用户名: 密码: 验证码:
北武夷天华山盆地火山—侵入岩的成因及其与成矿关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北武夷火山岩带是受北武夷山东西向基底隆起控制的一条重要的火山岩带,该带中发育天华山、黄岗山、铜锣山(梨子坑)、仙霞岭等一系列北北东向的火山盆地。在这些盆地中,发育众多与晚中生代岩浆活动有关的中型、大型甚至超大型金属矿床,如冷水坑银铅锌矿、生米坑铅锌矿、焦塘铅锌矿、金竹坪钼多金属矿等,构成了北武夷多金属成矿带。位于天华山盆地中的冷水坑矿田是一个超大型银、铅、锌矿田,成矿作用与晚中生代的岩浆活动密切相关,其中花岗斑岩是重要的含矿斑岩,火山岩地层是主要的赋矿地层。前人对冷水坑的矿床类型、成因等做了很多研究,然而对其所在盆地的岩浆岩,特别是火山岩的研究程度较低。据此本论文选取了武夷山地区天华山盆地火山-侵入岩及相关的矿床为研究对象,厘定整个北武夷天华山盆地的岩浆岩形成时限,探讨本区与成矿作用密切相关的火山-侵入岩的岩浆属性及岩石成因,并通过总结前人的资料,对冷水坑矿床的成因进行了初步探讨。主要得出以下几点认识:
     (1)根据野外接触关系和精确的锆石定年工作,北武夷地区天华山盆地的火山侵入活动是幕式的,主要分为两期:157~158Ma的花岗斑岩和144~137Ma的火山岩及相关的侵入岩。
     (2)天华山盆地火山-侵入岩最有可能是由元古代地层经部分熔融而成,其中有不同比例地幔物质的加入以及上地壳的混染。这些岩石可能形成于与古太平洋板块折返有关的大陆伸展环境。赣杭带北西部的大陆伸展在晚侏罗世相对较弱,随着古太平洋板块进一步的折返,在早白垩世岩石圈发生了更加强烈的伸展,诱发了更广泛的地幔上涌,进一步促进了壳-幔相互作用和广泛的地壳熔融。
     (4)冷水坑矿床主要硫化物的特征如下:本区闪锌矿为富铁闪锌矿,可划分为三个世代,从Ⅰ世代到Ⅲ世代Fe含量逐渐减少,Zn含量逐渐增高,二者呈现出很好的反消长关系;方铅矿分为中粗粒和细粒两种,以前者为主;而黄铁矿根据矿物组合和产出状态分为三个阶段。
     (5)冷水坑矿田成矿时间应为早白垩世,成岩成矿相差10~25Ma。流体包裹体特征显示成矿流体具有中低温、低盐度的特点。早阶段流体以岩浆水为主,随着成矿作用的进行,越来越多大气水加入。成矿流体主要是来自于火山热液。
The North Wuyi Volcanic Belt of southeastern China is distributed along regionalE-W-trending basement uplift, and is represented by a prominent NNE-trending series of volcanicbasins that includes the Tianhuashan, Huanggangshan, Tongluoshan (Lizikeng), and Xianxialingbasins. Many ore deposits, ranging in size from ‘medium’ to ‘giant’, are developed within thesevolcanic basins, including the Lengshuikeng, Shengmikeng, Jiaotang, Jinzhuping, andHuangbaikeng deposits, which collectively form the North Wuyi Polymetallic Metallogenic Belt.Among these, the Lengshuikeng large Ag-Pb-Zn ore deposit was developed during the LateMesozoic within the Tianhuashan Basin. The formation of this ore deposit was linked with LateMesozoic magmatic activity, and intrusions of granite porphyry, along with volcanic rocks of theTianhuashan Basin, are considered to represent the main ore-bearing porphyry and ore-hostingstrata, respectively. Many previous researches on the Lengshuikeng ore deposit have focused onunderstanding the metallogeny of the deposit and evaluating the type of deposit it represents, butstudies on the igneous host rocks, particularly the volcanic rocks of the Tianhuashan Basin, arecomparatively lacking. In this contribution, we set the old basement, Late Mesozoicvolcanic-intrusive complex and Lengshuikeng Ag-Pb-Zn deposit in Tianhuashan basinwithin the Wuyi area as an example, to identify the ages of these igneous rocks,timing of the formation of these basins, and discuss the petrogenetic processes ofthese igneous rocks which are associtated with Pb-Zn-Ag mineralization and theirsignificance in understanding the geodynamic setting of late Mesozoic tectonics andmagmatism in SE China.. The following achievements and conclusions have beenmade.
     (1) Based on field contact relationship and zircon dating, we identified thevolcanic-intrusive activity in the Tianhuashan basin has been episodic and can bedivided into two stages:~157-158Ma granite porphyry and144-137Ma volcanic andassociated intrusive rocks.
     (2) The Tianhuashan volcanic-intrusive complex has relatively consistentgeochemical features and Nd-Hf isotopic compositions, implying they were probablyderived from chemically similar source materials. These rocks were most likely generated by partial melting of Proterozoic crust with the involvement of some mantlecomponents in different proportions, and supracrustal assimilation. These rocks in theTianhuashan basin likely formed in a continental extensional setting associated withroll-back of the Palaeo-Pacific slab.
     (3) The continental extension along the northwest of Qinhang zone wasextremely weak during Late Jurassic. In the Early Cretaceous, development of slabroll-back lead to gradual lithospheric extension, triggering more extensive upwellingof asthenosphere which was responsible for a progressive role of mantle-crustinteraction and widespread crustal melting.
     (4) The sphalerate in the early stage is rich in Fe, Cd, and has low ratios ofZn/Cd and In/Ge, similarly with the one in the magmatic hydrothermal deposit. TheGalena main formed in the mineralization medium-term with low temperature. Thegenesis of the galena is volcanogere hydrothermal, and might be transformated bypost-fluid. The content of pyrite is too low to be used for judging the genesis,implying that trace elements in the late stage have been precipitated. Overall, thecharactarestics of sulfide trace element revealed that the Lengshuikeng is anmesothermal-low temerasture hydrothermal deposit.
