用户名: 密码: 验证码:
微晶纤维素的改性及其在热塑性淀粉复合材料中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微晶纤维素具有成本低、密度小、模量高、可再生、可降解、来源广泛等优点,可以作为复合材料的增强剂改善材料的性能。热塑性淀粉由于具有成本低、可生物降解等优点,是最有发展前景的生物降解材料之一。然而,热塑性淀粉耐水性差,力学性能随环境湿度变化较大等缺点限制了它的应用。用微晶纤维素作为增强剂,制备热塑性淀粉复合材料,可以有效改善热塑性淀粉的性能。但是,微晶纤维素表面存在大量的羟基,易于团聚,不利于其均匀分散在淀粉基体中,从而影响微晶纤维素增强热塑性淀粉复合材料力学性能、耐水性能以及透湿性能的改善。
     本论文对微晶纤维素进行机械微细化和酸解处理,减小微晶纤维素的尺寸;并以大豆油为酯化剂,对微晶纤维素、机械微细化处理的微晶纤维素和酸解处理的微晶纤维素进行酯化改性,降低微晶纤维素的极性并提高其疏水性。通过考查反应时间、大豆油浓度等因素的影响,调节和控制微晶纤维素的酯化改性程度;最后用上述三种酯化改性的微晶纤维素作为增强剂,制备热塑性淀粉复合,考查微晶纤维素的添加量、表面性质、以及尺寸对热塑性淀粉复合力学性能、亲/疏水性和透湿性能的影响,探索通过控制微晶纤维素尺寸、酯化改性程度以及添加量,调节控制微晶纤维素增强热塑性淀粉复合材料力学性能、亲/疏水性和透湿性能的技术方法。
     通过激光粒度仪对微晶纤维素的粒径进行了表征。结果显示,机械微细化和酸解的方法都可以减小微晶纤维素的粒径,微晶纤维素的粒径随剪切乳化机转速的增加或机械微细化时间的延长而减小。但当处理时间超过60min后,微晶纤维素的粒径不再随机械微细化时间的延长而发生明显变化。
     通过红外光谱对酯化改性微晶纤维素进行了表征。结果表明,三种微晶纤维素均可以和大豆油发生酯化反应。在温度为110oC时,反应时间和大豆油溶液浓度对微晶纤维素酯化程度的影响不明显。当酯化条件相同时,机械微细化处理的微晶纤维素更易于和大豆油发生酯化反应。水煮实验表明,制备微晶纤维素/热塑性淀粉复合的过程不会破坏对微晶纤维素的酯化改性。
     通过X-射线衍射对微晶纤维素的结晶结构进行了表征。结果表明,酸解和机械微细化处理没有破坏微晶纤维素的结晶结构。用大豆油对微晶纤维素进行的酯化改性并没有破坏微晶纤维素的结晶结构,说明酯化反应只发生在微晶纤维素表面。
     通过润湿性实验对微晶纤维素表面极性进行了表征。结果表明,酯化改性影响微晶纤维素的润湿性。当酯化条件相同时,酯化改性机械微细化微晶纤维素更易于被极性低的溶剂润湿。酯化时间越长,酯化改性机械微细化微晶纤维素的酯化程度越高,并能在极性越低的溶剂中稳定分散。
     通过拉伸试验、吸(透)湿性试验和接触角测量对微晶纤维素增强热塑性淀粉复合的力学性能、亲/疏水性和透湿性进行了表征。结果表明,随着添加量的增加,微晶纤维素增强热塑性淀粉复合的拉伸强度和弹性模量不断增大,断裂伸长率不断减小;随着添加量的增加,酯化改性微晶纤维素增强热塑性淀粉复合的拉伸强度先增大后减少,弹性模量不断增大,断裂伸长率不断减小。热塑性淀粉复合的弹性模量只随着微晶纤维素含量的增加而增大,而受微晶纤维素酯化改性地影响不明显。微晶纤维素增强热塑性淀粉复合的吸湿率随微晶纤维素添加量的增加不断减小。当添加量相同时,酯化改性微晶纤维素对减小热塑性淀粉复合的吸湿率更有效。微晶纤维素增强热塑性淀粉复合的透湿性随微晶纤维素添加量的增加不断减小。当添加量相同时,酯化改性微晶纤维素能够更好地阻止水分透过复合。添加微晶纤维素,对热塑性淀粉复合表面与水的接触角影响不明显。在所考查的微晶纤维素含量范围内,微晶纤维素的尺寸对热塑性淀粉复合的弹性模量和透湿性有显著影响。
Microcrystalline cellulose(MCC)has advantages of low cost,low density,high elasticrenewable and biodegradable,it can be used as a reinforcement to prepare composites.Thermoplastic starch(TPS),as a renewable,inexpensive and biodegradable natural polymer,is one of the most promising biodegradable materials. But the mechanical properties of TPS issensitive to the humidity of environment,which limits its applications. When MCC was usedas a reinforcement,the properties of MCC/TPS composite can be improved. However,MCCtends to self-aggregate due to the hydrogen bonding ineraction from the surface carryinghydroxyl groups,which causes uniformly dispersion of MCC in TPS matrix and hinders theimprovements of mechanical properties,water resistance and water barrier properties ofMCC/TPS composites.
