用户名: 密码: 验证码:
参附注射液对大鼠移植肝脏缺血再灌注损伤保护作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本文旨在从组织和细胞水平,探讨参附注射液(Shenfu injection, SF)对大鼠移植肝脏在缺血再灌注损伤(Ischemic reperfusion injury,IRI)中的保护作用及其具体机制。
     方法:采用72只健康雄性SD(Sprague Dawley)大鼠,重190~220g,将其随机分为对照组和SF组(SF组受体在供肝植入门静脉血流恢复后即经尾静脉一次性注射SF 1ml/100g,对照组以相同的方式注射等量的生理盐水),每组18对,采用二袖套法进行原位肝移植。其中每组按门静脉再灌注时间不同,又分为三组,分别于肝移植完成2h、4h和6h后收集受体的血清和肝组织,采用ELISA(酶联免疫吸附)法测定血清中肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)的浓度,免疫组织化学法测定核因子κB(nuclear factor kappa B,NF-κB)的表达,原位杂交法测定细胞间粘附分子(intercellular adhesion molecule-1,ICAM-1)mRNA。另选用36只健康雄性SD大鼠,重180~210g,随机分为对照组和SF组(SF组每孔细胞悬液滴加0.5mlSF,对照组每孔给予同等量生理盐水),其中每组按再氧化时间不同,又分为三组,分别进行原位肝脏灌注,所得细胞悬液进入缺氧-复氧模型(模拟体外IRI)。分别于复氧2h、4h和6h后取细胞悬液进行检测。采用ELISA法测定ICAM-1的表达,免疫细胞化学法测定NF-κB的表达。
     结果:用于血清和组织学检测的大鼠中,在肝移植完成后2h、4h和6h,SF组TNF-α浓度分别为(576±60pg/ml、518±52pg/ml和421±35pg/ml ),较对照组的浓度( 831±65pg/ml、715±69pg/ml和598±52pg/ml)明显低(P<0.05);同时,SF组组织的NF-κB和ICAM-1mRNA表达均明显弱于对照组。在复氧2h、4h和6h后,SF组SEC的ICAM-1浓度分别为(44±3.4 pg/ml、68±3.2 pg/ml和73±4.5 pg/ml),明显低于对照组的(59±4.3 pg/ml、98±6.5 pg/ml和111±5.7 pg/ml,P<0.05);SF组SEC的NF-κB表达明显弱于对照组。
     结论:SF能减轻IRI对移植肝脏特别是窦状内皮细胞的损伤,其机制是通过抑制肝组织中NF-κB的活化,有效下调TNF-α的分泌,降低ICAM-1的生成,从而减少白细胞对SEC的粘附,显著改善微循环。本研究可为提高肝移植质量提供一条新的途径。
Objective: To investigate the protective role of Shenfu injection (SF) in ischemic reperfusion injury of rat liver graft and its mechanism.
     Methods: Seventy-two male Sprague Dawley (SD) rats were randomly divided into SF group and control group, and used as donors and recipients of orthotopic liver transplantation. The operation was performed according to the two-cuff technique. 2 hours, 4 hours and 6 hours after liver transplantation, serum and hepatic tissue of recipients were taken for following assays: TNF-α(tumor necrosis factor), NF-κB (nuclear factor kappa B) and ICAM-1mRNA(intercellular adhesion molecule-1 mRNA).
     The other thirty-six male SD rats were divided into three groups according to different reoxidation time, and accepted orthotopic liver reperfusion. All the cells got into hypoxia-reoxidation model. 2 hours, 4 hours and 6 hours after reperfusion, the cells were taken for following assays: NF-κB and ICAM-1.
     Results: Serum TNF-αof rat liver graft in SF group were (576±60pg/ml,518±52pg/ml and 421±35pg/ml) respectively, lower than in control group: (831±65pg/ml,715±69pg/ml and 598±52pg/ml, P<0.05). Moreover, expressions of NF-κB and ICAM-1mRNA in hepatic tissue of SF group were obviously poorer than control group. 2 hours, 4 hours and 6 hours after reperfusion, ICAM-1 levels of SEC in SF group were (44±3.4 pg/ml, 68±3.2 pg/ml and 73±4.5 pg/ml), lower than in control group: (59±4.3 pg/ml, 98±6.5 pg/ml and 111±5.7 pg/ml, P<0.05). And the expressions of NF-κB in SEC of SF group were obviously poorer than control group.