     (5) The Lengshuikeng Ag-Pb-Zn deposit, was formed in the Early Cretaceous.The metallogenic time is obviously later than the the volcanic-intrusive rocks by15~25Ma. The ore-forming fluid in the main mineralzation stage is characterized byepithermal, low salinities. The ore-forming fluid in the early stage is mainly magmaticwater with more involment of atmospheric water in the late stage. The stratiform orebody is the center of the mineralization and alteration, and ore-forming fluid is mainlyfrom volcanic hydrothermal.
引文
[1] Amelin Y, Lee D C, Halliday A N. Early-middle Archaean crustal evolution deduced fromLu-Hf and U-Pb isotopic studies of single zircon grains. Geochimica et Cosmochimica Acta,2000,64:4205-4225.
    [2] Andersen T. Correction of Common lead in U-Pb analyses that do not report204Pb.Chemical Geology,2002,192:59-79
    [3] Belousova E A, Griffin W L, O’Reilly S Y, et al. Igneous zircon: Trace element compositionas an indicator of source rock type. Contributions to Mineralogy and Petrology,2002,143:602-622.
    [4] Bendezú, R., Page, L., Spikings, R., et al. New40Ar/39Ar alunite ages from the Colquijircadistrict, Peru: Evidence of a long period of magmatic SO2degassing during formation ofepithermal Au-Ag and Cordilleran polymetallic ores: Mineralium Deposita,2008,43,777-789
    [5] Borojevi,.S., Cvetkovi, V., Neubauer, F., Palinka, L.A., Bernroider, M., Genser, J.Oligocene shoshonitic rocks of the Rogozna Mts.(Central Balkan Peninsula): Evidence ofpetrogenetic links to the formation of Pb–Zn–Ag ore deposits. Lithos148,176-195.
    [6] Borojevi,.S., Palinka, L.A., Neubauer, F., Hurai, V., Cvetkovi, V., Roller-Lutz, Z.,Mandi, M., Genser, J.,2013. Silver-base metal epithermal vein and listwanite hosted depositCrnac, Rogozna Mts., Kosovo, part II: A link between magmatic rocks and epithermalmineralization. Ore Geology Reviews,2012,50,98-117.
    [7] Charvet, J., Lapierre, H., Yu, Y. Geodynamic significance of the Mesozoic volcanism ofsoutheastern China. Southeast Asian Earth Sciences,1994,68,387-396.
    [8] Chaussidon M, Lorand JP. Sulphur isotope composition of orogenic spinel lherzolite massifsfrom Ariege (N.E. Pyrenees France): An ion microprobe study. Geochim. Goosmochim. Acta.1990,54:2835-2846.
    [9] Chen Chenghong, Lu H Y, Lin W, et al. Thermal event records in SE China coastal areas:Constraints from monazite ages of beach sands from two sides of the Taiwan Strait. ChemicalGeology,2006,231:118-134.
    [10] Chen, C.H., Lee, C.Y., Shinjo, R. Was there Jurassic paleo-Pacific subduction in SouthChina?: Constraints from40Ar/39Ar dating, elemental and Sr-Nd-Pb isotopic geochemistryof the Mesozoic basalts. Lithos,2008,106,83-92.
    [11] Cherniak, D.J., Hanchar, J.M., Waston, E.B. Diffusion of tetravalent cations in zircon.Contributions to Mineralogy and Petrology.1997,127,383-390.
    [12] Cherniak, D.J., Waston, E.B. Diffusion in zircon. Reviews in Mineralogy and Geochemistry,2003,53,113-143.
    [13] Davies, J.F., F. von Blanckenburg. Slab break off: A model of lithosphere detachment and itstest in the magmatism and deformation of collisional orogens. Earth and Planetary ScienceLetters,1995,129:85-102.
    [14] Elhlou, S., Belousova, E., Griffin, W.L., Pearson, N.J., O’Reilly, S.Y. Trace element andisotopic composition of GJ-red zircon standard by laser ablation. Geochimica etCosmochimica Acta,2006,70, A158.
    [15] Gilder, S.A., Gill, J., Coe, R.S., et al. Isotopic and paleomagnetic constraints on the Mesozoictectonic evolution of South China. Journal of Geophysical Research,1996,101,137-154.
    [16] Gilder, S.A., Keller, G.R., Luo, M. Eastern Asia and the Western Pacific timing and spatialdistribution of rifting in China. Tectonophysics,1991,197,225-243.
    [17] Griffin W L, Belousova E A, Shee S R, et al. Archaean crustal evolution in the northernYilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research,2004,131:231-282.
    [18] Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., Van Achterbergh, E., O’Reilly,S.Y., Shee, S.R. The Hf isotope composition of cratonic mantle: LAM-MC-ICP-MS analysisof zircon megcrysts in kimberlites. Geochimica et Cosmochimica Acta,2000,64,133-147.
    [19] Griffin, W.L., Wang, X., Jackson, S.E, et al. Zircon chemistry and magma mixing, SE China:in-situ analysis of Hf isotopes, Touglu and Pingtan igneous complexes. Lithos,2002,61,237-269.
    [20] He, Z.Y., Xu, X.S., Niu, Y.L. Petrogenesis and tectonic significance of a Mesozoicgranite-syenite-gabbro association from inland South China. Lithos,2010,119,621-641.
    [21] Heinrich CA, Neubauer F. Cu-Au-Pb-Zn-Ag metallogeny of the Alpine-Balkan-Carpathian-Dinaride geodynamic province,2002,37:533-540
    [22] Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization ofprotolith igneous zircon. Journal of Metamorphic Geology,2000,18:423-439.
    [23] Hsü, K.J., Li, J.L., Chen, H.H., Pen, H.P., Sengor, A.M.C. Tectonics of South China: Key tounderstanding west Pacific geology. Tectonophysics,1990,183,9-39.
