用户名: 密码: 验证码:
微生物培养的状态反馈控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学和技术的发展,生物数学已经被广泛的应用于各个领域,人们用它能够从数学的角度解释生物学行为和现象,从而达到对某些生物的相互作用进行有目的地控制.生物数学中以微分方程为模型的研究工作主要集中在连续动力系统和脉冲动力系统上.由于自然界的许多变化规律呈现出脉冲效应,因此用脉冲动力系统描述某些运动状态的快速变化或跳跃更为切合实际,脉冲动力系统理论比相应的连续动力系统的理论更加丰富和复杂.本文研究了微生物培养的状态反馈控制问题,给出了一系列带有状态反馈的微生物培养模型,并利用连续动力系统及脉冲动力系统的相关理论对模型的动力学性质进行了讨论分析,包括平衡点的存在性和稳定性、周期解的存在性和稳定性等,对具体模型进行优化问题研究.文章的结论为微生物培养的反馈控制提供了理论依据.
     第一章是绪论.1.1节介绍了本文的研究背景及研究意义.1.2节简要叙述了脉冲微分方程在生物动力学中应用的国内外研究现状.1.3节是预备知识,给出脉冲动力系统的一些基本理论,包括解的存在性、连续性及稳定性,以及周期解存在和稳定的判别方法等.
     第二章研究微生物分批培养模型的状态反馈控制.2.1节研究了脉冲添加营养基恒定得率系数Monod型分批培养模型.应用微分方程的分析方法,给出了模型阶1周期解存在的条件,并证明了阶2周期解的不存在性.进一步,对周期解的周期进行了刻画,给出了周期的表达式,并通过类似庞加莱准则证明了阶1周期解是稳定的.2.2节研究脉冲添加营养基变生长量分批培养模型.2.2.1节对线性得率系数Monod型增长率函数模型进行了理论分析;2.2.2节对Sigmoid得率系数扩展Monod型增长量函数模型进行了理论分析.2.3节研究了脉冲添加营养基产物抑制生长关联型分批培养模型.针对于不同的模型分别给出了阶1周期解存在的条件,并证明了阶2周期解的不存在性.通过类似庞加莱准则对阶1周期解的稳定性进行了分析,分别给出了各个模型阶1周期解周期的表达式.同时利用计算机对各模型进行了数值模拟,并给出了相应的生物结论.最后,以微生物产率为目标函数对该控制过程进行了优化处理.
     第三章研究微生物培养恒化器模型的状态反馈控制.3.1节研究单一微生物恒化器模型的反馈控制.3.1.1节研究脉冲添加清质恒定得率系数恒化器统一模型,3.1.2节研究脉冲混合添加营养基与清质Sigmoid型得率系数恒化器模型.利用Bendixson定理给出了两个模型阶1周期解存在的条件,并对周期解的位置进行了判定.同时利用类似庞加莱准则对周期解的稳定性进行了分析.对阶2周期解的存在性进行了讨论,得到了阶κ(κ≥3)周期解的不存在性,进而证明了所研究的系统不存在混沌现象.最后,对Monod型增长率函数模型进行了数值模拟,同时以微生物产率为目标函数对该控制过程进行了优化分析.3.2节研究两个微生物共存于一种营养基中的恒化器模型反馈控制.分别研究了脉冲添加营养基和清质的两个微生物竞争与捕食恒化器模型,构造了庞加莱映射,并利用该映射对模型边界周期解的稳定性进行了讨论.
     第四章给出了微生物培养的恒浊器模型,并对微生物连续培养模式下变流速的状态反馈控制进行研究.分析了具有不同增长率函数模型的动力学性质,包括平衡态的存在性和稳定性.并以微生物稳态产出为目标进行了优化分析.