     In this study,MCC was treated by mechanical ultrafine processing and sulfuric acidhydrolysis, and modified with soybean oil through esterification to improve thehydrophobicity. The effects of reaction time,soybean oil concentration were investigated inorder to control the degree of the modification. The modified MCC was used to prepare MCCreinforced TPS composites. The effects of particle loading, particle size and surfacemodification on the mechanical properties and water barrier properties were investigated. Thechanges of mechanical properties and water barrier properties to the content and size of MCCwere obtained to provide some essential scientific date for applications.
     Laser particle sizer was used to analysis the size and distribution of MCC. The resultsindicated that the mechanical ultrafine processing and sulfuric acid hydrolysis reduced thesize of MCC. The size of MCC decreased with increasing of rotation speed during mechanicalultrafine processing and prolongation of treating time. But after60min treatment,the size ofMCC decreased very slowly.
     The esterification mofification of MCC was characterized by FTIR spectroscopy. The results indicated that MCC was modified with soybean oil through esterification. The heatingtime and soybean oil concentration did not have a significant effect on the esterification extentof MCC at110oC. The MCC obtained from mechanical ultrafine processing was easier to beesterified with soybean oil. The washing experiment in boiling water showed that thepreparation of the MCC/TPS composites would not damage the esterification of MCC.
     The crystalline structure of MCC was characterized by X-ray diffraction (XRD). Theresults indicated that the mechanical ultrafine processing and sulfuric acid hydrolysis did notdestroy the crystalline structure of MCC. XRD measurements aslo confimed that theesterification modification just occurred on the surface of the MCC,because there was noalteration in crystalline structure of MCC after the modification.
     The surface polarity of MCC was characterized by wettability experiments. The resultsindicated that the esterification modification affected the wettability of MCC. Afteresterification,the MCC obtained from mechanical ultrafine processing displayed a higheraffinity for low polar solvent. With increasing of esterification reaction time,the MCCobtained from mechanical ultrafine processing displayed a higher affinity for lower polarsolvents.
     The mechanical properties,water absorption behaviour,water barrier properties andwater contact angle of MCC/TPS composites were measured. The results suggested that as thecontent of MCC increasing,the tensile strength and Young’s modulus increaseed and theelongation at break decreased. The modified MCC aslo improved the tensile strength andYoung’s modulus of the composites. For the composites with esterification modified MCC,the tensile strength increased at first and then decreased,the Young’s modulus increased andthe elongation at break decreased as the content of the modified MCC increasing. The resultsshowed that the Young’s modulus was largely dependent on the content of MCC and was notremarkablely influenced by the modification of MCC. Addition of MCC and modified MCCreduced the water absorption of the composites,and the water absorption of the compositesdecreased as the content of MCC increasing. Addition of MCC did not influence the watercontact angle of the composites remarkably. The size of MCC had a significant effect on theYoung’s modulus and water barrier property of the MCC/TPS composites.
引文
[1] http://baike.baidu.com/view/1780.htm.