    [24] Hsü, K.J., Sun, S., Li, J.L., Chen, H.H., Pen, H.P., Sengor, A.M.C.,1988. Mesozoicoverthrust tectonics in South China. Geology,16,418-421.
    [25] Jahn, B.M., Zhou, X.H., Li, J.L.,1990. Formation and tectonic evolution of SoutheasternChina and Taiwan: isotopic and geochemical constraints. Tectonophysics,183,145-160.
    [26] Jiang, Y.H., Jiang, S.Y., Dai, B.Z., Liao, S.Y., Zhao, K.D., Ling, H.F.,2009. Middle to LateJurassic felsic and mafic magmatism in southern Hunan province, southeast China:Implications for a continental arc to rifting. Lithos,107,185-204.
    [27] Jiang, Y.H., Jiang, S.Y., Zhao, K.D., Ling, H.F.,2006. Petrogenesis of Late JurassicQianlishan granites and mafic dikes, southeast China: implications for a back-arc extensionsetting. Geological Magazine,143,457-474.
    [28] Jiang, Y.H., Ling, H.F., Jiang, S.Y., Fan, H.H., Shen, W.Z., Ni, P.,2005. Petrogenesis of aLate Jurassic peraluminous volcanic complex and its high-Mg, potassic, quenched enclavesat Xiangshan, Southeast China. Journal of Petrology,46,1121-1154.
    [29] Jiang, Y.H., Zhao, P., Zhou, Q., Liao, S.Y., Jin, G.D.,2011. Petrogenesis and tectonicimplications of Early Cretaceous S-and A-type granites in the northwest of the Gan-Hang rift,SE China. Lithos,121,55-73.
    [30] Kajiwara Y, Krouse HR,1971. Sulfur isotope partitioning in Metallic sulfide systems.8(11):1397-1408.
    [31] Kelley K. D., Leach D. L., Johnson C. A., et al.2004. Textural, compositional, and sulfurisotope variations of sulfide minerals in the Red Dog Zn–Pb–Ag deposits, Brooks Range,Alaska: implications for ore formation. Economic Geology,99,1509-1532.
    [32] Keskin, M., Gen,.C., Tüysüz, O.,2008. Petrology and geochemistry of post-collisionalMiddle Eocene volcanic units in North-Central Turkey: evidence for magma generation byslab breakoff following the closure of the Nor thern Neotethys Ocean. Lithos,104,267-305.
    [33] Koschek, G.,1993. Origin and significance of the SEM cathodoluminescence from zircon.Journal of Microscopy,171,223-232.
    [34] Kundsen T.L., Griffin W.L., Hartz E.H., Andresen, A., Jackson, S., In situ hafnium and leadisotope analysis of detrital zircons from the Devonian sedimentary basin of NE Greenland: arecord of repeated crustal reworking. Contributions to Mineralogy and Petrology,2001,141,83-94.
    [35] Lan, C.Y., Jahn, B.M., Mertzman, S.A., Wu, T.W.,1996. Subduction-related granitic rocks ofTaiwan. Southeast Asian Earth Sciences,14,11-28.
    [36] Lapierre, H., Jahn, B.M., Charvet, J., Yu, Y.W.,1997. Mesozoic magmatism in ZhejiangProvince and its relation with the tectonic activities in SE China. Tectonophysics,274,321-338.
    [37] Li, W.X., Li, X.H., Li, Z.X., Neoproterozoic bimodal magmatism in the Cathaysia Block ofSouth China and its tectonic significance. Precambrian Research,2005,136,51-66.
    [38] Li, X.H.,2000. Cretaceous magmatism and lithospheric extension in Southeast China.Journal of Asian Earth Sciences,18,293-305.
    [39] Li, X.H., Li, Z.X., Li, W.X., Liu, Y., Yuan, C., Wei, G.J., Qi, C.S.,2007a. U-Pb zircon,geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurrassic I-and A-typegranites from central Guangdong, SE China: A major igneous event in response to founderingof a subducted flat-slab? Lithos96,186-204.
    [40] Li, X.H., Li, Z.X., Zhou, H.W., Liu, Y., Kinny, P.D., U-Pb zircon geochronology,geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in theKangdian Rift of South China: implications for the initial rifting of Rodinia. PrecambrianResearch,2002,113,135-154.
    [41] Li, Z.X., Li, X.H.,2007. Formation of the1300-km-wide intracontinental orogen andpostorogenic magmatic province in Mesozoic South China: a flat-slab subduction model.Geology,35,179-182.
    [42] Li, Z.X., Li, X.H., Kinny, P.D.,2003. Geochronology of Neoproterozoic syn-rift magmatismin the Yangtze craton, South China and correlations with other continents: evidence for amantle superplume that broke up Rodinia. Precambrian Research,122,85-109.
    [43] Li, Z.X., Li, X.H., Kinny, P.D., The breakup of Rodinia: did it start with a mantle plumebeneath South China?. Earth and Planetary Science Letters,1999,173,171-181.
    [44] Liata, A., Gebauer, D., Wysoczanski, R.,2002. U-Pb SHRIMP-dating of zircon damains fromUHP garnet-rich mafic rocks and late pegmatoids in the Rhodope zone (N Greece): Evidencefor Early Cretaceous crystallization and Late Cretaceous metamorphism. Chemical Geology,184,281-299.
    [45] Lin, Y., Nigel, J., Cook, C.L.,2011. Trace and minor elements in sphalerite from base metaldeposits in South China: A LA-ICPMS study. Ore Geology Reviews,39,188-217.
    [46] Ling, W.L., Gao, S., Zhang, B.,2003. Neoproterozoic tectonic evolution of the northwesternYangtze Craton, South China: implications for amalgamation and break-up of the RodiniaSupercontinent. Precambrian Research,122,111-140.
