用户名: 密码: 验证码:
砂岩对CO_2的矿物捕获能力
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过偏光显微镜、扫描电镜、阴极发光显微镜和荧光显微镜观察,结合X-射线衍射分析、碳氧同位素分析和均一温度测试数据以及CO2—砂岩相互作用实验和数值模拟,查明了松辽盆地南部红岗地区含片钠铝石砂岩中与CO2充注有关的碳酸盐矿物组合,定量地评估了砂岩对CO2的矿物捕获潜力。研究表明C02注入后形成的自生矿物组合与共生序列为:片钠铝石—晚期次生加大石英—晚期高岭石,晚期方解石和铁白云石,其中,片钠铝石、晚期方解石和铁白云石为CO2充注形成的碳酸盐矿物,并且他们与盆地中赋存的CO2气具有相同的“碳”来源,均为幔源岩浆成因。通过CO2—砂岩相互作用的数值模拟和实验室实验验证和补充了岩石学研究结果。其中,数值模拟结果显示,CO2注入后溶解的矿物类型包括斜长石、钾长石与绿泥石;沉淀的自生矿物有片钠铝石、铁白云石、方解石、菱镁矿和石英。除菱镁矿外,其他溶解的和沉淀的矿物均与岩石学观察结果基本一致。实验室实验表明,随着实验温度的升高,砂岩内长石的溶蚀溶解程度增加,这与岩石学观察中大部分长石发育溶蚀溶解现象是一致的。含片钠铝石砂岩中与CO2充注有关的碳酸盐矿物的固碳量计算和数值模拟表明,富含长石的砂岩对CO2具有较大的矿物捕获潜力。砂岩岩石类型和成分成熟度以及长石的类型是制约砂岩对CO2的矿物捕获潜力的重要因素。
As CO2 gas reservoir is a natural analogue for the long-term geological sequestration of industrial CO2, studying on the geological characteristic for sandstones in CO2 reservoir may provide a useful insight into CO2-fluid-sandstone reaction during CO2 injected into reservoirs. Thermodynamic analysis indicated that the partial pressures of CO2 for dawsonite forming equal to, or should be greater than,10-2bar. Dawsonite, as a function of the role on 'CO2 trace mineral', with its existence can record that a large scale of CO2 injected or resided in geological history.
     The Cretaceous reservoir in Honggang, southern Songliao Basin, is abundant in dawsonite-bearing sandstones, and in well 73 and 77, inorganic CO2 is reported, which means this reservoir could provide idealized, natural laboratory for studying on CO2-fluid-sandstones interaction.
     Dawsonite-bearing sandstones are poorly to medium sorted, lithic arkoses to feldspathic litharenites. The mineral assemblages after CO2 flooding are dawsonite, late generation quartz overgrowth, late generation kaolinite, late generation calcite and ankerite.
     δ13C PDB values for dawsonite are from -4.77 to 3.29‰and the average value is-0.574‰, showing remarkably consistent with the values which have been confirmed to be formed under inorganic CO2 background, and have an intimate relationship with the magmatic activity; C isotope of CO2 in isotopic equilibrium with dawsonite (δ13 CCO2) is in the range of -11.13~-4.14‰(PDB), with the average value of -7.23‰(PDB). It is suggested that, CO2 for dawsonite formation in researching area was mainly inorganic, with a bit of mixture with inorganic and organic CO2.
     δ13C PDB values for calcite is -2.16‰, and for ankerite are -6.35~2.12‰, which are similar with the values for dawsonite (-4.77 to 3.29‰). Temperatures for mineral growth have been bracketed by reference to the fluid inclusion data and burial history: for dawsonite, late generation calcite and ankerite are 100~120℃,100~120℃and 90~120℃, respectively. The formation water in the late Cretaceous during dawsonite, calcite and ankerite growth has theδ18O values of -6.46~2.75‰,-6.74~-4.77‰and-7.07~1.98‰. Taking the formation temperature of carbonate minerals and the oxygen isotope values of the formation water present during carbonate minerals growth event as the two identification indices, it is implied that the late generation calcite and ankerite had evolved progressively. It is by no means to conclude that the C source for dawsonite, late generation calcite and ankerite were the mantle-magmatic CO2, and partly of this natural CO2 had been locked up as these carbonate minerals.
     The simulation with TOUGHREACT shows that, as CO2 injected into the sandstone reservoir, plagioclase, k-feldspar and chlorite turn to dissolve, while four minerals deposite, including dawsonite, ankerite, calcite and quartz. After 10,000 years, owing to the mineral precipitation, the porosity of the injection area turns from the original 10% to 5%. The contents of dawsonite, ankerite and calcite are 7.7%、4.6% and 4.89% after 10,000 years. There are great comparability between the numerical simulation and the field observation in the changes of pH values, the types and contents of the mineral dissolution and precipitation.
     The capacity for mineral trapping of industrial CO2 in the studying area is gigantic. For natural analogue, a formula is designed by using the conservation of mass and the transformation relationship of mole among CO2 and trapping minerals. The total quantity of natural CO2 captured by dawsonite-bearing sandstones is calculated to be an average of 99.51kg per cubic meter, and by dawsonite is 12.48~118.57 kg/m3, which occupying about 42.2% of the total mineral trapping quantities. As the simulation shows, after 10,000 years, about an average of 89.73~98.5kg CO2 per cubic meter is trapped into the solid phase in the radial distances within 200 meters from the injecting well.
     It is suggested that the carbon capture ability is restricted by the types of the sandstones, the values of the compositional maturities and the contents of feldspar. A great mineral trapping ability for sandstones is characteristics with the rock types of arkose, litharenite or greywacke, and with relatively lower compositional maturaities and higher contents of feldspar.
     Constraints
引文
[1]陈传平,固旭,周苏闽等.不同有机酸对矿物溶解的动力学实验研究[J].地质学报,2008,82(7):1007-1012.
    [2]陈国利.红岗构造多套新层系的重新评价与补充勘探[J].大庆石油地质与开发,2003,22(1):10-12.