     Conclusion: SF could be benefit for hepatic tissue and SEC during ischemic reperfusion injury in the liver transplantation, and improve long-term outcome.
引文
[1]Kamada N, Calne RY. A surgical experience with five hundred thirty liver transplants in the rat[J]. Surgery 1983; 93(3); 64-69.
    [2]朱瑾,陈平,董家鸿等.大鼠肝窦内皮细胞的分离、培养及鉴定[J].中华肝脏病杂志,2004;12(10):633-634.
    [3]Serracino-Inglott F, Habib NA, Mathie RT. Hepatic-ischemia reperfusion injury[J]..Am J Surg. 2001;181(2):160–166.
    [4]Jaeschke H. Mechanism of preservation injury after warm ischemia of the liver[J]. J Hepatol. 1998;21(4):402–408.
    [5]Adam R, Reynes M, Johann M, et al. The outcome of steatotic grafts in liver transplantation[J]. Transplant Proc. 1991;23(1):1538–1540.
    [6]D'Alessandro AM, Kayaloglu M, Sollinger HW, et al. The predictive value of donor liver biopsies for the development of primary nonfunction after orthotopic liver transplantation[J]. Transplantation. 1991;51(1):157.
    [7]Belzer FO, Southard JH. Principles of solid organ preservation by cold storage. Transplantation[J]. 1988;45(4):673–676.
    [8]Adam R, Bismuth H, Diamond T, et al. Effect of extended cold ischemia with UW solution on graft function after liver transplantation. Lancet. 1992;340(8832):1373–1376.
    [9]Kamada M, lrahara M, Maegawa M, et a1.Effect of hormone replacement therapy on post—menopausal changes of lymphocytes and T cell subsets[J]. Endocfinol Invest,2000; 23(6):376-382.
    [10]陈玉培,牟崇明,季道如等.参附注射液对大鼠缺血再灌注心肌Bcl-2、Bax与c-fos基因蛋白表达的影响[J].第三军医大学学报,2006;28(19):1939-1941.
    [11]戴晓明,吴慧平,蒋凤荣等.参附注射液对大鼠肾缺血再灌注损伤作用的研究[J].南京中医药大学学报, 2006;22(6):380-381.
    [12]邵丰,郑世营,赵军等.参附注射液对兔离体肺缺血/再灌注保护作用的实验研究[J].中国急救医学,2006;26(3):195-197.
    [13]Arankalle VA, Chadha MS, Dama BM, Tsarey SA, Purcell RH, Banerjee K. Role of immune serum globulins in pregnant women during an epidemic of hepatitis E[J]. J Viral Hepat. 1998;23(5):199–204.
    [14]Carmen García-Ruiz, Anna Colell, Montserrat Marí, et al. DefectiveTNF-α–mediated hepatocellular apoptosis and liver damage in acidicsphingomyelinase knockout mice[J]. J Clin Invest. 2003; 111(2): 197–208.
    [15]Tomoaki Ando, Robert R Langley, Yuping Wang, et al.Inflammatory cytokinesinduceMAdCAM-1 in murine hepatic endothelial cells and mediate alpha-4 beta-7integrin dependent lymphocyte endothelial adhesion In Vitro[J]. BMC Physiol.2007; 7: 10.
    [16]Satiya Wati, Peng Li, Christopher J. Burrell, et al. Dengue Virus (DV) Replication in Monocyte-Derived Macrophages Is Not Affected by Tumor Necrosis Factor Alpha (TNF-α), and DV Infection Induces Altered Responsiveness to TNF-α Stimulation[J]. J Virol. 2007; 81(18): 10161–10171.
    [17]Pabbisetty Sudheer Kumar, Anjali Shiras, Gowry Das, et al. Differential expression and role of p21 and p27 in TNF-α-induced inhibition of proliferation in human glioma cells[J]. Mol Cancer. 2007; 6: 42.