    [47] Liu, X., Fan, H.R., Santosh, M., Hu, F.F., Yang, K.F., Li, Q.L., Yang, Y.H., Liu, Y.S.,2012.Remelting of Neoproterozoic relict volcanic arcs in the Middle Jurassic: Implication for theformation of the Dexing porphyry copper deposit, Southeastern China. Lithos,150,85-100.
    [48] Liu, Y.S., Hu, Z.C., Gao, S.,2008. In situ analysis of major and trace elements of anhydrousminerals by LA-ICP-MS without applying an internal standard. Chemical Geology,257,34-43.
    [49] Ludwing K R.2003. User’s Manual for Isoplot/Ex. Version3.00: A geochronological toolkitfor Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication,1-70.
    [50] Mao J W, Wang Y T, Lehmann B, et al. Molybdenite Re-Os and albite40Ar/39Ar dating ofCu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metallogenicimplications. Ore Geol Rev,2006,29:307-324
    [51] Mao J W, Wang Y T, Zhang Z H, et al. Geodynamic setting of Mesozoic large-scalemineralization in North China and adjacent areas. Sci China Ser D,2003,46:838-851
    [52] Mao, J.W., Pirajno, F., Cook, N.,2011. Mesozoic metallogeny in East China andcorresponding geodynamic settings-An introduction to the special issue. Ore GeologyReviews,43,1-7.
    [53] Martin, H.,1999. Adakitic magmas: modern analogues of Archaean granitoids. Lithos,46,411-429.
    [54] Martin, H., Bonin, B., Capdevila, R., Jahn, B.M., Lameyre, J., Wang, Y.,1994. The Kuqiperalkaline granitic complex (SE China): Petrology and geochemistry. Journal of Petrology,35,983-1015.
    [55] Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F., Champion, D.,2005. An overview ofadakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and someimplications for crustal evolution. Lithos,79,1-24.
    [56] Meng, L.F., Li, Z.X., Chen, H.L., Li, X.H., Wang, X.C.,2012. Geochronological andgeochemical results from Mesozoic basalts in southern South China Block support theflat-slab subduction model. Lithos,132-133,127-140.
    [57] M ller A, O'Brien P J, Kennedy A, et al. Linking growth episodes of zircon and metamorphictextures to zircon chemistry; an example from the ultrahigh-temperature granulites ofRogaland, SW Norway. Geological Society of London Special Publication,2003,220,65-81.
    [58] Nasdala, L., Norberg, N., Schaltegger, U.,2008. Zircon M257: A homogeneous naturalreference material for the ion microprobe U-Pb analysis of zircon. Geostandards andGeoanalytical Research,32,247-265.
    [59] Nigel, J., Cook, C.L., Ciobanu, A.P., William, S., Masaaki, S., Leonid, D., Bernhardt, S.E.,Frank, M.,2009. Trace and minor elements in sphalerite: A LA-ICPMS study.Geochimica etCosmochimica Acta,73,4761-4791.
    [60] Patchett, P.J.,1983. Importance of the Lu-Hf isotopic system in studies of planetarychronology and chemical evolution. Geochimica et Cosmochimica Acta,47,81-91.
    [61] Pearce, J.A., Thirlwall, M.F., Ingram, G., Murton, B.J., Arculus, R.J., Vander Laan, S.R.,1992. Isotopic evidence for the origin of Boninites and related rocks drilled in the Izu-Bonin(Ogasawara) forearc, Leg125. In: Fryer, P., Pearce, J.A., Stokking, L.(Eds.), Proceedings ofthe Ocean Drilling Program. Scientific Results,125,237-261.
    [62] Phillipsona SE, Romberger SB.2004. Volcanic stratigraphy structural controls, andmineralization in the san cristobal Ag-Zn-Pb deposit southern Bolivia. Journal of SouthAmerican Earth Sciences,16:667-683.
    [63] Pin C, Paquette JL,1997. A mantle-derived bimodal suite in the Hercynian Belt: Nd isotopeand trace element evidence for a subduction-related rift origin of the Late DevonianBrevenne metavolcanics, Massif Central (France). Contrib Mineral Petrol,129:222-238.
    [64] Qi, L., Hu, J., Grégoire, D.C.,2000. Determination of trace elements in granites byinductively coupled plasma mass spectrometry. Talanta51,507-513
    [65] Rapp, R.P., Watson, E.B.,1995. Dehydration melting of metabasalt at8-32kbar: implicationsfor continental growth and crust-mantle recycling. Journal of Petrology,36,891-931.
    [66] Rollison G.1993. Volumetric closed chemical transfer system, Google Patents.
    [67] Rubatto, D.,2002. Zircon trace element geochemistry: Partitioning with garnet and the linkbetween U-Pb ages and metamorphism. Chemical Geology,184,123-138.
    [68] Sakai H.1968. Isotopic properties of sulfur compounds in hydrothermal processes. Geochem.J.2:29-49.
    [69] Sillitoe, R.H.,2010. Porphyry Copper Systems. Economic Geology,105,3-41.
    [70] Sláma, J., Ko ler, J., Condon, D.J.,2008. Ple ovice zircon-A new natural reference materialfor U-Pb and Hf isotopic microanalysis. Chemical Geology,249,1-35.
    [71] Sun, S.S., McDonough, W.F.,1989. Chemical and isotopic systematics of oceanic basalts:implication for mantle composition and processes. In: Saunder A D, Norry M J (Eds),Magmatism in the ocean basins. Geological Society of London Specical Publication,42,313-345.
    [72] Swell, R.J., Campbell, S.D.G.,1997. Geochemistry of coeval Mesozoic plutonic and volcanicsuites in Hong Kong. Journal of the Geological Society,154,1053-1066.
    [73] Tanaka, T., Togashi, S., Kamioka, H., Amakawa, H., Kagami, H., Hamamoto, T., Yuhara, M.,Orihashi, Y., Yoneda, S., Shimizu, H., Kunimaru, T., Takahashi, K., Yanagi, T., Nakano, T.,Fujimaki, H., Shinjo, R., Asahara, Y., Tanimizu, M., Dragusanu, C.,2000. JNdi-1: aneodymium isotopic reference in consistency with Lajolla neodymium. Chemical Geology,168,279-281.