    [3]陈昕,王黎明,白明轩等.松辽盆地深源二氧化碳分布及其控制因素.大庆石油学院学报,1997,2(3):7-10.
    [4]陈璋如.类似物研究和矿物学问题[J].矿物学报.2001,21(3):341-344.
    [5]崔永强,李莉,陈卫军等.松辽盆地无机成因烃类气藏的幔源贡献[J].大庆石油地质与开发.2001,20(3):6-8.
    [6]戴春森,宋岩,孙艳.中国东部二氧化碳气藏成因特点及分布规律[J].中国科学B辑,1995,25(7):764-771.
    [7]戴金星.中国含油气盆地的无机成因气及其气藏[J].天然气工业,1995,15(3):22-27.
    [8]戴金星,宋岩,戴春森等.中国东部无机成因气及其气藏形成条件[M].北京:科学出版社,1995,1-11.
    [9]戴金星.中国气藏(田)的若干特征[J].石油勘探与开发,1997,24(2):6-9.
    [10]戴金星,卫延昭.无机成因石油论和无机成因的气田(藏)概略[J].石油学报,2001,22(6):5-10.
    [11]戴金星,胡国艺,倪云燕等.中国东部天然气分布特征.天然气地球科学,2009,20(4):471-487.
    [12]戴金星,裴锡古,戚厚发.中国天然气地质学(M).北京:石油工业出版社,1992.
    [13]戴金星,石昕,卫延召.无机成因油气论和无机成因的气田(藏)概略.石油学报,2001,22(6):5-8.
    [14]董林森,刘立,血希玉等.松辽盆地南部红岗油田青山口组片钠铝石的结晶特征及成因探讨[J].吉林大学学报(地球科学版),2009,39(6):1031-1041.
    [15]董林森,刘立,曲希玉等.C02矿物捕获能力的研究进展.地球科学进展,2010,25(9)941-049.
    [16]杜灵通.吕新彪,陈红汉等.济阳二氧化碳气藏的成因判别[J].大庆石油地质与开发.2006,24(2):1-4.
    [17]杜韫华.一种次生的片钠铝石[J].地质科学,1982,4:434-437.
    [18]付晓飞,沙威,王磊等.松辽盆地幔源成因CO2气藏分布规律及控制因素.吉林大学学报:地球科学版,2010,40(2):253-263.
    [19]高玉巧,刘立,蒙启安等.海拉尔盆地与澳大利亚Bowen-Gunnedah-Sydney盆地系片钠铝石碳来源的比较研究[J].世界地质,2005,24(4):344-349.
    [20]高玉巧,刘立,曲希玉.片钠铝石的成因及其对CO2天然气运聚的指示意义[J].地球科学进展,2005,20(10):1083-1088.
    [21]高玉巧,刘立.自生片钠铝石的碳氧同位素特征及其成因意义[J].高校地质学报,2006,12(4):522-529.
    [22]高玉巧.岩浆成因CO2气藏中储集砂岩的热对流成岩作用:以海拉尔盆地乌尔逊凹陷为例[D].吉林大学,2007,16-58.
    [23]高玉巧,刘立,杨会东等.松辽盆地孤店二氧化碳气田片钠铝石的特征及成因.石油学报,2007,28(4):62-67.
    [24]高玉巧,刘立,曲希玉等.海拉尔盆地乌尔逊凹陷与松辽盆地南部孤店CO2气田含片钠铝石砂岩的岩石学特征[J].古地理学报,2008,10(2):111-123.
    [25]高玉巧,刘立,胡文碹等.海拉尔盆地乌尔逊凹陷无机CO2充注驱油的流体包裹体证据.矿物岩石地球化学通报,2009,28(1):81-91.
    [26]郭巍. 松辽盆地南部白垩纪构造沉积演化与成藏动力学研究[D]. 吉林大学,2007,21-41.
    [27]郭巍,于文祥,刘招君等.松辽盆地南部埋藏史.吉林大学学报(地球科学版),2009,39(3):353-360.
    [28]郭巍,方石,刘招君等.松辽盆地南部泉头组-嫩江组热演化史研究[J].石油天然气学报(江汉石油学院学报),2009,31(3):1-7.
    [29]何家雄,胡忠良,刘宝明等.综合开发利用南海莺-琼盆地CO2资源促进国家及中海油发展[J].天然气地球科学,2004,15(4):401-405.
    [30]何家雄,夏斌,王志欣等.中国东部及近海陆架盆地不同成因CO2运聚规律与有利富集区预测[J].天然气地球科学,2005,16(5):622-631.
    [31]侯启军,赵志魁,王立武.火山岩气藏-松辽盆地南部大型火山岩气藏勘探理论与实践[M].北京:科技出版社,2009:269-271.
    [32]黄可可,黄思静,佟宏鹏等.长石溶解过程的热力学计算及其在碎屑岩储层研究中的意义[J].地质通报,2009,28(4):474-482.
    [33]黄善炳.金湖凹陷阜宁组砂岩中片钠铝石特征及对物性的影响[J].石油勘探与开发,1996,23(2):32-34.
    [34]黄思静,杨俊杰,黄月明等.乙酸对长石砂岩溶蚀作用的实验模拟[J].石油勘探与开发, 1995,22(4):82-86.
    [35]黄思静,武文慧,刘洁等.大气水在碎屑岩次生孔隙形成中的作用-以鄂尔多斯盆地三叠系延长组为例[J].地球科学,2003,28(4):419-424.
    [36]黄思静,黄可可,冯文立等.成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成:来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究[J].地球化学,2009,38(5):498-506.
    [37]李福来.松辽盆地南部长岭凹陷-华子井阶地含片钠铝石砂岩成岩流体演化[D].吉林大学博士论文,2009.
    [38]李福来,刘立,曲希玉等.CO2注入砂岩后的典型自生矿物组合[J]. 海洋地质与第四纪地质,2009,29(6):103-109.
