
    [196]Xu T F, Pruess K. On fluid flow and mineral alteration in fractured caprock of magmatic hydrothermal systems[J]. J.Geophys. Res.106,2001,2121~2138.
    [197]Xu T F, Apps J A, Pruess K. Numerical simulation to study mineral trapping for CO2 disposal in deep aquifers[J]. Appl. Geochem,2004,19:917~936.
    [198]Xu T F, Apps J A, Pruess K. Mineral sequestration of carbon dioxide in a sandstone-shale system [J]. Chemical Geology,2005,217:295~318.
    [199]Xu T F, Sonnenthal E, Spycher N, Pruess K. TOUGHREACT—A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media:Applications to geothermal injectivity and CO2 geological sequestration[J]. Computers & Geosciences,2006,32:145~165.
    [200]Xu T F, Apps J A, Pruess K, Yamamoto H. Numerical modeling of injection and mineral trapping of CO2 with H2S and SO2 in a sandstone formation[J]. Chemical Geology,2007, 242:319~346.
    [201]Zerai B, Saylor B Z, Matisoff G. Computer simulation of CO2 trapped through mineral precipitation in the Rose Run Sandstone, Ohio[J]. Applied Geochemistry,2006,21:223~240.
    [202]Zhang X F, Wen Z Y, Gu Z H, et al. Hydrothermal synthesis and thermodynamic analysis of dawsonite-type compounds[J]. Journal of Solid State Chemistry,2004,177(3):849-855.
    [203]Zwingmann N, Mito S, Sorai M, et al. Pre-injection characterization and evaluation of CO2 sequestration potential in the Haizume formation, Niigata Basin, Japan[J]. Oil and Gas Science and Technology,2005,60(2):249~258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700