    [18]Fengjun Wang, W. Vallen Graham, Yingmin Wang, et al. Interferon-γ and Tumor Necrosis Factor-α Synergize to Induce Intestinal Epithelial Barrier Dysfunction by Up-Regulating Myosin Light Chain Kinase Expression[J]. Am J Pathol. 2005; 166(2): 409–419.
    [19]Aaron R Klooster, Suzanne M Bernier. Tumor necrosis factor alpha and epidermal growth factor act additively to inhibit matrix gene expression by chondrocyte[J]. Arthritis Res Ther. 2005; 7(1): R127–R138.
    [20]Haining Yang, Maurizio Bocchetta, Barbara Kroczynska. TNF-α inhibits asbestos-induced cytotoxicity via a NF-κB-dependent pathway, a possible mechanism for asbestos-induced oncogenesis[J]. Proc Natl Acad Sci U S A. 2006 ; 103(27): 10397–10402.
    [21]Qiutang Li, Inder M. Verma. NF-κB regulation in the immune system[J]. Nat. Rev. Immunol. 2002;31(2):725-734.
    [22]Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle[J]. Cell. 2002;109(4):S81-96.
    [23]Soo-Ho Choi, Kyu-Jin Park, Byung-Yoon Ahn, et al. Hepatitis C Virus Nonstructural 5B Protein Regulates Tumor Necrosis Factor Alpha Signaling through Effects on Cellular IκB Kinase[J]. Mol Cell Biol. 2006 April; 26(8): 3048–3059.
    [24]Takahiro Watanabe, Hirofumi Jono, Jiahuai Han, et al. Synergistic activation of NF-κB by nontypeable Haemophilus influenzae and tumor necrosis factor α[J]. Proc Natl Acad Sci. 2004 101(10): 3563–3568.
    [25]王关嵩,钱桂生,陈维中.低浓度一氧化碳和缺氧气体处理培养细胞容器的研制及其应用[J].中国动脉硬化杂志,2001;9(1):67-70.
    [26]Donna BS, Mark AR, Atsushi I, et al. Sinusoidal endothelial cell repopulation following ischemia/reperfusion injury in rat liver transplantation[J]. Hepatology, 2007; 46(5): 1464–1475.
    [27]罗文平,刘志华,李红霞等.缺氧复氧损伤对血管内皮细胞一氧化氮合成酶基因表达的影响及辛伐他汀的干预作用[J].苏州大学学报(医学版)2007;27(1):31-34.
    [28]Arshad Rahman, Khandaker N. Anwar, Shahab Uddin, et al. Protein Kinase C-δ Regulates Thrombin-Induced ICAM-1 Gene Expression in Endothelial Cells via Activation of p38 Mitogen-Activated Protein Kinase[J]. Mol Cell Biol. 2001; 21(16): 5554–5565.
    [29]Angela Pakozdi, Mohammad A Amin, Christian S Haas, et al. Macrophage migration inhibitory factor: a mediator of matrix metalloproteinase-2 production in rheumatoid arthritis[J]. Arthritis Res Ther. 2006; 8(4): R132.
    [30]M. Asif Amin, Christian S. Haas, Kui Zhu, et al. Migration inhibitory factor up-regulates vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 via Src, PI3 kinase, and NF-κB[J]. Blood. 2006; 107(6): 2252–2261.
    [31]R Lomnitzer, A R Rabson, H J Koornhof. The effects of cyclic AMP on leucocyte inhibitory factor (LIF) production and on the inhibition of leucocyte migration[J]. Clin Exp Immunol. 1976 April; 24(1): 42–48.
    [1]Yellon DM, Hausenloy DJ. Myocardial reperfusion injury[J].N Engl J Med. 2007;357(11):1121–1135.
    [2]张召辉,李玺,陈复兴.移植器官缺血再灌注损伤与细胞凋亡[J].中华医学研究杂志.2003; 3(11): 996-998.
    [3]Land WG. The role of postischemic reperfusion injury and other nonantigen-dependent inflammatory pathways in transplantation[J]. Transplantation. 2005;79(5):505–514.
    [4]Fondevila C, Busuttil RW, Kupiec-Weglinski JW. Hepatic ischemia/reperfusion injury--a fresh look[J]. Exp Mol Pathol. 2003;74(2):86–93.