    [39]李福来,刘立,杨会东等.松辽盆地南部乾安油田青山口组含片钠铝石砂岩的成岩作用[J].吉林大学学报(地球科学版),2009,39(2):217-224.
    [40]李志勇.松辽盆地南部红岗油田沉积特征及含油饱和度研究[D].中国地质大学(北京)博士论文,2009.
    [41]廖永胜,李钜源,李祥臣等.应用碳/氦/氩同位素探讨济阳二氧化碳气成因[J].矿物岩石地球化学通报.2001,20(4):351-353.
    [42]刘立,高玉巧,曲希玉等.海拉尔盆地乌尔逊凹陷无机CO2气储层的岩石学与碳氧同位素特征[J].岩石学报,2006,22(8):1861-1868.
    [43]刘立,刘娜,周冰,赵爽,孟凡奇,姜龙.松辽盆地南部红岗背斜幔源-岩浆成因CO2大规模泄露的岩石学记录[J].吉林大学学报(地球科学版).201141(2):411-420
    [44]刘立,朱德丰,曲希玉等.海拉尔盆地乌尔逊凹陷幔源CO2充注对下白垩统砂岩储层质量的影响[J].岩石学报,2009,25(10):2311-2319.
    [45]刘立,曲希玉,董林森等.东北及邻区中生代盆地片钠铝石的分布、产状及其油气地质意义[J].吉林大学学报.2009,39(1):1-8.
    [46]刘娜,刘立,杨会东等.松辽盆地南部片钠铝石形成与碎屑长石的成因联系.吉林大学学报(地球科学版),2011,41(1):54-63.
    [47]刘娜,刘立,杨会东等.松辽盆地红岗油田白垩系青山口组含片钠铝石砂岩自生矿物共生序列.古地理学报,2011,13(2):175-184.
    [48]刘小波.松辽盆地断裂系统及与CO2气藏成藏关系研究[D].大庆:大庆石油学院,2009.
    [49]刘远征,罗红,刘欣.阜新盆地沙海组三段浅层致密砂岩储层特征及成岩作用.地质找矿从论,2008,23(1):77-81.
    [50]卢焕章,范宏瑞,倪培等.流体包裹体[M].科学出版社,2004,137-139.
    [51]卢双舫.李娇娜,刘绍军等.松辽盆地生油门限重新立定及其意义[J].石油勘探与开发. 2009,36(2):166-173
    [52]鲁雪松,宋岩,柳少波等.幔源CO2释出机理、脱气模式及成藏机制研究进展[J].地学前缘,2008,15(6):293-302.
    [53]曲希玉.CO2流体—砂岩相互作用的实验研究及其在CO2气储层中的应用[D].吉林大学,2007,88-101.
    [54]曲希玉,刘立,胡大千等.CO2流体对含片钠铝石砂岩改造作用的实验研究[J].吉林大学学报(地球科学版),2007,37(4):690-697.
    [55]曲希玉,刘立,高玉巧等.苏仁诺尔断裂带含片钠铝石砂岩储层物性特征及成因[J].大庆石油地质与开发,2007,26(4):35-42.
    [56]任战利,萧德铭;迟元林.松辽盆地古地温恢复[J].大庆石油地质与开发,2001,20(1):13-14,55.
    [57]邵明礼,门吉华,魏志平.松辽盆地南部二氧化碳成因类型及富集条件初探[J].大庆石油地质与开发,2000,19(4):1-3.
    [58]史基安,晋慧娟,薛莲花.长石砂岩中长石溶解作用发育机理及其影响因素分析[J].沉积学报,1994,12(3):65-75.
    [59]宋荣华,王军,何艳辉,等.荧光显微图像技术判断储层流体性质研究[J].油气井测试,2000,9(4):28-32.
    [60]宋岩.松辽盆地万金塔气藏天然气成因[J].天然气工业,1991,11(1):17-20.
    [61]唐振兴,刘国文,姜泽军等.松南构造认识及无机成因CO2分布规律研究[J].石油天然气学报(江汉石油学院学报),2009,31(1):1-5.
    [62]陶明信,徐永昌,沈平等.中国东部幔源气藏聚集带的大地构造与地球化学特征及成藏条件[J].中国科学D辑.1996,26(6):522-536.
    [63]王大锐.油气稳定同位素地球化学[M].北京:石油工业出版社,2000,17-119.
    [64]王大锐.塔里木盆地中、上奥陶统烃源岩的碳同位素宏观证据[J].地质论评,2000,46(3):328-334.
    [65]王莉,杜旭东,陆克政等.松辽盆地南部中央凹陷区正反转构造特征及演化机制[J].石油大学学报(自然科学版),1998,22(6):21-25.
    [66]王先彬.稀有气体地球化学与宇宙环境及其应用前景[J].地球与环境.1988,8:41-49.
    [67]王永春.松辽盆地南部岩性油藏的形成和分布[M].石油工业出版社.2004。
    [68]王永春,康伟力,毛超林.吉林探区油气勘探理论与实践[M].石油工业出版社,2007:3-43.
    [69]向廷生,蔡春芳,付华娥.不同温度,羧酸溶液中长石溶解模拟实验[J].沉积学报,2004,22(4):587-602.
    [70]徐衍彬,陈平,徐永成.海拉尔盆地碳钠铝石分布与油气的关系[J].石油与天然气地质,1994,15(4):322-327.
    [71]杨会东.松南无机成因CO2与常规油气的耦合差异成藏研究[D].吉林大学博士学位论文,2009.
    [72]杨会东.松南无机成因CO2与常规油气的耦合差异成藏研究[D],吉林大学,2009,17-50.
    [73]杨明达.松辽盆地南部构造演化与油气聚集[D].中国地质大学(北京),2005,9-52.
    [74]于志超,刘立,曲希玉等.松辽盆地南部红岗油田青山口组砂岩中片钠铝石的形成温度.沉积学报,2011,29(2):87-96.
    [75]曾荣树,孙枢,陈代钊等.减少二氧化碳向大气层的排放-二氧化碳地下储存研究[J].中国科学基金,2004,4:196-200.