With the development of science and technology, biomathematics has been used in many domains such as biological technology, medicine dynamics, economy, population dynamics and epidemiology. Mathematical models of differential equations play an im-portant role in describing biological dynamics. Mathematically, these models explain all kinds of biological behaviors, which allows people to understand biological complexity scientifically so that some interactions of population can be intend to control. The re-search in mathematical biology which models by normal differential equations are mainly concentrated on two branches:continuous dynamical systems and impulsive dynamical systems. Since many changes in the law of nature shows impulsive effect, impulsive differ-ential equations are suitable for the mathematical simulation of the evolutionary process in which the parameters undergo a short-term rapid change in their values. Especially, the impulsive dynamical systems are suitable for the mathematical modeling of evolutionary processes which experience a change of state abruptly owing to instantaneous perturba-tions. The presence of impulses gives the system a mixed nature, both continuous and discrete. Therefore the theory of impulsive dynamical systems is much richer than the corresponding theory of dynamical systems without impulsive effects. In this thesis, we mainly study the modelling、simulation and optimization of the microorganism culture process with feedback control. The thesis includes four chapters and the main results of this dissertation may be summarized as follows:
     Chapter 1, Introduction. In section 1.1, the background and the significance of the research is introduced. In section 1.2, the research status of Impulsive differential equations in the biological dynamics is reviewed briefly. In section 1.3, the preliminaries is introduced including some of the basic theory of Impulsive dynamical system.
     Chapter 2, The state feedback control of microbial batch culture model. In sec-tion 2.1, the feedback control of a batch culture model with constant biomass yield and Monod's kinetics is presented. The condition for the existence and stability of a positive period-1 solution is evidenced by an analytical method. It also presents the complete expression of the period of period-1 solution. In addition, it is shown that a positive period-2 solution does not exist. In section 2.2, the feedback control of the batch culture model with variable biomass yield is presented. In section 2.2.1, Monod's kinetics and linearly biomass yield is studied. In section 2.2.2, extended Monod's kinetics and Sigmoid biomass yield is studied. In section 2.3, the feedback control of the batch culture model with growth-associated product inhibition is presented. For each dynamic model, the condition for the existence and stability of a positive period-1 solution are evidenced by an analytical method. It also presents the complete expression of the period of period-1 solution. In addition, it is shown that a positive period-2 solution does not exist. Fol-lowing this, simulations are given to verify the theoretical results. At last, followed by a presentation of the optimization of the bioprocess.
     Chapter 3, The state feedback control of microbial chemostat model. In section 3.1, the feedback control of single species microbial chemostat model is studied. In section 3.1.1, a universal chemostat model with constant biomass yield and impulsive effect is presented. In section 3.1.2, a chemostat model with sigmoid biomass yield and impulsive effect is presented. Under the two models, the condition for the existence of a positive period-1 solution are evidenced by Bendixson theorem. It also discusses the position of the period-1 solution and the existence of positive period-2 solution, which also indicates the nonexistence of the period-κ(κ≥3) solution, thus the analyzed systems are not chaos. Following this, simulations are given to verify the theoretical results. At last, followed by a presentation of the optimization of the bioprocess. In section 3.2, the feedback control of two species microbial chemostat model is studied. The existence of boundary period-1 solution is shown, and the stability of this solution is discussed by the constructing of the poincare mapping.
     Chapter 4, The feedback control of microbial turbidostat model. The dynamic prop-erties of the model with different specific growth rate is discussed. Followed by a presen-tation of the optimization.
引文
[1]徐克学.生物数学[M].北京:科学出版社,2002.
    [2]陈兰荪,陈键.非线性生物动力系统[M].北京:科学出版社,1993.
    [3]REHM H.J., REED G.. Microbial Fundamentals. Verlag Chemie, Weinheim,1981.
    [4]SCHUGERL K., Bioreaction Engineering:Reactions Involving Microorganisms and Cells: Fundamentals, Thermodynamics, Formal Kinetics, Idealized Reactor Types and Opera-tion, John Wiley & Sons, Chichester, UK,1987.