    [2]单士军,李耐霞.可降解塑料研究现状与发展前景[J].工业安全与保护,2004,30(9):17-18.
    [3] http://news.sohu.com/20061104/n246197650.shtml.
    [4] http://www.polymer.cn/Html/IndustryNews/2006-3/2/.
    [5]李品高,王飞镝,崔英德,余林,周智鹏,吴国杰.我国完全生物降解塑料的研究现状及前景[J].材料导报,2006,3(20):65-67.
    [6] http://baike.baidu.om/view/1629509.htm.
    [7] Istva Siro,David Plackett.Microfibrillated cellulose and new nanocomposite m-aterials:a review[J].Cellulose,2010(7):459-494.
    [8] Plonka A M.Characteristics of Microcrystalline and Microfine Cellulose[J].CellulloseChem Technol,1982,16:473-483.
    [9] Hon D N S.Cellulose:A random walk along its historical path[J].Cellulose,1994,1(10):1-25.
    [10] Sarko A,Muggli R.Packing analysis of carbohydrates and polysaccharides Ⅲ:Valoniacellulose and celluloseⅡ [J].Macromolecules,1974,7(4):486-494.
    [11] Atalla R H,VanderHart D L.Native cellulose:A composite of two distinct crystallineforms[J].Science,1984,223(4):283-285.
    [12]袁晔,范子千,沈青.纳米纤维素研究及应用进展Ⅰ[J].高分子通报,2010,2:75-79.
    [13]詹怀宇.纤维素化学与物理[M].北京:科学出版社,2005:1-2.
    [14]樊岫珊.苎麻纤维乙酰化及其应用研究[D].陕西:陕西师范大学,2007.
    [15]何耀良,廖小新,黄科林,吴睿,王犇,刘宇宏,黄尚顺,李卫国.微晶纤维素的研究进展[J].化工技术与开发,2010,139(11):12-15.
    [16]杨维生,等.微晶纤维素在食品工业中的应用[J].林产化工通讯,1994,1:11-13.
    [17]候永发.微晶纤维素的研究与应用[J].林产化学与工业,1993,13(2):169-175.
    [18]杨维生,等.天然纤维原料制备电焊条用微晶纤维素研究[J].林产化工通讯,1994,6:11-14.
    [19]徐永建,敬玲梅.微晶纤维素特性的研究[J].陕西科技大学学报,2010,28(2):54-56.
    [20]宋杰,侯永发.微晶纤维素的性质与应用[J].纤维素科学与技术,1993,3(3):1-10.
    [21]徐永建,刘姗姗.微晶纤维素的现状及其前景[J].黑龙江造纸,2009,1:1-8.
    [22]王宗德,胡庆国.微晶体纤维素的特性及其应用[J].江西林业科技,2000,1:26-28.
    [23]高洁,汤烈贵.纤维素科学[M].北京:科学出版社,1996.
    [24]罗素娟.甘蔗渣微晶纤维素的研制[J].广西化工,1997,26(3):4-7.
    [25]陈家楠,谢春雷,颜少琼,阮金月,胡钧.稻草微晶纤维素的制备及其形态结构[J].纤维素科学与技术,1993,1(3):34-36.
    [26]吕艳蓓.利用大豆皮制备微晶纤维素的初步研究[J].食品开发,2007,28(6):77-79.
    [27]袁毅,张黎明,高文远.穿龙薯蓣微晶纤维素的制备及其理化性质研究[J].生物质化学工程,2007,41(4):22-26.
    [28]王宗德,范国荣,黄敏,等.杉木微晶纤维素的制备[J].江西农业大学学报,2003,25(4):591-593.
    [29] Paul Madus Ejikeme.Investigation of the physicochemical properties ofMicrocrystalline cellulose from agricultural wastesⅠ:orange mesocarp[J].Cellulose,2008,15:141-147.
    [30] Foster A., Agblevor·Maha M., Ibrahim·Waleed K.El-Zawawy.Coupled acid andenzyme mediated production of microcrystalline cellulose from corn cob and cotton ginwaste[J].Cellulose,2007,14:247-256.