    [76]翟光明,中国石油地质志(卷二)[M].北京:石油工业出版社,1990:88-101.
    [77]张丽媛,刘立,曲希玉等.海拉尔盆地乌尔逊凹陷含片钠铝石砂岩捕获CO2总量的估算[J].地质科技情报,2010,29(1):108-111.
    [78]张英魁,刘斌,古武等.利用多元回归方法确定岩石压缩系数[J].油气井测试.2001,10(1,2):7-9.
    [79]赵力彬,黄志龙,马玉杰等.松辽盆地南部德惠断陷深层天然气地球化学特征及成因[J].天然气地球科学,2006,17(2):177-182.
    [80]赵荣.松辽盆地南部红岗油田高台子油层油藏地质特征研究[D].大庆石油学院,2003,30-69.
    [81]Allard P. A CO2-rich gas trigger of explosive paroxysms at Stromboli basaltic volcano, Italy[J]. Journal of Volcanology and Geothermal Research,2010,189(3-4):363-374.
    [82]Annunziatellis A, Beaubien S E, Bigi S, et al. Gas migration along fault systems and through the vadose zone in the Latera caldera (central Italy):Implications for CO2 geological storage[J]. Greenhouse gas control.2008,2(20):353-372.
    [83]Arts R J, Baradello L, Girard J, et al. Results of geophysical monitoring over a "leaking" natural analogue site in Italy[J]. Energy Procedia.2009,1(1):2269-2276.
    [84]Audigane P, Gaus I, Czernichowski-Lauriol I,et al. Two-dimensional reactive transport modeling of CO2 injection in a saline aquifer at the Sleipner site, North Sea[J]. American Journal of Science,2007,307:974-1008.
    [85]Auque L F, Acero P, Gimeno M J. Hydrogeochemical modeling of a thermal system and lessons learned for CO2 geologic storage[J]. Chemical Geology,2009,268:324-336.
    [86]Bachu S, Gunter W D, Perkins E H. Aquifer disposal of CO2:hydrodynamic and mineral trapping[J]. Energy Conversion and Management,1994,35(4):269-279.
    [87]Bachu S, Adams J J. Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution[J]. Energy Conversion and Management,2003,44(20):3151-3175.
    [88]Bachu S, Shaw J C. Evaluation of the CO2 sequestration capacity in Alberta's oil and gas reservoirs at depletion and the effect to underlying aquifers[J]. Journal of Canadian Petroleum Technology.2003,42(9),51-61.
    [89]Bachu S. Carbon dioxide storage capacity in uneconomic coal beds in Alberta, Canada: Methodology, potential and site identification[J]. International Journal of Greenhouse Gas Control,2007,1(3):374-385.
    [90]Bachu S, Bonijoly D, Bradshaw J, et al. CO2 storage capacity estimation:methodology and gaps[J]. International Journal of Greenhouse Gas Control,2007,1:430-443.
    [91]Bader E. Uber die buiding and konstitution des dawsonite and seine synthetic darstelling[J]. Mineralogy, Geology and Palaeotology,1938,74:449-465.
    [92]Baker J C, Bai G P, Hamilton P J, et al. Continental-scale magmatic carbon dioxide seepage recorded by dawsonite in the Bowen-Gunnedah-Sydney Basin system, eastern Australia[J]. Journal of Sedimentary Research,1995,65(3):522-530.
    [93]Bennett P C, Casey W. Chemistry and mechanisms of low temperature dissolution of silicates by organic acids. in:Organic Acids in Geological Processes (ed. By Pittman E D and Lewan M D)[M]. Berlin:Spring-Verlag,1994,162-200.
    [94]Benson S M, Cole D R. CO2 sequestration in deep sedimentary formation[J]. Element.2008,4: 325-331.
    [95]Bradshaw J, Allinson G, et al. Australia's CO2 geological storage potential and matching of emission sources to potential sinks[J]. Energy,2007,29(9-10):1623-1631.
    [96]Burruss R C. Crushing cell, capillary column gas chromatography of petroleum inclusions:method and application to petroleum source beds, reservoirs and low hydrothermal ores[J]. In:Roedder E, Kozlowski A (eds). Fliud Inclusion Research.1983,20:59.
    [97]Cantucci B, Montegrossi G, Vaselli O,et al. Geochemical modeling of CO2 storage in deep reservoirs:The Weyburn Project (Canada) case study[J]. Chemical Geology,2009,265(1-2): 181-197.
    [98]Chesworth W. Laboratory synthesis of dawsonite and its natural occurrences[J]. Natural and Physical Sciences,1971,231:40-41.
    [99]Chou L, Wollast R. Steady-state kinetics and dissolution mechanisms of albite[J]. America Journey Science,1985,285:963-993.
    [100]Chopping C G. Using a natural analogue to examine geologic carbon sequestration[C].61st Annual Meeting. Rocky Mountain Section. Utah Valley University Library.2009 May.
    [101]Clement T P.1997. RT3D-A modular computer code for simulating reactive multispecies transport in 3-Dimensional groundwater aquifers, Battelle Pacific Northwest National Laboratory Research Report, PNNL-SA-28967, Available at:http://bioproce ss. pnl.gov/rt3d.htm.
    [102]Corey A T. The interrelation between gas and oil relative permeabilities[J]. Prod. Mon.,1954, 19(1):38-41.
    [103]Czernichowski-Lauriol I, Pauwels H, Vigouroux P, et al. France's carbogaseous province:an illustration of natural processes of CO2 generation, migration, accumulation and leakage[C]. In:Proceedings of the Sixth International Conference on Greenhouse Gas Control Technologies (GHGT-6), October 1-4,2002, Kyoto, Japan.
    [104]Deer W A, Howie R A, Zussman J. An introduction to the rock-forming minerals[M]. London: Longman Group Ltd.,1996:391-456.
    [105]Donda F, Volpi V, Persoglia S, et al. CO2 storage potential of deep saline aquifers:The case of Italy[J]. International journal of greenhouse gas control.2011,5(2):327-335.