    [5]Lemasters JJ, Nieminen AL, Qian T, Trost LC, Herman B. The mitochondrial permeability transition in toxic, hypoxic and reperfusion injury[J]. Molecular and cellular biochemistry. 1997;174(1-2):159–165.
    [6]Belzer FO, Southard JH. Principles of solid-organ preservation by cold storage[J]. Transplantation. 1988;45(4):673–676.
    [7]Takeda K, Kaisho T, Akira S. Toll-like receptors[J]. Annual review of immunology. 2003;21(2):335–376.
    [8]Hopkins PA, Sriskandan S. Mammalian Toll-like receptors: to immunity and beyond[J]. Clinical and experimental immunology. 2005;140(3):395–407.
    [9]Tsan MF, Gao B. Endogenous ligands of Toll-like receptors[J]. Journal of leukocyte biology. 2004;76(3):514–519.
    [10]Foell D, Wittkowski H, Roth J. Mechanisms of disease: a 'DAMP' view of inflammatory arthritis[J]. Nat Clin Pract Rheumatol. 2007;3(7):382–390.
    [11]Roelofs MF, Boelens WC, Joosten LA, et al. Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis[J]. J Immunol. 2006;176(11):7021–7027.
    [12]Ohashi K, Burkart V, Flohe S, Kolb H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex[J]. J Immunol. 2000;164(2):558–561.
    [13]Levy RM, Mollen KP, Prince JM, et al. Systemic inflammation and remote organ injury following trauma require HMGB1[J]. Am J Physiol Regul Integr Comp Physiol. 2007;293(4):R1538–1544.
    [14]Figueiredo RT, Fernandez PL, Mourao-Sa DS, et al. Characterization of heme as activator of Toll-like receptor 4[J]. J Biol Chem. 2007;282(28):20221–20229.
    [15]晏春根,谢青.N-乙酰半胱氨酸对肝缺血再灌注损伤大鼠Toll样受体4表达的影响[J].中国新药与临床杂志.2006;25(7):481-484.
    [16]Zhai Y, Shen XD, O'Connell R, et al. Cutting edge: TLR4 activation mediates liver ischemia/reperfusion inflammatory response via IFN regulatory factor 3-dependent MyD88-independent pathwa[J]y. J Immunol. 2004;173(12):7115–7119.
    [17]Tsung A, Hoffman RA, Izuishi K, et al. Hepatic ischemia/reperfusion injury involves functional TLR4 signaling in nonparenchymal cells[J]. J Immunol. 2005;175(11):7661–7668.
    [18]Aprahamian CJ, Lorenz RG, Harmon CM, Dimmit RA. Toll-like receptor 2 is protective of ischemia-reperfusion-mediated small-bowel injury in a murine model[J]. Pediatr Crit Care Med. 2007.
    [19]Leemans JC, Stokman G, Claessen N, et al. Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney[J]. The Journal of clinical investigation. 2005;115(10):2894–2903.
    [20]Shigeoka AA, Holscher TD, King AJ, et al. TLR2 is constitutively expressed within the kidney and participates in ischemic renal injury through both MyD88-dependent and -independent pathways[J]. J Immunol. 2007; 178(10): 6252–6258.
    [21]Wu H, Chen G, Wyburn KR, et al. TLR4 activation mediates kidney ischemia/reperfusion injury[J]. The Journal of clinical investigation. 2007; 117(10): 847–2859.
    [22]Oyama J, Blais C Jr, Liu X, et al. Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice[J]. Circulation. 2004;109(6):784–789.
    [23]Kim SC, Ghanem A, Stapel H, et al. Toll-like receptor 4 deficiency: smaller infarcts, but no gain in function[J]. BMC Physiol. 2007;7:5.
    [24]Hua F, Ha T, Ma J, et al. Protection against myocardial ischemia/reperfusion injury in TLR4-deficient mice is mediated through a phosphoinositide 3-kinase-dependent mechanism[J]. J Immunol. 2007;178(11):7317–7324.
    [25]Hua F, Ha T, Ma J, et al. Blocking the MyD88-dependent pathway protects the myocardium from ischemia/reperfusion injury in rat hearts[J]. Biochem Biophys Res Commun. 2005;338(2):1118–1125.