    [5]钟月华.新型硅橡胶膜生物反应器制造乙醇连续发酵动力学研究[D].成都:四川大学博士论文,2003.
    [6]刘如林.微生物工程概论[M].天津:南开大学出版社,1995.
    [7]黄方一,叶斌.发酵工程[M].武汉:华中师范大学出版社,2008.
    [8]杨志春.不连续动力系统的渐近行为及其应用[D].成都:四川大学博士论文,2006.
    [9]SIMEONOV P S. Existence, uniqueness and continuability of systems with impulse ef-fect [J]. Godishnik VUZ Applied mathematics,1986,22:69-80.
    [10]SIMEONOV P S. Continuous dependence of the solutions of systems with impulse ef-fect [J]. Godishnik VUZ Applied mathematics,1986,22(3):57-67.
    [11]SIMEONOV P S, BAINOV D D. Differentiability of solutions of systems with impulse effect with respect to initial data and parameter [J]. Institute of mathematics, Academia Sinica,1987,15(2):251-269.
    [12]BAINOV D D, DISHLIEV A B. Continuous dependence on the initial condition of the solution of a system of differential equations with variable structure and with impulses[J]. Publ. RIMS. Kyoto Univ,1987,23:923-936.
    [13]BAINOV D D, DIMITROVA M B. Oscillation of the solutions of a class of impulsive differential equaions with a deviating argument [J]. Journal of Applied Mathematics and Stochastic Analysis,1998,11:95-102.
    [14]BAINOV D D, DIMITROVA M B, PETROV V. Oscillatory properties of the solutions of impulsive differential equations with several retarded arguments[J]. Geogian Mathematical Journal,1998,5:201-212.
    [15]BAINOV D D, DOMSHLAK Y I, SIMEONOV P S. On the oscillatory properties of first order impulsive differential with a deviating argument [J]. Israel Journal Mathematics, 1998,98:167-187.
    [16]BEREZANSKY L, BRAVERMAN E. Oscillation of a linear delay impulsive differential equations[J]. Comm. Appl. Nonlinear Analysis,1996,3:61-77.
    [17]CHEN M P, YU J S, SHEN J H. The persistence of nonoscillatory solutions of delay differential equations under impulsive perturbations [J]. Applied Mathematics and Com-putation,1994,27:1-6.
    [18]BAINOV D D, DISHLIEV A B. Sufficient conditions for absence of "beating" in system of differential equations with impulses[J]. Applied Nonlinear,1984,18:67-73.
    [19]HU S, LAKSHMIKANTHM V, LEELA S. Impulsive differential systems and the pulse phenomena[J]. Mathematical analysis and application,1989,137:605-613.
    [20]BAINOV D D, DISHLIEV A B. Conditions for the absence of the phenomenon "beating" for systems of impulse differential equations[J]. Bulletin of the Institute of Mathematics, Academia Sinica,1985,13:237-256.
    [21]QI J G, FU X L. Existence of limit cycles of impulsive differential equations with impulses at variables times[J]. Nonlinear analysis,2001,44:345-353.
    [22]AKHMETOV M U, ZAFER A. Stability of the zero solutions of impulsive differential equations by the Lyapunov second method[J]. Mathematical analysis and application, 2000,248:69-82.
    [23]KULEV G K, BAINOV D D. On the asymptotic stability of systems with impulses by direct method of Lyapunov [J]. Mathematical analysis and application,1989,140:324-340.
    [24]LAKSHMIKANTHAM V, LIU X Z. Stability criteria for impulsive differential equations in terms of two measures[J]. Mathematical analysis and application,1998,137:591-604.
    [25]BAINOV D D, LULEV G. Application of Lyapunov's direct method to the investigation of global stability of solutions of systems with impulsive effect [J]. Applied analysis,1988, 26:255-270.
    [26]ERBE L H, LIU X Z. Existence of periodic solutions of impulsive differential systems[J]. Applied mathematics and stochastic analysis,1991,4:137-146.