    [74] Taylor, S.R., McLennan, S.M.,1985. The continental crust: Its composition and evolution.Oxford Press Blackwell,1-312.
    [75] Tomaschek, F.,Kennedy, A.K., Villa, I.M., Lagos, M., Ballhaus, C.,2003. Zircons fromSyros,Cyclades,Greece-recrystallization and mobilization of zircon during high-pressuremetamorphism.Jour of Petrology,44,1977-2002.
    [76] Wan, Y.S., Liu, D.Y., Xu, M.H.,2007. SHRIMP U-Pb zircon geochronology andgeochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, CathaysiaBlock, China: Tectonic implications and the need to redefine lithostratigraphic units.Gondwana Research,12,166-183.
    [77] Wang, Q., Xu, J.F., Jian, P., Bao, Z.W., Zhao, Z.H., Li, C.F., Xiong, X.L., Ma, J.L.,2006.Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China:implications for the genesis of porphyry copper mineralization. Journal of Petrology,47,119-144.
    [78] Willams, I.S., Claesson, S.,1987. Isotopic evidence for the Precambrian provenance andCaledonian metamorphism of high grade paragneisses from the Seve Nappes, ScandinavianCaledonides; Ⅱ, Ion microprobe zirconU-Th-Pb. Contributions to Mineralogy and Petrology,97,205-217.
    [79] Wong, J., Sun, M., Xing, G.F., Li, X.H., Zhao, G.C., Wong, K., Yuan, C., Xia, X.P., Li, L.M.,Wu, F.Y.,2009. Geochemical and zircon U-Pb and Hf isotopic study of the Baijuhuajianmetaluminous A-type granite: extension at125-100Ma and its tectonic significance for SouthChina. Lithos,112,289-305.
    [80] Wu F Y, Yang J H, Wilde S A, et al. Geochronology, petrogenesis and tectonic implications ofJurassic granites in the Liaodong Peninsula, NE China. Chem Geol,2005,221:127-156
    [81] Wu Y B, Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age. ChinSci Bull,2004,49:1554-1569
    [82] Wu, F.Y., Sun, D.Y., Li, H.M., Jahn, B.M., Wilde, S.,2002. A-type granites in northern China:age and geochemical constraints on their petrogenesis. Chemical Geology,187,143-173.
    [83] Xie G Q, Mao J W, Hu R Z. Jurassic intra-plate basaltic magmatism in Southeast China:Evidence from geological and geochemical Characteristics of the Chebu gabbroite inSouthern Jiangxi Province. Acta Geol Sin,2005,79:662-672
    [84] Xie G Q, Mao J W, Li X W et al. Late Mesozoic bimodal volcanic rocks in the Jinniu basin,Middle-Lower Yangtze River Belt (YRB), East China: Age, petrogenesis and tectonicimplications. Lithos,2011a,127:144-164
    [85] Xie G Q, Mao J W, Zhao H J. Zircon U-Pb geochronological and Hf isotopic constraints onpetrogenesis of Late Mesozoic intrusions in the southeast Hubei Province, Middle-LowerYangtze River belt (MLYRB), East China. Lithos,2011b,125:693-710
    [86] Xu, X.S., O’Reilly, S.Y., Griffin, W.L.,2005. Relict Proterozoic basement in the NanlingMountains (SE China) and its tectonothermal overprinting. Tectonics,24, TC2003, doi:10.1029/2004TC001652.
    [87] Yang, S.Y., Jiang, S.Y., Jiang, Y.H., Zhao, K.D., Fan, H.H.,2011. Geochemical, zircon U-Pbdating and Sr-Nd-Hf isotopic constraints on the age and petrogenesis of an Early Cretaceousvolcanic-intrusive complex at Xiangshan, Southeast China. Mineralogy and Petrology,101,21-48.
    [88] Yang, S.Y., Jiang, S.Y., Zhao, K.D., Jiang, Y.H., Ling, H.F., Luo, L.,2012. Geochronology,geochemistry and tectonic significance of two Early Cretaceous A-type granites in theGan-Hang Belt, Southeast China. Lithos, doi:10.1016/j.lithos.2012.01.028.
    [89] Yu, J.H., O’Reilly, S.Y., Wang, L.J.,2010. Components and episodic growth of Precambriancrust in the Cathaysia Block, South China: Evidence from U-Pb ages and Hf isotopes ofzircons in Neoproterozoic sediments. Precambrian Research,181,97-114.
    [90] Zartman RE, Cunninggham CG.1995. U-Th-Pb zircon dating of the13.8Ma dacite volcanicdome at Cerro Rico de Potosi, Bolivia. Earth and Planetary Science Letters,133:227-237
    [91] Zhang D Y, Zhang Z C, Xue C J, et al. Geochronology and geochemistry of the ore-formingporphyries in the Lailisigao’er-Lamasu region of the western Tianshan Mountains, Xinjiang,NW China: Implications for petrogenesis, metallogenesis and tectonic setting. The Journal ofGeology,2010,118:543-563
    [92] Zhang, D.Y., Zhang, Z.C., Encarnación, J., Xue, C.J., Duan, S.G., Zhao, Z.D., Liu, J.L.,2012.Petrogenesis of the Kekesai composite intrusion, western Tianshan, NW China: Implicationsfor tectonic evolution during Late Paleozoic time. Lithos,146-147,65-79.
    [93] Zhang, D.Y., Zhang, Z.C., Santosh, M., Cheng, Z.G., Huang, H., Kang, J.L.,2013. Perovskiteand baddelyite from kimberlitic intrusions in the Tarim Large Igneous Province signal theonset of an end-Carboniferous mantle plume. Earth and Planetary Science Letters,361,238-248.