    [106]Duan Z, Sun R. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar[J]. Chemical Geology,2003,193: 257-271.
    [107]Emberley S, Hutcheon I, Shevalier M, et al. Monitoring of fluid-rock interaction and CO2 storage through produced fluid sampling at the Weyburn CO2 injection enhanced oil recovery site, Saskatchewan, Canada[J]. Applied Geochemistry,2005,20(6):1131-1157.
    [108]Espa S, Caramanna G, et al. Field study and laboratory experiments of bubble plumes in shallow seas as analogues of sub-seabed CO2 leakages[J]. Applied Geochemistry,2010,25(5): 696-704.
    [109]Faiz M M, Saghafi A, Barclay, et al. Evaluation geological sequestration of CO2 in bituminous coals:The southern Sydney Basin, Australia as a natural analogue[J]. International Journal of Greenhouse Gas Control,2007,1:223-235.
    [110]Fischer S, Liebscher A, Wandrey M, et al. CO2-brine-rock interation-First results of long-term exposure experiments at in situ P-T coditions of the Ketzin CO2 reservoir[J]. Chemie der Erde. 2010 S3:155-164.
    [111]Franca A B, Araujo L M, Maynard J B, et al. Secondary porostiy formed by deep meteoric leaching:Botucatu eolianite, southern South America[J]. AAPG Bull,2003,87(7):1073-1082.
    [112]Frueh A J, Golightly J P. The crystal structure of dawsonite NaAl(CO3)(OH)2[J]. Candian Mineral,1967,9:51-56.
    [113]Gaillardet J, Dupre B, Louvat P,et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology,1999,159(1-4):3-30.
    [114]Gao Y Q, Liu L, Hu W X. Petrology and isotopic geochemistry of dawsonite-bearing sandstones in Hailaer Basin, northeastern China[J]. Applied Geochemistry,2009a,24, 1724-1738.
    [115]Gaus I, Guern C L, Pearce J, et al. Comparison of long-term geochemical interactions at two natural CO2-analogues:Montmiral (southeast basin, France) and messokampos (Florina Basin, Greece) case studies[J]. Greenhouse Gas Control Technologies,2005,1:561-569.
    [116]Genuchten V. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal,1980,44:892-898.
    [117]Gherardi F, Xu, T F, Pruess K, et al. Numerical modeling of self-limiting and self-enhancing caprock alteration induced by CO2 storage in a depleted gas reservoir. Chemical Geology, 2007,244(1-2):103-129.
    [118]Golab A N, Carrb P F, Palarnara D R. Influence of localized igneous activity on clear dawsonite formation in Late Permian coal measures, Upper Hunter Valley, Australia[J]. International Journal of Coal Geology,2006,66:296-304.
    [119]Guenan T L, Rohmer J. Corrective measures based on pressure control strategies for CO2 geological storage in deep aquifers[J]. International Journal of Greenhouse Gas Control.2010, (Article in Press).
    [120]Gunter W D, Perkins E H, McCann T J. Aquifer disposal of CO2-rich gases:reaction design for added capacity[J]. Energy Conversion and Management,1993,34:941-948.
    [121]Gunter W D, Wiwchar B, Perkins E H. Aquifer disposal of CO2-rich greenhouse gases: extension of the time scale of experiment for CO2-sequestering reactions by geochemical modeling[J]. Mineral Petrology,1997,59:121-140.
    [122]Gunter W D, Perkins E H, Hutcheon I. Aquifer disposal of acid gases:modelling of water-rock reactions for trapping of acid wastes[J]. Applied Geochemistry,2000,15: 1085-1095.
    [123]Hangx S J T, Spiers C J. Reaction of plagioclase feldspar with CO2 under hydrothermal conditions[J]. Chemical Geology,2009,265:88-98.
    [124]Harouiya N.,Oelkers E H. An experimental study of the effect of aqueous fluoride on quartz and alkali-feldspar dissolution rates[J]. Chem. Geol.,2004,205:155-167.
    [125]Haszeldine R S, Quinn O, England G, et al. Natural geochemical analogues for carbon dioxide storage in deep geological porous reservoirs, a UK perspective[J]. In Special Issue Oil and Gas Science and Technology,2005,60:33-49.
    [126]Heritsch H.Dawsonite as a product of low-hydrothermal transformation of a volcanic breccias from a borehole in eastern Styria(Austria)[J]. Neus Jahrbuch fuer Mineralogis, Monatchefte, 1975,8:360-368.
    [127]Hermanrud C, Andresen T, Eiken O, et al. Storage of CO2 in saline aquifers-Lessons learned from 10 years of injection into the Utsira Formation in the Sleipner area[J]. Energy Procedia, 2009,1(1):1997-2004.
    [128]Hitchon B. Aquifer Disposal of Carbon Dioxide:Hydrodynamic and Mineral Trapping- Proof of Concept[J]. Geoscience Publishing Ltd., Sherwood Park, Alberta, Canada,1996, pp.165.
    [129]Holloway S, Pearce J M, Hards V L, et al. Natural emissions of CO2 from the geosphere and their bearing on the geological storage of carbon dioxide[J]. Energy.2007,32:1194-1201.
    [130]Hutcheon I, Shevalier M, Abercrombie H J. Metastable silicate equilibria, the dissolution of calcite and the origin of carbon dioxide during burial diagenesis[J]. Geochimica et Cosmochimica Acta,1993,57:1017-1028.
    [131]IPCC, Metz B, Davidson O, de Coninck H C,et al.2005. Special Report on Carbon Dioxide Capture and Storage, Prepared by Working Group Ⅲ of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom/New York, USA, pp.442-431.
    [132]IPCC. Climate Change 2007:Synthesis Report. Intergovernmental Panel on Climate Change, Geneva, Switzerland.2007.
    [133]Johnson J W, Oelkers E H, Helgeson H C. SUPCRT92:a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0 to 1000 degrees C[J]. Comput. Geosci.1992.18:899-947.