    [31] Mohamed El-Sakhawy,Mohammad L.Hassan.Physical and mechanical properties ofmicrocrystalline cellulose prepared from agricultural residues[J].Proc EstonianAcad.Sci.Chem,2006,55(2):78-84.
    [32]蒋玲玲,陈小泉.纳米纤维素晶体的研究现状[J].纤维素科学与技术,2008,16(2):73-77.
    [33]李伟,王锐,刘守新.纳米纤维素的制备[J].化学进展,2010,22(10):2060-2070.
    [34] Noriko Hayashi,Tetsuo Kondo,Mitsuro Ishihara.Enzymatically produced nano-orderedshort elements containing celluloseⅠβcryatalline domains[J].Carbohydrate Polymers,2005,61(2):191-197.
    [35]张爱萍,秦梦华,徐清华.酶对纤维改性的研究进展[J].中国造纸,2005,24(9):57-60.
    [36]周建,罗学刚,苏林.纤维素酶法水解的研究现状及展望[J].化工科技,2006,14(2):51-56.
    [37]赵越,武彬,阎伯旭,等.纤维二糖抑制外切纤维素酶水解作用机理的分析[J].中国科学(C辑),2003,33(5):454-460.
    [38]蒋玲玲,陈小泉,李宗任.纤维素酶制备纳米纤维素晶体的研究[J].化学与生物工程,2008,25(12):63-66.
    [39]吴开丽,徐清华,谭丽萍,秦梦华.纳米纤维素晶体的制备方法及其在制浆造纸中的应用前景[J].造纸科学与技术,2010,29(1):55-60.
    [40] Bondeson D,Mathew A,Oksman K.Op timization of the isolation of nanocrystals frommicrocrystalline cellulose by acidhydrolysis[J].Cellulose,2006,13(2):171-180.
    [41]李金玲,周刘佳,叶代勇.硫酸铜助催化制备纳米纤维素晶须[J].精细化工,2009,26(9):844-849.
    [42] Ping Lu,You-Lo Hsieh.Preparation and properties of cellulose nanocrystals:Rods,spheres,and network[J].Carbohydrate Polymers,2010,82(2):329-336.
    [43] Marta Martinez-Sanz,Amparo Lopez-Rubio,Jose M.Lagaron.Optimization of thenanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers[J].CarbohydratePolymers,2011,85(1):228-236.
    [44] Yun Chen,Changhua Liu,Peter R.Chang,Xiaodong Gao,Debbie P.Anderson.Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from peahull fibre:Effect of hydrolysis time[J].Carbohydrate Polymers,2009,76(3):607-615.
    [45] Stephanie Beck-Candanedo,Marengo Roman,Derek G.Gray.Effect of ReactionConditions on the Properties and Behavior of Wood Cellulose NanocrystalSuspensions[J].Biomacromolecules,2005,6(2):1048-1054.
    [46] Beck-Candanedo S,RomanM,GrayD.G.Effect of reaction conditions on the propertiesand behavior of wood cellulose nano-crystal suspensions[J].Biomacromolecules,2005,6(2):1048-1054.
    [47] Gray D.G,RomanM.ACS symposium Series-cellulose nano-composites[J].Cellulose,2006,938:26-32.
    [48] Youssef Habibi,Lucia A.lucia,Orlando J.Rojas.Cellulose Nanocrystals:Chemistry,Self-Assembly and Applications[J].Chem.Rev,2010,110(6):3479-3500.
    [49] Uraki Y,Morito M,Kishimoto T,Sano Y.Bacterial Cellulose Production UsingMonosaccharides Derived from Hemicelluloses in Water-Soluble Fraction of WasteLiquor from Atmospheric Acetic Acid Pulping[J].Follow Holzforschung-InternationalJournal of the Biology,Chemistry,Physics and Technology of Wood,2002,56(4):341-347.
    [50] Bae S, Shoda M.Biotechnol, Prog.Bacterial cellulose production by fed-batchfermentation in molasses medium[J].Biotechnol.Biochem,2004,20:1366-1371.