    [94] Zhang, Q.,1987. Trace Elements in Galena and Sphalerite and Their GeochemicalSignificance in Distinguishing the Genetic Types of Pb-Zn Ore Deposits. Geochemistry,6,177-190.
    [95] Zheng Y F.1990. Carbon-oxygen isotopic covariation in hydrothermal calcite duringdegassing of CO2:A quantitative evaluation and application to the Kushikino gold miningarea in Japan. Mineral Deposita,25:246-250
    [96] Zheng Yongfei, Wu Yuanbao, Chen Fukun, et al. Zircon U-Pb and oxygen isotope evidencefor a large-scale18O depletion event in igneous rocks during the Neoproterozoic[J].Geochimica et Cosmochimica Acta,2004,68(20):4145-4165.
    [97] Zheng Yongfei, Zhang Shaobin, Zhao Zifu, et al. Contrasting zircon Hf and O isotopes in thetwo episodes of Neoproterozoic granitoids in South China: Implications for growth andreworking of continental crust[J]. Lithos,2006,96(1-2):127-150.
    [98] Zheng Yongfei, Zhao Zifu, Zhang Shaobin, et al. Zircon U-Pb age, Hf and O isotopeconstraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabieorogen[J]. Chemical Geology,2006,231:135-158.
    [99] Zhou, X.M., Li W.X.,2000. Origin of Late Mesozoic igneous rocks in Southeastern China:implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics326,269-287
    [100] Zhou, X.M., Sun, T., Shen, W.Z., Shu, L.S., and Niu, Y.L.,2006, Petrogenesis of Mesozoicgranitoids and volcanic rocks in South China: A response to tectonic evolution: Episodes,29,26-33.
    [101]蔡劲宏,周卫宁,张锦章.1996.江西银山铜铅锌多金属矿床闪锌矿的标型特征.桂林工学院学报,16,370-375.
    [102]陈繁荣,裘愉卓.1995.江西贵溪冷水坑多金属矿床成矿过程流体地球化学模拟及其地质意义.地球化学,24,24-32.
    [103]陈守武,贾伟光,韩仲文.中国两种VHMS型银矿床的基本特征.贵金属地质.1998.7(1):20-30.
    [104]陈武,周建平.1988.江西冷水坑斑岩型银铅锌矿床矿化特征.矿物岩石,8,84-91.
    [105]陈小明,陆建军,刘昌实,等.桐庐、相山火山-侵入杂岩单颗粒锆石U-Pb年龄.岩石学报,1999,15:272-278.
    [106]陈毓川.1994.矿床的成矿系列.地学前缘,1(3-4):90-94.
    [107]陈振胜.1992.试论混合水热液成因矿床.地质与勘探.9.
    [108]陈忠权,李文辉,郭良.2001.粤东北发现元古宙花岗岩.广东地质,16,16-21.
    [109]代堰锫,余心起,吴淦国,等,2011.北武夷蔡家坪铅锌矿床硫化物特征、矿床成因类型及成矿时代.地学前缘,18,321-338.代堰锫,余心起,吴淦国,等.2010.江西上饶蔡家坪铅锌矿床硫化物特征及F4断裂的Ar-Ar年龄.矿床地质(增刊):425-426.
    [110]代堰锫.2011.北武夷蔡家坪铅锌矿床地质地球化学特征及矿产成因.硕士学位论文,1-69.
    [111]邓海琳,李朝阳,涂光炽,等.滇东北乐马厂独立银矿床Sr同位素地球化学.中国科学(D辑):1999.29(6):486-489
    [112]邓晋福,叶德隆,赵海玲,等.下扬子地区火山作用深部过程盆地形成.武汉:中国地质大学出版社,1992.1-184
    [113]邓邵明.1991.江西贵溪冷水坑古火山岩区隐爆碎屑岩类型及成因探讨.江西地质科技,18,28-32.
    [114]董绍芳.1994.江西冷水坑含金斑岩及金矿化特征.江西地质,8,14-20.
    [115]方锡珩,侯文尧,万国良.相山破火山口火山杂岩体的岩石学研究.岩矿测试,1982,1:1-10
    [116]韩照信.1994.秦岭泥盆系铅锌成矿带中闪锌矿的标型特征.西安地质学院学报,16,12-17.
    [117]何细荣,黄东如,饶建锋.2010.江西贵溪冷水坑矿田下鲍银铅锌矿床地质特征及成因探讨.中国西部科技,9,1-3.
    [118]侯可军,李延河,田有荣.2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质,28,481-492.
    [119]胡建,邱检生,王汝成.2007.新元古代Rodinia超大陆裂解事件在扬子北东缘的最初响应:东海片麻状碱性花岗岩的锆石U-Pb年代学及Nd同位素制约.岩石学报,2007,23(6):1321-1333.
    [120]华仁民,陈培荣,张文兰,等.南岭与中生代花岗岩类有关的成矿作用及其大地构造背景.高校地质学报,2005,11:291-304
    [121]华嵘辉,吴德来,余祖寿,等.2008.江西上饶黄柏坑铅锌(铜银)矿床地质特征及找矿标志.福建地质,4:361-368.
    [122]黄水保,孟祥金,徐文艺,等.2012.冷水坑矿田层状铅锌银矿稳定同位素特征与矿床成因.东华理工大学学报(自然科学版),35(2):101-110
    [123]黄振强.1992a.冷水坑银矿田的发现与评价.江西地质,6(4):309-314.
    [124]黄振强.1992b.冷水坑碳酸盐型银矿床成因探讨.江西地质,6(1):128.
    [125]黄振强.1993.冷水坑银矿田成矿条件及矿床特征.贵金属地质,2(4):284-291.
    [126]黄志忠,楼法生.2002.北武夷铜拔山花岗质火山-侵入杂岩岩石地球化学.资源调查与环境.23(2):140-148
    [127]贾伟光,吴英杰.2000.特大型银矿床地质特征及找矿方向.贵金属地质,9(4):229-234.