    [26]常文建,陆贯一.枯否细胞和肝脏缺血再灌注损伤[J].中国普外基础与临床杂志.2001;8(4):276-278.
    [27]Jaeschke H, Smith CW, Clemens MG, Ganey PE, Roth RA. Mechanisms of inflammatory liver injury: adhesion molecules and cytotoxicity of neutrophils[J]. Toxicol Appl Pharmacol. 1996;139(2):213–226.
    [28]Jaeschke H. Reperfusion injury after warm ischemia or cold storage of the liver: role of apoptotic cell death[J]. Transplant Proc. 2002;34(7):2656–2658.
    [29]Poli G, Cutrin JC, Biasi F. Lipid peroxidation in the reperfusion injury of the liver[J]. Free Radic Res. 1998;28(6):547–551.
    [30]Jaeschke H. Reactive oxygen and mechanisms of inflammatory liver injury[J]. J Gastroenterol Hepatol. 2000;15(7):718–724.
    [31]Szabo C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics[J]. Nat Rev Drug Discov. 2007;6(8):662–680.
    [32]Yuzawa H, Fujioka H, Mizoe A, et al. Inhibitory effects of safe and novel SOD derivatives, galactosylated-SOD, on hepatic warm ischemia/reperfusion injury in pigs[J]. Hepatogastroenterology. 2005;52(63):839–843.
    [33]Mizoe A, Kondo S, Azuma T, et al. Preventive effects of superoxide dismutase derivatives modified with monosaccharides on reperfusion injury in rat liver transplantation[J]. J Surg Res. 1997;73(2):160–165.
    [34]Ejiri S, Eguchi Y, Kishida A, Kurumi Y, Tani T, Kodama M. Protective effect of OPC-6535, a superoxide anion production inhibitor, on liver grafts subjected to warm ischemia during porcine liver transplantation[J]. Transplant Proc. 2000; 32(2): 318–321.
    [35]He SQ, Zhang YH, Venugopal SK, et al. Delivery of antioxidative enzyme genes protects against ischemia/reperfusion-induced liver injury in mice[J]. Liver Transpl. 2006;12(12):1869–1879.
    [36]Lehmann TG, Wheeler MD, Schwabe RF, et al. Gene delivery of Cu/Zn-superoxide dismutase improves graft function after transplantation of fatty livers in the rat[J]. Hepatology (Baltimore, Md. 2000;32:1255–1264.
    [37]Wu TJ, Khoo NH, Zhou F, Day BJ, Parks DA. Decreased hepatic ischemia-reperfusion injury by manganese-porphyrin complexes[J]. Free Radic Res. 2007;41(2):127–134.
    [38]Dulundu E, Ozel Y, Topaloglu U, et al. Alpha-lipoic acid protects against hepatic ischemia-reperfusion injury in rats[J]. Pharmacology. 2007;79(3):163–170.
    [39]Abe T, Unno M, Takeuchi H, et al. A new free radical scavenger, edaravone, ameliorates oxidative liver damage due to ischemia-reperfusion in vitro and in vivo[J]. J Gastrointest Surg. 2004;8(5):604–615.
    [40]Ninomiya M, Shimada M, Harada N, Soejima Y, Suehiro T, Maehara Y. The hydroxyl radical scavenger MCI-186 protects the liver from experimental cold ischaemia-reperfusion injury[J]. The British journal of surgery. 2004;91(2):184–190.
    [41]Ninomiya M, Shimada M, Harada N, et al. Beneficial effect of MCI-186 on hepatic warm ischemia-reperfusion in the rat[J]. Transplantation. 2002;74(10):1470–1472.
    [42]Sepodes B, Maio R, Pinto R, et al. Tempol, an intracelullar free radical scavenger, reduces liver injury in hepatic ischemia-reperfusion in the rat[J]. Transplant Proc. 2004;36(4):849–853.
    [43]Yokota R, Fukai M, Shimamura T, et al. A novel hydroxyl radical scavenger, nicaraven, protects the liver from warm ischemia and reperfusion injury[J]. Surgery. 2000;127(6):661–669.