    [51] Ishihara M,Matsunaga M,Hayashi N,Tisler.Utilization of D-xylose as carbon sourcefor production of bacterial cellulose[J].Enzyme and Microbial Technology,2002,31(7):986-991.
    [52]朱昌来,李峰,尤庆生,陆松华,王庆庆,林琳,张天一.纳米细菌纤维素的制备及其超微结构镜观察[J].生物医学工程研究,2008,27(4):287-290.
    [53] Oksman K,Mathew A P,Bondeson D,Kvien.Manufacturing process of cellulosewhiskers/polylactic acid nanocomposites[J].Composites Sci.Technol,2006,66(15):2776-2784.
    [54] Nelson K,Deng Y L.Macromo.Encapsulation of inorganic particles with nanostructuredcellulose[J].Mater.Eng,2007,292(10/11):1158-1163.
    [55]于忠玺,高善民,许璞,等.纤维素的酸处理及醋酸酯化表面改性研究[J].化学与生物工程,2009,26(7):83-87.
    [56] Huihong Yuan, Yoshiharu Nishiyama, Masahisa Wada, Shigenori Kuga.SurfaceAcylation of Cellulose Whiskers by Drying Aqueous Emulsion[J].Biomacromolecules,2006,7(3):696-700.
    [57] Pinglang wang,Bernard Y.Tao.Synthesis of Cellulose-Fatty Acid Esters for Use asBiodegradable Plastics[J].Journal of Environment Polymer Degradation,1995,3(2):115-119.
    [58] Peydecastaing J,Girardeau S,Vaca-Garcia C.,Borredon M.E.Long chain celluloseesters with very low DS obtained with non-acidic catalysts[J].Cellulose,2005,13:95-103.
    [59] Freire C.S.R,Silvestre A.J.D,Pascoal Neto C,M.N.Belgacem A.Gandini.ControlledHeterogeneous Modification of Cellulose Fibers with Fatty Acids:Effect of ReactionConditions on the Extent of Esterification and Fiber Properties[J].Journal of AppliedPolymer Science,2006,100(2):1093-1102.
    [60] wang P,Tao Y.Characterization of Plasticized and Mixed Long-Chain Fatty CelluloseEsters[J].American Chemical Society,1999:77-87.
    [61] Sreekala M.S, Thomas S.Effect of fibre surface modification on water-sorptioncharacteristics of oil palm fibres[J].Composites Science and Technology,2003,63:861-869.
    [62] Jiang Zhu,Xue Ting Dong,Xiu Li Wang,Yu Zhong Wang.Preparation and propertiesof a novel biodegradable ethyl cellulose grafting copolymer with poly(p-dioxanone)side-chains[J].Carbohydrate Polymers,2010,80(2):350-359.
    [63] Elisabeth Kloser,Derek G.Gray.Surface Grafting of Cellulose Nanocrystals withPoly(ethylene oxide) in Aqueous Media[J].Langmuir,2010,26(16):13450-13456.
    [64] Olivier Paquet,Mohammed Krouit,Julien Bras,Wim Thielemans,Mohamed NaceurBelgacem.Surface modification of cellulose by PCL grafts[J].Acta Materialia,2010,58:792-801.
    [65]李雄辉,古菊,谢东,陆合承,罗远芳,贾德民.固相法微晶纤维素接枝甲基丙烯酸甲醋共聚物的制备与表征[J].弹性体,2008,18(5):1-5.
    [66] Gousse C,Chanzya H,Cerradab M.L,Fleury E.Surface silylation of cellulosemicrofibrils:preparation and rheological properties[J].Polymer,2004,45:1569-1575.
    [67] Martin Andresen,Leena-SiskoJohansson,Bj rn Steinar Tanem,Per Stenius.Propertiesand characterization of hydrophobized microfibrillated cellulose[J].Cellulose,2006,13:665-677.
    [68] Dae Young Kim,Yoshiharu Nishiyama,Shigenori Kuga.Surface acetylation of bacterialcellulose[J].Cellulose,2002,9:361–367.
    [69]牛成,吴周新,王锡彬,冯玉红,林强.细菌纤维素乙酰化改性研究[J].合成纤维工业,2009,32(4):21-23.