    [27]GUTU V L. Periodic solutions of linear differential equations with impulses in a Banach space[J]. Differential equations and mathematical physics,1989,59-66.
    [28]KAUL S K, LIU X Z. Generalized variation of parameters and stability of impulsive systems[J]. Nonlinear analysis,2000,40:295-307.
    [29]GUTU V L. Periodic solutions of weakly nonlinear differential equations in a Hilbert space[J]. Differential equations and mathematical physics,1989,4:67-71.
    [30]LIU X Z. Impulsive stabilization and applications to growth models[J]. Rocky Mountain Journal of Mathematics,1995,25:381-395.
    [31]HRISTOVA S G, BAINOV D D. Existence of periodic solutions of nonlinear systems of differential equations with impulsive effect[J]. Mathematical analysis and application, 1987,125 (1):192-202.
    [32]BAINOV D D, SIMEONOV P. Impulsive differential equations:Periodic solutions and applications[J]. Pitman Monograph and Surveys in Pure and Applied Mathematics,1993, 66.
    [33]LAKSMIKANTHAM V, BAINOV D D, SIMEONOV P S. Theorey of impulsive differen-tial equations[M]. World Scientific, Singapore,1993.
    [34]BAINOV D D, SIMEONOV P S. Impulsive differential equations:Periodic sollutions and applications[M]. England:Longman,1993.
    [35]SAMOILENKO A M, PERCEIVING N A. Impulsive differential equations[M]. Singapore: World Scientific,1995.
    [36]ZHAO Z, CHEN L S, SONG X Y. Impulsive vaccination of SEIR epidemic model with time delay and nonlinear incidence rate[J]. Mathematics and Computers in Simulation, 2008,79:500-510.
    [37]MENG X Z, CHEN L S, CHENG H D. Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination[J]. Applied Mathematics and Computation,2007,186:516-529.
    [38]JIN Z, MA Z E, HAN M A. The existence of periodic solutions of the n-species Lotka-Volterra competition systems with impulse[J]. Chaos, Solitons and Fractals,2004,22(1): 181-188.
    [39]LIU X N, CHEN L S. Global dynamical of the period logistic system with periodic impul-sive perturbations[J]. Journal of Mathematical Analysis and Applications,2004,289(1): 279-291.
    [40]ZENG G.Z., CHEN L.S., SUN L.H., Existence of periodic solution of order one of planar impulsive autonomous system, J. Comput. Appl. Math.186 (2006) 466-481.
    [41]LIU K Y, MENG X Z, CHEN L S. A new stage structured predator-prey Gomportz model with time delay and impulsive perturbations on the prey[J]. Applied Mathematics and Computation,2008,196(2):705-719.
    [42]SONG X Y, HAO M Y, MENG X Z. A stage-structured predator-prey model with dis-turbing pulse and time delays [J]. Applied Mathematical Modelling,2009,33(1):211-223.
    [43]ABDELKADER L, OVIDE A. Nonlinear mathematical model of pulsed-theraph of Het-erogeneous Turnors[J]. Nonlinear analysis,1998,60:1125-1148.
    [44]ZHAO Z., ZHANG X.Q., CHEN L S. The effect of pulsed harvesting policy on the inshore-offshore fishery model with the impulsive diffusion[J]. Nonlinear Dynamics DOI: 10.1007/s11071-009-9527-7.
    [45]MENG X.Z., GAO Q., LI Z.Q., The effects of delayed growth response on the dynamic behaviors of the Monod type chemostat model with impulsive input nutrient concentra-tion[J]. Nonlinear Analysis:Real World Applications,2010,11(5):4476-4486.
    [46]HSU S.B., HUBBELL S.P., WALMAN P. A mathematical theory for single-nutrient com-petition in continuous culture of microorganisms [J]. SIAM J. Applied mathematics,1977, 32:366-383.