    [134]Johnson J W, Nitao, J J, Steefel, C I,et al. Reactive transport modeling of geologic CO2 sequestration in saline aquifers:the influence of intra-aquifer shales and the relative effectiveness of structural, solubility, and mineral trapping during prograde and retrograde sequestration[C]. First National Conference on Carbon Sequestration.May, Washington D C.2001:60.
    [135]Johnson J W, Nitao, J J, Knauss K G. Reactive transport modeling of CO2 storage in saline aquifers to elucidate fundamental processes, trapping mechanisms, and sequestration partitioning[J]. In:Baines, S.J., Worden, R.H.(Eds.), Geologic Storage of Carbon Dioxide. Geological Society, Special Publication, London,2004, pp.107-128.
    [136]Kaszuba J P, Janecky D R, Snow M G. Carbon dioxide reaction processes in a model brine aquifer at 200℃ and 200bars:implications for geologic sequestration of carbon[J]. Applied Geochemistry,2003,18:1065-1080.
    [137]Kaszuba J P, Janecky D R, Snow M G. Experimentl evaluation of mixed fluid reactions between supercritical carbon dioxide and NaCl brine:Relevance to the integrity of a geologic carbon repository [J]. Chemical Geology.2005,217:277-293.
    [138]Kaszuba J P, Janecky D R. Geochemical Impacts of Sequestering Carbon Dioxide in Brine Formations[J]. Geophysical Monograph,2009,183, pp.239-248.
    [139]Keating E H, Hakala J A, et al. The challenge of predicting groundwater quality impacts in a CO2 leakage scenario:Results from field, laboratory, and modeling studies at a natural analog site in New Mexico, USA[J]. Energy Procedia.2011,4:3239-3245.
    [140]Ketzer J M, Iglesias R, Einloft S,et al. Water-rock-CO2 interaction in saline aquifers aimed for carbon dioxide storage:Experimental and numerical modeling stydies of the Rio Bonito Formation (Permian), southern Brazil[J]. Applied Geochemistry,2009,24:760-767.
    [141]Kharaka Y K, Cole D R, Hovorka S D, et al. Gas-water-rock interactions in Frio Formation following CO2 injection:implications for the storage of greenhouse gases in sedimentary basins[J]. Geology,2006,34 (7):577-580.
    [142]Klusman R W. A geochemical perspective and assessment of leakage potential for a mature carbon dioxide-enhanced oil recovery project and as a prototype for carbon dioxide sequestration; Rangely field, Colorado[J]. AAPG Bulletin,2003,87(9):1485-1507.
    [143]Larsen E S, Berman H. The Microscopic Determination of the Non-Opaque Minerals[J]. Second edition, United States Department of the Interior, Geological Survey Bulletin,1934, 848,229.
    [144]Lewicki J L, Birkholzer J T, Tsang C F. Natural and industrial analogues for leakage of CO2 from storage reservoirs:identification of features, events, and processes and lessons learned[J]. Environmental Geology,2007,52(3):457-467.
    [145]Lichtner P C. FLOTRAN user's manual. Report LA-UR-01-2349. Los AlamosNational Laboratory, Los Alamos, NM,2001.
    [146]Lin H F, Fujii T, Takisawa R,et al. Experimental evaluation of interactions in supercritical CO2/water/rock minerals system under geologic CO2 sequestration conditions[J]. Applied Geochemistry,2007,22(1):202-218.
    [147]Liu L H, Suto Y, Bignall G, et al. CO2 injection to granite and sandstone in experimental rock/hot water systems[J]. Energy Conversion and Management,2003,44:1399-1410.
    [148]Liu, N., Liu, L., Qu, X.Y., Yang, H.D., Wang, L.J., Zhao, S. Genesis of the quthigene carbonate minerals in upper Cretaceous reservoir, Honggang anticline, Songliao Basin:a natural analogue for mineral trapping of natural CO2 storage. Sedimentray Geology[J]. Sediment. Geol.2011.doi:10.1016/j.sedgeo.2011.02.012.
    [149]Lupton J E. Terrestrial inert gases:Isotope tracer studies and clues to primordial components in the mantle[J]. Annual Review Earth Science,1983,11:371-414.
    [150]Maul P, Beaubien S E, et al.. Modelling the fate of carbon dioxide in the near-surface environment at the Latera natural analogue site[J]. Energy Procedia.2009,1(1):1879-1885.
    [151]May F. Alteration of wall rocks by CO2-rich water ascending in fault zones:natural analogues for reactions induced by CO2 migration along faults in siliciclastic reservoir and cap rocks[J]. Oil & Gas Science and Technology.2005,60(1):19-32.
    [152]Metz B, Davison O, de Coninck H, et al.IPCC. special report on carbon dioxide capture and storage[R]. Prepared by Working Group Ⅲ of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York.2005,431.
    [153]McCrea J M. On the isotopic chemistry of carbonates and a paleotemperature scale[J]. Journal of Chemical Physics,1950,18:849-857.
    [154]Miller W, Alexander W, Chapman N, et al. Natural analogue studies in the geological disposal of radioactive wastes[J]. Studies in Environmental Science,57,1994.Elsevier,395.
    [155]Mito S., Xue Z., Ohsumi T. Case study of geochemical reactions at the Nagaoka CO2 injection site, Japan[J]. International Journal of Greenhouse Gas Control,2008,2:309-318.
    [156]Moore J, Adams M, Allis R, et al. Mineralogical and geochemical consequences of the long-term presence of CO2 in natural reservoirs:an example from the Springerville-St. Johns Field,Arizona, and New Mexico, USA[J]. Chemical Geology,2005,217:365-385.
    [157]Morris J P, Hao Y, Foxall W, et al.Y. Hao, et al. A study of injection-induced mechanical deformation at the In Salah CO2 storage project[J].International Journal of Greenhouse Gas Control,2011,5(2):270-280.
    [158]Nagra S A. Longitudinal study of serum minerals, electrolytes, and hemoglobin during second trimester of pregnancy in Pakistani women[J]. Nutrition Research.1994,14(7):977-989.