    [128]江西省地质矿产局.1984.江西省区域地质志.北京:地质出版社,1-921.
    [129]江西省地质矿产局.江西省区域地质志.北京:地质出版社,1984.1-921
    [130]赖章中,王安诚.赣南中生代火山活动时代及岩浆来源.江西地质,1996,10:111-118
    [131]李朝阳,刘铁庚,叶霖等.2002.我国与火山岩有关的大型、超大型银矿床.中国科学(D辑),32(增刊):69-77
    [132]李坤英,沈加林,王小平.中国浙闽赣地区中生代陆相火山岩同位素年代学.地层学杂志,1989,13:1-13
    [133]李献华,王一先,赵振华,等.闽浙古元古代斜长角闪岩的离子探针锆石U-Pb年代学.地球化学,1998,27(4):327-334.
    [134]李晓峰,陈文,毛景文,等.2006.江西银山多金属矿床蚀变绢云母40Ar-39Ar年龄及其地质意义.矿床地质,25(1):17-26.
    [135]李晓峰,Watanabe Y,屈文俊,2007.江西永平铜矿花岗质岩石的岩石结构、地球化学特征及其成矿意义.岩石学报,23(10):2353-2365.
    [136]凌洪飞,徐士进,沈渭州等,1998.格宗、东谷岩体Nd、Sr、Pb、O同位素特征及其与扬子板块边缘其他晋宁期花岗岩对比.岩石学报,14(3):269-277
    [137]刘昌实,楚雪君,沈渭洲,等.江西东乡-相山中生代火山岩中富铝矿物的发现和成因意义.地质论评,1992,38:157-163
    [138]刘飞宇,巫建华,刘帅.赣杭带早白垩世粗面岩锆石SHRIMP U-Pb年龄及其意义.东华理工大学学报(自然科学版),2009,32:330-335
    [139]刘铁庚,叶霖,周家喜,等.2010.闪锌矿中的Cd主要类质同象置换Fe而不是Zn.矿物学报,30(2):179-184
    [140]刘迅,申世亮.江西冷水坑银-铅-锌矿田地质特征及构造控岩控矿作用.中国地质科学院院报,1991a,24:1-18
    [141]刘迅,孙知明,马寅生,1994.北武夷山及其外围地区控矿构造与成矿预测.地震出版社,1-189.
    [142]刘英俊,曹劢明,李兆麟,等.1984.元素地球化学.北京:科学出版社,1-357
    [143]卢燃.2012.江西下鲍Ag-Pb-Zn矿床矿物学特征及成矿作用研究.硕士学位论文,1-73.
    [144]罗平,吴淦国,张达,等.北武夷生米坑铅锌矿床地质地球化学特征与成因探讨.地质力学学报,2009,15:349-362
    [145]罗治爵.1991.冷水坑斑岩型银铅锌矿床围岩蚀变特征.江西地质,5(1):3-10
    [146]满发胜,王小松.阳储岭斑岩型钨钼矿床同位素地质年代学研究.矿产与地质,1998,2:61-67
    [147]毛景文,王志良.中国东部大规模成矿时限及其动力学背景的初步探讨.矿床地质,2000,19:289-296
    [148]毛景文,谢桂青,郭春丽,陈毓川.2007.南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景.岩石学报,23(10):2329-2338
    [149]毛景文,谢桂青,张作衡,李晓峰,王义天,张长青,李永峰.2005.中国北方中生代大规模成矿作用的期次及其地球动力学背景.岩石学报,21(1):169-188
    [150]毛景文,陈懋弘,袁顺达,等.2011.华南地区钦杭成矿带地质特征和矿床时空分布规律.地质学报,85(5):636-657.
    [151]梅勇文.1998.武夷山造山带及其成矿作用.江西地质,12(2):109-115.
    [152]孟祥金,董光裕,刘建光,等.江西冷水坑斑岩型铅锌银矿床.北京:地质出版社,2007.1-148.
    [153]孟祥金,侯增谦,董光裕,等.2009.江西冷水坑斑岩型铅锌银矿床地质特征、热液蚀变与成矿时限.地质学报,83(12):1951-1967.
    [154]孟祥金,徐文艺,杨竹森,等.2012.江西冷水坑矿田火山-岩浆活动时限:SHRIMP锆石U-Pb年龄数据.矿床地质,31(4):831-838.
    [155]戚建中,芮行健,章纯荪.1986.江西贵溪冷水坑矿区岩浆演化模式探讨.中国地质科学院南京地质矿产研究所所刊,7,34-50.
    [156]齐进英.江西冷水坑斑岩类型及其矿化特征.岩石学报,1987,2,40-49.
    [157]秦思婷.2011.梨子坑火山盆地周家矿区煌斑岩岩石学特征和成因探讨.硕士学位论文,1-75.
    [158]任纪舜,牛宝贵,和政军,等.中国东部的构造格局和动力演化.见:任纪舜主编.中国东部岩石圈结构与构造岩浆演化.北京:原子能出版社,1998.1-12
    [159]宋学信.1982.凡口矿床闪锌矿和方铅矿的微量元素及其比值—一个对比性研究.岩矿测试,1,37-44.
    [160]苏慧敏,张承帅.2012.赣东北贵溪地区片岩中碎屑锆石的U-Pb年龄、Hf同位素及其地质意义.中国地质,39,1577-1592
    [161]王安城.1991.冷水坑斑岩银铅锌矿银的赋存状态及富集规律.江西地质,5(3):227-237.
    [162]王长明,徐贻赣,吴淦国.2011.江西冷水坑Ag-Pb-Zn矿田碳、氧、硫、铅同位素特征及成矿物质来源.地学前缘,18,179-193.
    [163]王丽娟,于津海, O’Reilly S.Y.,2008.华夏南部可能存在Grenville期造山作用:来自基底变质岩中锆石U-Pb定年及Lu-Hf同位素信息.科学通报,53,1680-1692.