    [47]QUI Z.P., ZOU J.Y., The asymptotic behavior of a chemostat model with the Beddington-DeAngelis functional response[J]. Mathematical Bioscience,2004,187:175-187.
    [48]FREEDMAN H I, SO J, WALMAN P. Chemostat competition with time delays[J]. In: V ichnevetsky R, Bo rne P, V ignes J, eds. P roceedings of IMACS 1988—12thWo rid Congress on Scientific Computing, Paris,1988,4:102-104.
    [49]SUN S.L., CHEN L.S., Dynamic behaviors of Monod type chemostat model with impulsive perturbation on the nutrient concentration [J]. Journal of Mathematical Chemistry,2007, 42:837-847.
    [50]SUN S.L., CHEN L.S., Complex dynamics of a chemostat with variable yield and peri-odically impulsive perturbation on the substrate [J]. Journal of Mathematical Chemistry, 2008,43:338-349.
    [51]GUO H.J., CHEN L.S., Periodic solution of a turbidostat system with impulsive state feedback control[J]. J. Math. Chem.,2009,46:1074-1086.
    [52]GUO H.J., CHEN L.S., Periodic solution of a chemostat model with Monod growth rate and impulsive state feedback control[J]. J. Theor. Biol.,2009,260:502-509.
    [53]GUO H.J., CHEN L.S., Qualitative analysis of a variable yield turbidostat model with impulsive state feedback control [J]. J. Appl. Math. Comput.2010,33:193-208.
    [54]JIAO J.J., YANG X.S., CHEN L.S., CAI S.H., Effect of delayed response in growth on the dynamics of a chemostat model with impulsive input[J]. Chaos, Solitons & Fractals, 2009,42:2280-2287.
    [55]ZHANG S.W., TAN D.J., CHEN L.S., Chaotic behavior of a chemostat model with Bed-dington-DeAngelis functional response and periodically impulsive invasion[J]. Chaos, Solitons & Fractals,2006,29:474-482.
    [56]ZHANY Y.J., XIU Z.L., CHEN L.S., Chaos in a food chain chemostat with pulsed input and washout [J]. Chaos, Solitons & Fractals,2005,26:159-166.
    [57]J.Flegr, Two distinct types of natural selection in turbidostat-like and chemostat-like ecosystems [J]. J. Theoret. Biol.,1997,188:121-126.
    [58]P.D. Leenheer, H.L..Smith, Feedback control for the chemostat [J], J. Math. Biol.,2003, 46:48-70.
    [59]J.L. Gouze, G. Robledo,. Feedback control for nonmonotone competition models in the chemostat[J], Nonlinear Analysis:Real World Applications,2005,6:671-690.
    [60]G. Robledo, Feedback stabilization for a chemostat with delayed output [J], Mathematical Biosciences and Engineering,2009,6(3):629-647.
    [61]BONOTTO E.M., FEDERSON M., Topological conjugation and asymptotic stability in impulsive semidynamical systems[J]. J. Math. Anal. Appl.2007,326(2):869-881.
    [62]BONOTTO E.M., Flows of characteristic 0+ in impulsive semidynamical systems[J]. J. Math. Anal. Appl.2007,332 (1):81-96.
    [63]J ANN ASH H.W., MATELES R.T., Experimential bacterial ecology studied in continuous culture[J]. Advances in Microbial Physiology,1974,11:165-212.
    [64]KASPERSKI A., Modelling of cells bioenergetics[J]. Acta Biotheor.2008,56:233-247.
    [65]KASPERSKI A., MISKIEWICZ T., Optimization of pulsed feeding in a Baker's yeast process with dissolved oxygen concentration as a control parameter [J]. Biochem. Eng. J. 2008,40:321-327.
    [66]MONOD J., Recherches sur la croissance des cultures bacteriennes, Paris:Hermann,1942.
    [67]LOBRY J.R., FLANDROIS J.P., CARRET G., PAVE A., Monod's Bacterial growth model revisited[J]. Bulletin of Mathematical Biology,1992,54(1):117-122.