    [44]Moncada S, Higgs A. The L-arginine-nitric oxide pathway[J]. N Engl J Med. 1993; 329(27):2002–2012.
    [45]Mocellin S, Bronte V, Nitti D. Nitric oxide, a double edged sword in cancer biology: searching for therapeutic opportunities[J]. Med Res Rev. 2007; 27(3): 317–352.
    [46]Bogdan C. Nitric oxide and the immune response[J]. Nat Immunol. 2001; 2(10): 907–916.
    [47]Hara Y, Teramoto K, Ishidate K, Arii S. Cytoprotective function of tetrahydrobiopterin in rat liver ischemia/reperfusion injury[J]. Surgery. 2006; 139(3): 377–384.
    [48]Hara Y, Teramoto K, Kumashiro Y, et al. Beneficial effect of tetrahydrobiopterin on the survival of rats exposed to hepatic ischemia-reperfusion injury[J]. Transplant Proc. 2005;37(1):442–444.
    [49]包国强,马庆久,鲁建国.大鼠肝脏缺血再灌注损伤早期一氧化氮的变化及其作用[J].第四军医大学学报.2003;24(13):1185.
    [50]Hines IN, Harada H, Flores S, Gao B, McCord JM, Grisham MB. Endothelial nitric oxide synthase protects the post-ischemic liver: potential interactions with superoxide[J]. Biomed Pharmacother. 2005;59(4):183–189.
    [51]Varadarajan R, Golden-Mason L, Young L, et al. Nitric oxide in early ischaemia reperfusion injury during human orthotopic liver transplantation[J]. Transplantation. 2004;78(2):250–256.
    [52]Theruvath TP, Zhong Z, Currin RT, Ramshesh VK, Lemasters JJ. Endothelial nitric oxide synthase protects transplanted mouse livers against storage/reperfusion injury: Role of vasodilatory and innate immunity pathways[J]. Transplant Proc. 2006;38(10):3351–3357.
    [53]Duranski MR, Elrod JW, Calvert JW, Bryan NS, Feelisch M, Lefer DJ. Genetic overexpression of eNOS attenuates hepatic ischemia-reperfusion injury[J]. Am J Physiol Heart Circ Physiol. 2006;291(6):H2980–2986.
    [54]Schwentker A, Billiar TR. Inducible nitric oxide synthase: from cloning to therapeutic applications[J]. World J Surg. 2002;26(7):772–778.
    [55]Liu P, Xu B, Quilley J, Wong PY. Peroxynitrite attenuates hepatic ischemia-reperfusion injury[J]. Am J Physiol Cell Physiol. 2000;279(6):C1970–1977.
    [56]Kimura H, Katsuramaki T, Isobe M, et al. Role of inducible nitric oxide synthase in pig liver transplantation[J]. J Surg Res. 2003;111(1):28–37.
    [57]Koeppel TA, Mihaljevic N, Kraenzlin B, et al. Enhanced iNOS gene expression in the steatotic rat liver after normothermic ischemia[J]. Eur Surg Res. 2007; 39(5): 303–311.
    [58]Tsuchihashi S, Kaldas F, Chida N, et al. FK330, a novel inducible nitric oxide synthase inhibitor, prevents ischemia and reperfusion injury in rat liver transplantation[J]. Am J Transplant. 2006;6(9):2013–2022.
    [59]唐丽,张令强,贺福初.肝窦状内皮细胞(LSECs)与肝脏免疫耐受[J].国际免疫学杂志.2006; 29(3):136-138.
    [60]Caldwell CC, Tschoep J, Lentsch AB. Lymphocyte function during hepatic ischemia/reperfusion injury[J]. Journal of leukocyte biology. 2007;82(3):457–464.
    [61]Huang Y, Rabb H, Womer KL. Ischemia-reperfusion and immediate T cell responses[J]. Cellular immunology. 2007;248(1):4–11.
    [62]Vachino G, Chang XJ, Veldman GM, et al. P-selectin glycoprotein ligand-1 is the major counter-receptor for P-selectin on stimulated T cells and is widely distributed in non-functional form on many lymphocytic cells[J]. J Biol Chem. 1995; 270(37): 21966–21974.