    [159]Nakagawa K, Tanaka S, et al. Natural gas behavior in shallow geologic layers as natural analogues of discharge of CO2[J]. Energy Procedia,2009,1(1):1903-1907.
    [160]Narasimhan T N, Witherspoon P A. An integrated finite difference method for analyzing fluid flow in porous media[J]. Water Resources Research,1976,12:57-64.
    [161]Nitao J. Reference Manual for the NUFT Flow and Transport Code, Version 2.0. URCL-MA-130651, Lawrence Livermore National Laboratory, CA,1998.
    [162]O'Neil J R, Clayton R N, Mayeda T K. Oxygen isotope fractionation in divalent metal carbonates[J]. Journal of Chemical Physics,1969,51:5547-5548.
    [163]Oelkers E H, Gislason S R, Matter, J. Minral carbonation of CO2[J]. Elements,2008,4: 333-337.
    [164]Ogawa T, Nakanishi S, et al. Saline-aquifer CO2 sequestration in Japan-methodology of storage capacity assessment[J]. International journal of greenhouse gas control,2011,5(2): 318-326.
    [165]Ohmoto H, Rye R O. Isotopes of sulfur and carbon. In barnes H L. Geochemistry of Hydrothermal Ore Diposits[M].2nd Edition. New York, Wiley Press,1979:509-567.
    [166]Okuyama Y, Sasaki M, Nakanishi S, et al. Geochemical CO2 trapping in open aquifer storage-- the Tokyo Bay model[J]. Energy Procedia,2009:3253-3258.
    [167]Okuyama Y, Nakashima Y, Sasaki M et al. Do the sedimentary strata have power to neutralize leaking CO2?:A natural analogue study on past CO2 invasion and carbonate precipitation in the Cretaceous Izumi Group, SW Japan. Energy Procedia,2011,4:4953-4960.
    [168]Parkhurst D L, Kipp K L. Parallel processing for PHAST—A three dimensional reactive-transport simulator, in Hassanizadeh, S.M., Schlotting, R.J., Gray, W.H., and Pinder, G.F., eds., Computational methods in water resources, v.2, Developments in Water Science, n. 47:Amsterdam, The Netherlands, Elsevier,2002,711-718.
    [169]Parkhurst D L, Kipp K L, Engesgaard P. PHAST--A Program for Simulating Ground-Water Flowand Multicomponent Geochemical Reactions[J]. Developments in Water Science,2002, 47:711-718.
    [170]Pauwels H, Gaus I, Nindre Y M, et al. Chemistry of fluids from a natural analogue for a geological CO2 storage site (Montmiral, France):Lessons for CO2-water-rock interaction assessment and monitoring[J]. Applied Geochemistry,2007,22:2817-2833.
    [171]Pawar J, Warpinski N R, Lorenz J C, et al. Overview of a CO2 sequestration field test in the West Pearl Queen Reservoir, New Mexico[J]. Enviromental Geosciences,2006,13(3): 163-180.
    [172]Pearce J M, Holloway S, Wacker H,et al. Natural occurrences as analogues for the geological disposal of carbon dioxide[J]. Energy Conversion and Management,1996,37:1123-1128.
    [173]Petrov V A, Lespinasse M, Hammer J. Tectonodynamics of fluid-conducting structural elements and migration of radionuclides in massifs of crystalline rocks[J]. Geology of Ore Deposits,2008,50 (2):89-111.
    [174]Pettijohn F J. Sedimentary Rocks[M],3rd edition. Harper and Row Pbulisher, New York. 1975.
    [175]Pruess K, Oldenburg C, Moridis G. TOUGH2 user's guide, version 2.0.Lawrence Berkeley Laboratory Report-43134, Berkeley, California,1999.
    [176]Pruess K, Xu T, Apps J, et al. Numerical Modeling of Aquifer Disposal of CO2[C]. Paper SPE-66537, presented at SPE/EPA/DOE Exploration and Production Environmental Conference, San Antonio, TX, USA,2001.
    [177]QI F,PENG L, Hiromi K, et al. Coupled alkali-feldspar dissolution and secondary mineral precipitation in batch systems:1. New experiments at 200℃ and 300 bars[J]. Chemical Geology,2009,258:125-135.
    [178]Reed M H. Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases and aqueous phase[J]. Geochim. Cosmochim. Acta.1982, 46:513-528.
    [179]Rogers A F. Mineralogical notes[J]:American Journal of Science,4th. School of Mines Quarterly,1901,22,429.
    [180]Ryzhenko B N. Genesis of Dawsonite Mineralization:Thermodynamic Analysis and Alternatives[J]. Geochemistry International,2006,44(8):835-840.
    [181]Sharma T, Clayton R N. Measurement of 18O/16O ratios of total oxygen of carbonates[J]. Geochimica et Cosmochimica Acta,1965,29:321-334.
    [182]Sheppard S M F, Schwarz H P. Fractionation of carbon and oxygen isotopes and magnesium between metamorphic calcite and dolomite[J]. Contributions to Mineral and Petrology,1970, 26:161-198.
    [183]Shitashima K, MaedaY, et al. Natural analogue of the rise and dissolution of liquid CO2 in the ocean[J]. International Journal of Greenhouse Gas Control,2008,2(1):95-104.
    [184]Shukla R, Ranjith P, Haque A, et al. A review of studies on CO2 sequestration and caprock integrity[J]. Fuel.2010doi:10.1016/j.fuel.2010.05.012
    [185]Smellie J A T, Kailsson F. Grundfelt B. The potential use of natural analogue studies in radioactive waste disposal:a review. Geoval'94:validation through model testing. Proceedings of an NEA/SKI Symposium, Paris, France, October 11-14,1995, Paris.1-26.
    [186]Smellie J A T, Kailsson F. The use of natural analogues to assess radionuclide transport[J]. Engineering Geology,1999.52:193-320.
    [187]Smith J W, Gould K W, Rigby D. The stable isotope geochemistry of Australian coals[J]. Organic Geochemistry,1982,3:111-131.