    [164]魏明秀.1997.江西冷水坑斑岩银矿床的蚀变碳酸盐矿物与银矿化关系.矿产与地质,11,39-45.
    [165]巫建华,周维勋,章邦桐.江西及广东北部中生代晚期地层层序和时代——兼论《江西省岩石地层》中存在的问题.地质论评,2002,48:44-53
    [166]吴淦国,张达,彭润民,等.2004.东南沿海成矿带矿床形成的时间演化规律研究.地学前缘,22(1):237-247.
    [167]吴仁贵.1999.相山地区如意亭剖面火山建造特征.华东地质学院学报,22(3):201-208.
    [168]谢士稳,高山,柳小明.2009.扬子克拉通南华纪碎屑锆石U-Pb年龄、Hf同位素对华南新元古代岩浆事件的指示.地球科学-中国地质大学学报,34,117-126.
    [169]徐九华,谢玉玲,张巨华,金岩,刘玉堂.2006.大青山东段九龙湾银—流体包裹体证据.岩石学报.22(6):1735-1743
    [170]徐文炘,肖孟华,陈民扬.2001.江西冷水坑银-铅-锌矿床同位素地球化学研究.矿物岩石地球化学通报,20,370-372.
    [171]徐夕生,谢昕.2005.中国东南部晚中生代-新生代玄武岩与壳幔作用.高校地质学报,11,318-334
    [172]严学信,赵志刚,何细荣.贵溪冷水坑银矿田银元素富集规律研究.资源调查与环境,2007,28:46-53.
    [173]杨斌,彭省临,杨牧,等.2004.江西银山铜铅锌矿床热液对流与蚀变矿化分带机制.桂林工学院学报,24(4):395-401.
    [174]杨存来.1993.江西冷水坑铅锌银矿床地球化学异常特征及找矿模型.物探与化探,17,173-181.
    [175]杨水源,蒋少涌,姜耀辉.2010.江西相山流纹英安岩和流纹英安斑岩锆石U-Pb年代学和Hf同位素组成及其地质意义.中国科学(D)辑,40(8):953-969.
    [176]尧杰.2003.银路岭矿区矿体地质特征及地质工作的几点新认识.有色金属,55,11-12.
    [177]叶霖,高伟,杨玉龙.2012.云南澜沧老厂铅锌多金属矿床闪锌矿微量元素组成.岩石学报,28(5):1362-1372.
    [178]叶庆同,1987.赣东北铅锌矿床成矿系列和成矿机理.北京:北京地质出版社.
    [179]于津海, O’Reilly S Y,王丽娟,等.华夏地块古老物质的发现和前寒武纪地壳的形成.科学通报,2007,52(1):11-18.
    [180]于津海,王丽娟,周新民,等.粤东北基底变质岩的组成和形成时代.地球科学-中国地质大学学报,2006,31(1):38-48.
    [181]于津海,周新民, O’Reilly S Y,等.南岭东段基底麻粒岩相变质岩的形成时代和原岩性质-锆石的U-Pb-Hf同位素研究.科学通报,2005,50(16):1758-1767.
    [182]余达淦,叶发旺,王勇,2001.江西广丰早白垩世中晚期盆地火山-侵入杂岩活动序列确认及地质意义.大地构造与成矿学,25(3):271-276.
    [183]余心起,舒良树,颜铁增等.2004.江山-广丰地区早白垩世晚期玄武岩的岩石地球化学及其构造意义.地球化学,33(5):476.
    [184]余心起,吴淦国,舒良树,颜铁增,张达,狄永军.2006.白垩纪时期赣杭构造带的伸展作用.地学前缘13(3):31-43
    [185]余心起,吴淦国,张达,等.2008.北武夷地区逆冲推覆构造的特征及其控矿作用.地质通报,27(10):1667-1677
    [186]曾雯,张利,周汉文,等.华夏地块古元古代基底的加里东期再造:锆石U-Pb年龄、Hf同位素和微量元素制约.科学通报,2008,53(3):335-344.
    [187]曾雯,张利,周汉文.华夏地块古元古代基底的加里东期再造:锆石U-Pb年龄、Hf同位素和微量元素制约.科学通报,2008,53(3):335-344.
    [188]张家菁,施光海,童贵生,等.浙江徐家墩鹅湖岭组含铜多金属矿火山岩的地球化学和年代学.地质学报,2009,83:791-799.
    [189]张家菁,陈郑辉,王登红,陈振宇,刘善宝,王成辉.2008.福建行洛坑大型钨矿的地质特征、成矿时代及其找矿意义.大地构造与成矿学,32(1):92-97
    [190]张万良.1998.江西盛源盆地基本地质特征.江西地质,12(1):48-52.
    [191]张万良.盛源盆地火山岩系地层的时代归属.铀矿地质,2000,16:99-101
    [192]张文淮,张志坚,伍刚.1996.成矿流体及成矿机制.地学前缘(中国地质大学,北京),3(3-4):245-252
    [193]郑永飞.2001.稳定同位素体系理论模式及其矿床地球化学应用.矿床地质,20(1):57-85
    [194]周汉文,李献华,王汉荣,等.广西鹰扬关群基性火山岩的错石U-Pb年龄及其地质意义.地质论评,2002,48(增刊),22-25.
    [195]周建详.2009.冷水坑矿田层控叠生型矿体特征及成因.民营科技,12,4-6.
    [196]周新民.对华南花岗岩研究的若干思考.高校地质学报,2003,9:556-565
    [197]周新民.南岭地区晚中生代花岗岩成因与岩石圈动力学演化.北京:科学出版社,2007.1-691.
    [198]左力艳,孟祥金,杨竹森.冷水坑斑岩型银铅锌矿床含矿岩系岩石地球化学及Sr、Nd同位素研究.矿床地质,2008,27:367-382.
    [199]左力艳,侯增谦,孟祥金,等.2010.冷水坑斑岩型银铅锌矿床含矿岩体锆石SHRIMPU-Pb年代学研究.中国地质,37(5):1450-1456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700