    [68]SCHUGERL K., BELLGARDT K.H., Bioreaction Engineering. Modeling and Control. Springer-Verlag Berlin Heidelberg,2000.
    [69]ALVAREZ-RAMIREZ J., ALVAREZ J., VELASCO A., On the existence of sustained oscillations in a class of bioreactors[J]. Computers and Chemical Engineering,2009,33: 4-9.
    [70]CROOKE P.S., WEI C.J., TANNER R.D., The effect of specific growth rate and yield expression on the existence of oscillatory behavior of a continuous fermentation model [J]. Chemical Engineering Communications,1980,6:333-342.
    [71]CROOKE P.S., TANNER R.D., Hopf bifurcations for a variable yield continuous fermen-tation model[J]. International Journal of Engineering Science,1982,20:439-443.
    [72]HUANG X.C., Limit cycles in a continuous fermentation model[J].Journal of Mathemat-ical Chemistry,1990,5:287-296.
    [73]PILYUGIN S.S., WALTMAN P., Multiple limit cycles in the chemostat with variable yield[J]. Mathematical Biosciences,2003,182:151-166.
    [74]HAN K., LEVENSPIEL O., Extended Monod kinetics for substrate, product, and cell inhibition [J]. Biotechnol. Bioeng.32 (1988) 430-447.
    [75]DUTTA S.K., MUKHERJEE A., CHAKRABORTY P., Effect of product inhibition on lactic acid fermentation:simulation and modelling[J]. Appl. Microbiol. Biotechnol.,1996, 46:410-413.
    [76]HERRERO A.A., End-product inhibition in anaerobic fermentations[J]. Trends Biotech-nol.,1983,1:49-53.
    [77]IYER P.V., LEE, Y.Y., Product inhibition in simultaneous saccharification and fermen-tation of cellulose into lactic acid[J]. Biotechnol. Lett.,1999,21:371-373.
    [78]SURESH S., KHAN N.S., SRIVASTAVA V.C., MISHRA I.M., Kinetic Modeling and Sen-sitivity Analysis of Kinetic Parameters for L-Glutamic Acid Production Using Corynebac-terium glutamicum[J]. Int. J. Chem. React. Eng.,2009,7:Article A89.
    [79]BONA R., MOSER A., Modeling of L-glutamic acid production with Corynebacterium glutamicum under biotin limitation[J], Bioprocess Eng.,1997,17:139-142.
    [80]KHAN N.S., MISHRA I.M., SINGH R.P., PRASAD B., Modeling the growth of Corynebacterium glutamicum under product inhibition in l-glutamic acid fermentation [J]. Biochem. Eng. J.2005,25:173-178.
    [81]WILLIAMS F M. Dynamics of microbial populations, system analysis and simulation in ecology[M]. B. Patten, ed., Academic Press,1971, Char 3.
    [82]WU J H, NIE H. The Effect of Inhibitor on the Plasmid-Bearing and Plasmid-Free Model in the Unstirred Chemostat[J]. SIAM J. Mathematical analysis,2007,38(6):1860-1885.
    [83]PILYIUGIN1 S.S., WALTMAN P., The simple chemostat with wall growth[J]. SIAM J Applied Mathematics,1999,59(5):1552-1572.
    [84]PILYUGIN S S, WALTMAN P. Competition in the unstirred chemostat with periodic input and washout[J]. SIAM J Applied Mathematics,1999,59 (4):1157-1177.
    [85]WANG L., WOLKOWICZ GAIL S.K., A delayed chemostat model with general non-monotone response functions and differential removal rates[J]. Mathematical analysis ans application,2006:321:452-468.
    [86]YUAN S L, XIAO D.M., HAN M.A., Competition between plasmid-bearing and plasmid-free organisms in a chemostat with nutrient recycling and an inhibitor [J]. Mathematical Biosciences,2006,202(1):1-28.