    [188]Spycher N F, Reed M H. Fugacity coefficients of H2, CO2, CH4, H2O and of H2O-CO2-CH4 mixtures:a virial equation treatment for moderate pressures and temperatures applicable to calculations of hydrothermal boiling[J]. Geochim. Cosmochim. Acta 1988,52:739-749.
    [189]Spycher N, Pruess K, Ennis-King J. CO2-H2O Mixtures in the Geological Sequestration of CO2. Ⅰ. Assessment and Calculation of Mutual Solubilities from 12 to 100℃ and up to 600 bar[J]. Geochimica et Cosmochimica Acta,2003(67)16:3015-3031.
    [190]Steefel C I. CRUNCH, Lawrence Livermore National Laboratory. Internal Report.2001,
    [191]Stefansson A. Dissolution of primary minerals of basalt in natural waters:Ⅰ. Calculation of mineral solubilities from 0℃ to 350℃[J]. Chem Geol,2001,172(3/4):225-250.
    [192]Stillings L L., Brantley S L. Feldspar dissolution at 25℃ and pH 3:reaction stoichiometry and the effect of cations[J].Geochim. Cosmochim. Acta,1995,59:1483-1496.
    [193]Surdam R C, Crossey L J, Hagen E S,et al. Organic-inorganic and sandstone diagenesis[J]. AAPG Bull,1989,73(1):1-23.
    [194]Suzanne J T, Spiers C J. Reaction of plagioclase feldspars with CO2 under hydrothermal conditions[J]. Chemical Geology,2009,265:88-98.
    [195]Takahashi T, Ohsumi T, Nakayama K,et al. Estimation of CO2 aquifer storage potential in Japan[C]. In:Proceedings of GHGT-9.2008.
    [196]Tanaka S, Koide H, Sasagawa A. Possibility of underground CO2 storage in Japan[J]. Energy Conversion and Management,1995,36:527-530.
    [197]Thibeau S, Mucha V. Have we overestimated saline aquifer CO2 storage capacity? In:Deep Saline Aquifers for Geological Storage of CO2 and Energy,2007.
    [198]Todaka N, Nakanishi S et al. Hydrogeochemical Modeling for Natural Analogue Study of CO2 Leakage due to Matsushiro Earthquake Swarm[J]. Energy Procedia,2009, (1):2413-2420.
    [199]Voltattorni N, Caramanna G, Cinti D, et al. Study of natural CO2 emissions in different Italian geological scenarios:a refinement of natural hazard and risk assessment[J]. In:Lombardi S, Altunina L K, Beaubien S E (Eds.), Advances in the Geological Storage of Carbon Dioxide NATO Science Series, vol.65. Springer Publishing, Berlin,2006.pp:75-190.
    [200]Voltattorni N, Sciarra A. et al.. Gas geochemistry of natural analogues for the studies of geological CO2 sequestration[J]. Applied Geochemistry,2009,24(7):1339-1346.
    [201]Watson M N, Zwingmann N, Lemon N M. The Ladbroke Grove-Katnook carbon dioxide natural laboratory:A recent CO2 accumulation in a lithic sandstone reservoir[J]. Energy,2004, 29:1457-1466.
    [202]Wawersik W R, Rudnicki J W, Dove P,et al. Terrestrial sequestration of CO2:An assessment of research needs[J]. Advances in Geophysics,2001,43:97-177.
    [203]Weir G J, White S P, Kissling W M. Reservoir storage and containment of greenhouse gases[C]. In:Pruess, K. (Ed.), Proceedings of the TOUGH Workshop'95. Lawrence Berkeley National Laboratory Report LBL-37200, pp.233-238. Berkeley, California,1995.
    [204]White S P, Allis R G, Moore J, et al. Simulation of reactive transport of injected CO2 on the Colorado Plateau, Utah, USA[J]. Chemical Geology,2005,217:387-405.
    [205]Wilkinson M, Haszelding R S, Fallick A E,et al. CO2-mineral reaction in a natural analogue for CO2 storage- implications for modeling[J]. Journal of Sedimentary Research,2009,79: 486-494.
    [206]Wolery T J. EQ3/6:software package for geochemical modeling of aqueous systems:package overview and installation guide (version 7.0). Lawrence Livermore National Laboratory Report UCRL-MA-210662 PT I. Livermore, California,1992.
    [207]Wopfner H., Hoecker C F W. The Permian Groeden Sandstone between Bozen and Meran(northern Italy), a habitat of dawsonite and nordstrandite[J].Neues Jahrbuch fuer Geologie and Palaeontologie, Monatshefte,1987:161-176.
    [208]Worden R H. Dawsonite cement in the Triassic Lam Formation, Shabwa Basin, Yemen:A natural analogue for a potential mineral product of subsurface CO2 storage for greenhouse gas reduction[J]. Marine and Petroleum Geology,2006,23:61-77.
    [209]Xu T F, Samper C, Ayora C, et al. Modeling of non-isothermal multi-component reactive transport in field-scale porous media flow system[J]. Journal of Hydrology,1999,214: 144-164.
    [210]Xu T F, Apps J A, Pruess K. Numerical simulation of CO2 disposal by mineral trapping in deep aquifers[J]. Applied Geochmistry,2004,19:917-936.
    [211]Xu T F, Apps J A, Pruess K. Mineral sequestration of carbon dioxide in a sandstone-shale system[J]. Chemical Geology,2005,217:295-318.
    [212]Xu T F, Sonnenthal E L, Spycher N, et al. TOURGHREACT:a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media[J]. Computers & Geosciences,2006,32:145-165.
    [213]Xu T F, Apps J A, Pruess K. Numerical modeling of injection and mineral trapping of CO2 with H2S and SO2 in a sandstone formation[J]. Chemical Geology,2007,242:319-346.
    [214]Xu T F, Kharaka Y K, Doughty C, et al. Reactive transport modeling to study changes in water chemistry induced by CO2 injection at the Frio-l Brine Pilot[J]. Chemical Geology, 2010,271(3-4):153-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700