    [70]方桂珍,李坚,刘一星.pH值对多元羧酸与纤维素交联反应的影响[J].林产化学与工业,1993,19(1):28-32.
    [71] Charles Q,Yanc,Xilie Wanc.Infrared Spectroscopy Studies of the cyclic anhyd-ride asthe Intermediate for the ester crosslinking of cotton cellulose by polycarboxylic AcidsⅡ:comparison of different polycarboxylic acids[J].Journal of Polymer Science:Part APolymer Chemistry,1996,34:1573-1580.
    [72] Istvan Siro.David Plackett.Microfibrillated cellulose and new nanocompositeMaterials:a review[J].Cellulose,2010,17:459-494.
    [73] Alain Dufresne.Polysacchride nanocrystal reinforced nanocomposites[J].Can.J.Chem,2008,86:484-494.
    [74] Ana Gisela Cunha.Alessandro Gandini.Turning polysaccharides into hydrophobicmaterials:a critical review.Part1[J].Cellulose.Cellulose,2010,17:875-889.
    [75] X.Cao,Y.Chen,P.R.Chang,A.D.Muir,G.Falk.Starch-based nanocompositesreinforced with flax cellulose nanocrystalse[J].Polymer Letters,2008,2(7):502-510.
    [76] Carmen M.O.Muller,Joao Borges Laurindo,Fabio Yamashita.Effect of cellulose fiberson the crystallinity and mechanical properties of starch-based films at different relativehumidity values[J].Carbohydrate Polymers,2009,77(1):293-299.
    [77] Dagang Liu,Tuhua Zhong,Peter R.Chang,Kaifu Li,Qinglin Wuc.Starch compositesreinforced by bamboo cellulosic crystals[J].Bioresource Technology,2010,10:2529-2536.
    [78] Eliangela de M.Teixeira,Daniel Pasquini,et al.Cassava bagasse cellulose nanofibrilsreinforced thermoplastic cassava starch[J].Carbohydrate Polymers,2009,78(3):422-431.
    [79] Peter R.Chang,Ruijuan Jian,Pengwu Zheng,Jiugao Yu,Xiaofei Mab.Preparation andproperties of glycerol plasticized-starch(GPS)/cellulose nanoparticle(CN)composites[J].Carbohydrate Polymers,2010,79(2):301-305.
    [80] M.Neus Angles,Alain Dufresne.Plasticized Starch/Tunicin Whiskers NanocompositeMaterials.2.Mechanical[J].Behavior Macromolecules,2001,34(9):2921-2931.
    [81] Anna J.Svagan,Mikael S.Hedenqvis,Lars Berglund.Reduced water vapour sorption incellulose nanocomposites with starch matrix[J].Composites Science and Technology,2009,69:500-506.
    [82] Carmen M.O.Muller,Joao Borges Laurindo,Fabio Yamashita.Effectof cellulose fibersaddition on the mechanical properties and water vapor barrier of starch-basedfilms[J].Food Hydrocolloids,2009,23:1328-1333.
    [83]王丹,刘鹤,商士斌,宋湛谦.聚乙烯醇与纤维素纳米晶体复合材料的制备与性能研究[J].林产业与化工,2009,29:43-46.
    [84] Jue Lu,Tao Wang,Lawrence T.Drza.Preparation and properties of microfibrillatedcellulose polyvinyl alcohol composite materials[J].Composites,2008,39:738-746.
    [85] Mehdi Roohani,Youssef Habibi,Naceur M.Belgacem,et al.Cellulose whiskersreinforced polyvinyl alcohol copolymers nanocomposites[J].European Polymer Journal,2008,44:2489-2498.
    [86] Cristina Bilbao-Sainz, et, al.Composite Edible Films Based on HydroxypropylMethylcellulose Reinforced with Microcrystalline Cellulose Nanoparticles[J].J.Agric.Food Chem,2010,58(6):3753-3760.
    [87] Dong N,Mchugh T.H.Effects of Microcrystalline Cellulose on Functional Properties ofHydroxy Propyl Methyl Cellulose Microcomposite Films[J].Jouranal of food science,2007,72(1):16-22.