    [63]陈金联,周同. P 选择素单克隆抗体对大鼠肝缺血—再灌注损伤的治疗作用研究[J].中国危重病急救医学.1998;10(11):670-672.
    [64]Tsuchihashi S, Fondevila C, Shaw GD, et al. Molecular characterization of rat leukocyte P-selectin glycoprotein ligand-1 and effect of its blockade: protection from ischemia-reperfusion injury in liver transplantation[J]. J Immunol. 2006;176(1):616–624.
    [65]Amersi F, Farmer DG, Shaw GD, et al. P-selectin glycoprotein ligand-1 (rPSGL-Ig)-mediated blockade of CD62 selectin molecules protects rat steatotic liver grafts from ischemia/reperfusion injury[J]. Am J Transplant. 2002;2(7):600–608.
    [66]Amersi F, Dulkanchainun T, Nelson SK, et al. A novel iron chelator in combination with a P-selectin antagonist prevents ischemia/reperfusion injury in a rat liver model[J]. Transplantation. 2001;71(1):112–118.
    [67]Dulkanchainun TS, Goss JA, Imagawa DK, et al. Reduction of hepatic ischemia/reperfusion injury by a soluble P-selectin glycoprotein ligand-1[J]. Ann Surg. 1998;227(6):832–840.
    [68]Fuller TF, Sattler B, Binder L, Vetterlein F, Ringe B, Lorf T. Reduction of severe ischemia/reperfusion injury in rat kidney grafts by a soluble P-selectin glycoprotein ligand[J]. Transplantation. 2001;72(2):216–222.
    [69]Singbartl K, Green SA, Ley K. Blocking P-selectin protects from ischemia/reperfusion-induced acute renal failure[J]. Faseb J. 2000;14(1):48–54.
    [70]Farmer DG, Amersi F, Shen XD, et al. Improved survival through the reduction of ischemia-reperfusion injury after rat intestinal transplantation using selective P-selectin blockade with P-selectin glycoprotein ligand-Ig[J]. Transplant Proc. 2002; 34(3):985.
    [71]Farmer DG, Anselmo D, Da Shen X, et al. Disruption of P-selectin signaling modulates cell trafficking and results in improved outcomes after mouse warm intestinal ischemia and reperfusion injury[J]. Transplantation. 2005;80(6):828–835.
    [72]Carmody IC, Meng L, Shen XD, et al. P-selectin knockout mice have improved outcomes with both warm ischemia and small bowel transplantation[J]. Transplant Proc. 2004;36(2):263–264.
    [73]Ran S, Downes A, Thorpe PE. Increased exposure of anionic phospholipids on the surface of tumor blood vessels[J]. Cancer Res. 2002;62(2):6132–6140.
    [74]Kuypers FA, Larkin SK, Emeis JJ, Allison AC. Interaction of an annexin V homodimer (Diannexin) with phosphatidylserine on cell surfaces and consequent antithrombotic activity[J]. Thromb Haemost. 2007;97(3):478–486.
    [75]Shen XD, Ke B, Zhai Y, et al. Diannexin, a novel annexin V homodimer, protects rat liver transplants against cold ischemia-reperfusion injury[J]. Am J Transplant. 2007;7(11):2463–2471.
    [76]Teoh NC, Ito Y, Field J, et al. Diannexin, a novel annexin V homodimer, provides prolonged protection against hepatic ischemia-reperfusion injury in mice[J]. Gastroenterology. 2007;133(2):632–646.
    [77]Moore C, Shen XD, Gao F, Busuttil RW, Coito AJ. Fibronectin-alpha4beta1 integrin interactions regulate metalloproteinase-9 expression in steatotic liver ischemia and reperfusion injury[J]. Am J Pathol. 2007;170(2):567–577.
    [78]金博,荣佳,岳欣.基质金属蛋白酶-2,-9 及金属蛋白酶组织抑制物-1 基因在病变肝脏的表达[J].海军总医院学报.2006;19(4):203-208.
    [79]Khandoga A, Kessler JS, Hanschen M, et al. Matrix metalloproteinase-9 promotes neutrophil and T cell recruitment and migration in the postischemic liver[J]. Journal of leukocyte biology. 2006;79(6):1295–1305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700