    [87]VAYENAS D.V., PAVLOU S., Coexistence of three microbial populations competing for three complementary nutrients in a chemostat[J]. Mathematical Biosciences,1999,161(1): 1-13.
    [88]LI B.T., Periodic coexistence in the chemostat with three species competing for three essential resources[J]. Mathematical Biosciences,2001,174(1):27-40.
    [89]SREE HARI RAO V, RAJA SEKHARA RAO P. Global stability in chemostat models involving time delays and wall growth[J]. Nonlinear Analysis:Real World Applications, 2004,5(1):141-158.
    [90]ZHU L M. Limit cycles in chemostat with constant yields[J]. Mathematical and Computer Modelling,2007,7:927-932.
    [91]HUANG X C, ZHU L M, EDWARD H C. Limit cycles in a chemostat with general variable yields and growth rates[J]. Nonlinear Analysis:Real World Applications,2007,8 (1) 165-173.
    [92]DAMON T, MARK K. Limit cycles in a chemostat model for a single species with age structure[J]. Mathematical Biosciences,2006,202(1):194-217.
    [93]SMITH H L, WALTMAN P. The theory of the chemostat [M]. Cambridge University Press, 1995.
    [94]AGRAWAL R, LEE C, LIM H C, RAMKRISHNA D. Theorerical investigations of dy-namic behavior of isothermal continuous stirred tank biological reactors[J]. Chemical En-gineering Science,1982,37:453-462.
    [95]BERETTA E, KUANG Y. Global asymptotic stability in a well known delated chemostat model[J]. Communications in Mathematical Analysis,2000,4:147-155.
    [96]NOVICK A., SZILARD L., Description of the Chemostat, Science 112 (1950) 715-716.
    [97]Tessier G., Croissance des populations bacteriennes et quantites d'aliments disponsi-bles[R]. Review Science Paris,1942,80-209.
    [98]Moser H., The dynamics of bacterial populations in the chemostat, Carnegie Inst. Publi-cation, Washington,1958.
    [99]CORLESS R.M., GONNET G.H., HARE D.E.G., JEFFREY D.J., KNUTH D.E., On the LambertW function, Adv. Comput. Math.5 (1996) 329-359.
    [100]Li T.Y., Yorke J.A., Period three implies chaos, Amer. Math. Month.1975,82:985-992.
    [101]YANG K. Limit cycles in a Chemostat related model[J]. SIAM Applied Mathematics, 1989,49(1):1759-1776.
    [102]WU J H. Global bifurcation of coexistence state for the competition model in the Chemo-stat[J]. Nonlinear Analysis,2000,39:817-835.
    [103]ZHU L M, HUANG X C, SU H Q. Bifurcation for a functional yield chemostat when one competitor produces a toxin[J]. Journal of Mathematical Analysis and Applications,2007, 329:891-903
    [104]SMITH H., WALTMAN P., The Theory of the Chemostat, Cambridge University Press, Cambridge,1995.
    [105]RUSCH K.A., MALONE R.F., Microalgal production using a hydraulically integrated se-rial turbidostat algal reactor (HISTAR):aconceptual model[J]. Aquacultural Engineering, 1998,18:251-264.
    [106]RUSCH K.A., MICHAEL CHRISTENSEN J., The hydraulically integrated serial tur-bidostat algal reactor (HISTAR) for microalgal production [J]. Aquacultural Engineering, 2003,27:249-264.
    [107]BENSON B.C., GUTIERREZ-WING M.T., RUSHCH K.A., The development of a mech-anistic model to investigate the impacts of the light dynamics on algal productivity in a hydraulically intefrated serial turbidostat algal reactor (HISTAR)[J]. Aquacultural Engi-neering,2007,36:198-211.
    [108]Li B.T., Competition in a turbidostat for an inhibitory nutrient, Journal of Biological Dynamics,2008,2:208-220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700