    [88] Maren Grunert,William T.Winter.Nanocomposites of Cellulose Acetate ButyrateReinforced with Cellulose Nanocrystals[J].Journal of Polymers and the Environment,2002,10(1/2):27-30.
    [89] Ning Lina,Jin Huang,Peter R.Chang,Jiwen Fengc,Jiahui Yu.Surface acetylation ofcellulose nanocrystal and its reinforcing function in poly(lactic acid)[J].CarbohydratePolymers,2011,83(4):1834–1842.
    [90] Xiaodong Cao,Hua Dong,Chang Ming LiNew.Nanocomposite Materials Reinforcedwith Flax Cellulose Nanocrystals in Waterborne Polyurethane[J].Biomacromolecules,2007,8(3):899-904.
    [91] Yixiang Wang,Huafeng Tian,Lina Zhang.Role of starch nanocrystals and cellulosewhiskers in synergistic reinforcement of waterborne polyurethane[J].CarbohydratePolymers,2010,80(3):665-671.
    [92]高洁,汤烈贵.纤维素科学[M].北京:科学出版社,1996:50-58.
    [93] Elazzouzi Hafraoui S,Nishiyama Y,Putaux J.The shape and size distribution ofcrystalline nanoparticles prepared by acid hydrolysis of native cellulose[J].Biomacromolecules,2008,9(1):57-65.
    [94] Baiardo M,Frisoni G,Scandola M,Licciardello A.Surface chemical modification ofnatural cellulose fibers[J].Appl Polym Sci,2002,83(1):38-45.
    [95] Robert T.Oconnor,Elsie F.Dupre,Elizabeth R.Mccall.Infrared SpectrophotometricProcedure for Analysis of Cellulose and Modified Cellulose[J].Analytical Chemistry,1957,29(7):998-1005.
    [96]胡爱琳,王公应.全淀粉降解塑料的研究进展[J].精细化工,2004,21(10):759-762.
    [97] Xiaofei Ma,Peter R.Chang,Jiugao Yu.Properties of biodegradable thermoplastic peastarch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites[J].Carbohydrate Polymers,2008,72:369-375.
    [98]江雷,冯琳.仿生智能纳米界面材料[M].北京:化学工业出版社,2007:95-99.
    [99] Wenzel R.N.Resistance of solid surface to wetting by water[J].Industrial andEngineering Chemistry,1936,28:988-994.
    [100]Averous,L.Fringant.C,Moro,L.(2001).Plasticized starch-cellulose interactions inpolysaccharide composites[J].Polymer,2001,42,6565-6572.
    [101]Sahu S,Broutman LJ.Mechanical properties of particulate composites[J].Polym EngSci,1972,12:91-100.
    [102]dogan N,Mchugh T.H..Effects of Microcrystalline Cellulose on Functional Propertiesof Hydroxy Propyl Methyl Cellulose Microcomposite Films[J].Food Engineering andPhysical Properties,2007,(1):16-22.
    [103]Aji P.Mathew,Alain Dufresne.Morphological Investigation of Nanocomposites fromSorbitol Plasticized Starch and Tunicin Whiskers[J].Biomacromolecules,2002,3(3):609-617.
    [104]Dufresne,A.Dupeyre,D.Vignon,M.R.Cellulose microfibrils from potato tubercells:processing and characterization of starchcellulose microfibril composites[J].J.Appl.Polym.Sci,2000,76,2080-2092.
    [105]Funke, U.Bergthaller, W, Lindhauer, M.G.Processing and characterization ofbiodegradable products based on starch[J].Polym.Degrad.Stability1998,59:293-296.
    [106]Stromme M,Mihranyan A,Ek R,Niklasson G.A.Fractal Dimension of CellulosePowders Analyzed by Multilayer BET[J].Adsorption of Water and Nitrogen.J.Phys.Chem.2003,107(51):14378-14382.
    [107]Svagan AJ, Azizi Samir MAS, Berglund LA.Biomimetic polysaccharidenanocomposites of high cellulose content and high toughness[J].Biomacromolecules2007,8(8):2556-2563.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700