用户名: 密码: 验证码:
HBV-CpG诱导抗乙型肝炎病毒免疫应答
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
慢性乙型肝炎病毒(HBV)是危害人类健康的难题之一,目前全球至少有3.6亿乙型肝炎病毒感染者,其中超过三分之一的人群在中国,这些人群面临着发展为肝纤维化、肝硬化甚至肝癌的高风险。由于慢性乙型肝炎患者对病毒产生不同程度的免疫耐受,以及HBV共价互补环状DNA(cccDNA)在肝内的持续存在,现有的抗病毒药物如干扰素(IFN)和拉米夫定等核苷类似物,只能一定程度抑制HBV的复制,最终达不到彻底清除HBV的效果,而且尚有一大部分慢性乙肝患者对上述抗病毒治疗无应答,因此发展更为有效的抗病毒药物是十分迫切。
     通常情况下,病毒感染后会通过一系列机制激活免疫系统从而被清除,特别是病毒感染早期诱导表达Ⅰ型干扰素(IFN-α/IFN-p),I型干扰素不仅能诱导大量的抗病毒蛋白,而且可以激活固有免疫和适应性免疫系统从而发挥抗病毒作用。浆细胞样DC (Plasmacytoid dendritic cells,pDCs)是诱导干扰素-α(IFN-α)表达的主要天然免疫细胞,pDCs通过其胞内的TLR样受体(Toll-like receptors,TLR)包括TLR7和TLR9分别识别病毒的单链RNA和非甲基化的CpG (cytidine phosphate guanosine oligodeoxynucleotides) DNA从而启动下游级联信号,大量分泌Ⅰ型干扰素。而HBV是一种双链DNA病毒,在其基因组上我们发现也存在CpG序列,那么HBV是否可以通过自身CpG触发TLR9信号从而启动下游干扰素活化途径进而清除病毒呢?
     基于以上问题考虑,本研究首先筛选HBV基因组来源的CpG,即HBV-CpG,探讨其诱导IFN-α表达的能力,在研究过程中还发现HBV基因组中存在富含鸟苷的抑制性寡核苷酸(ODN),即HBV-ODN,这些抑制性HBV-ODN可特异性抑制HBV-CpG诱导的IFN-α表达。进一步研究发现纳米材料PEG-PLA包裹的HBV-CpG,即NP(HBV-CpG),能拮抗HBV-ODN对IFN-a产生的抑制作用,同时探讨了NP(HBV-CpG)在预防和治疗乙型肝炎病毒感染中的作用。
     在本研究中,我们首先设计了一系列HBV基因组来源的CpG序列即HBV-CpG,利用ELISA和流式细胞术的方法筛选出能诱导健康人PBMCs高表达IFN-α的HBV-CpG;之后,我们设计了HBV基因来源的富含鸟苷的抑制性HBV-ODN, ELISA方法验证其对HBV-CpG诱导IFN-α表达的能力具有特异性抑制作用,免疫荧光技术探讨了抑制性HBV-ODN的抑制机制;双乳化法将纳米材料包裹HBV-CpG形成NP (HBV-CpG), ELISA方法验证NP(HBV-CpG)逆转抑制性HBV-ODN介导的抑制活性,ELISA和流式细胞术进一步检测NP(MBV-CpG)诱导乙肝病人PBMCs表达IFN-a的情况;在小鼠模型中,利用流式细胞术检测野生型小鼠淋巴细胞的活化情况,放射性免疫法及ELISA法检测NP(HBV-CpG)联合乙肝疫苗接种野生型小鼠后的抗体应答;利用高压注射pAAV/HBV1.2质粒构建HBV携带小鼠模型,流式细胞术和ELISA法检测淋巴细胞的活化以及Ⅰ型IFN的表达,放射性免疫法检测NP(HBV-CpG)联合乙肝疫苗治疗后HBsAg和HBsAb的表达,荧光定量PCR技术检测联合治疗后HBVDNA的表达情况,免疫组化法检测联合治疗后肝脏HBcAg表达情况,H&E染色、转氨酶及胆红素检测观察肝脏损伤情况,流式细胞术内标IFN-γ检测特异性CD8+T细胞的活化。通过上述研究方法,我们获得了以下研究结果:
     1. HBV-CpG诱导人pDCs细胞高表达IFN-a
     首先我们设计了一系列HBV基因组来源的CpG序列,将其分别刺激健康人PBMCs, ELISA检测上清IFN-α的表达,由此筛选出高表达IFN-α的HBV-CpG,进一步流式细胞术验证HBV-CpG是通过诱导Lineagel-, CD123+, HLA-DR+的细胞即pDCs特异性表达IFN-α,流式内标发现HBV-CpG刺激PBMCs后pDCs胞内TLR9表达上调,TLR7表达没有显著变化,内体酸化抑制剂氯喹处理后抑制了HBV-CpG诱导的IFN-α的表达。以上结果证明了HBV-CpG诱导人pDCs表达IFN-α,依赖TLR9而非TLR7的途径。
     2. inhibitory HBV-ODN特异性抑制HBV-CpG诱导的IFN-a的表达
     在HBV基因组上我们同时发现了一些富集鸟苷的序列,ELISA法证明这些序列具有特异性抑制HBV-CpG诱导IFN-a表达的能力,该抑制性序列命名为HBV-ODN。我们也发现这些抑制性HBV-ODN并不能抑制广谱CpG-2216诱导的IFN-a的表达,为了进一步证明HBV-ODN的抑制机制,我们应用免疫荧光技术发现HBV-ODN抑制了Gen2.2细胞对HBV-CpG的摄取及与TLR9的共定位。因此我们认为抑制性HBV-ODN特异性抑制了HBV-CpG诱导的IFN-a的表达。
     3. NP(HBV-CpG)逆转HBV-ODN抑制IFN-α的表达能力
     为了逆转HBV-ODN的抑制效应,我们采用纳米材料PEG-PLA包被HBV-CpG,即形成NP(HBV-CpG),当NP(HBV-CpG)与HBV-ODN以2:1的比例刺激PBMCs时,IFN-α的表达显著提高,而且NP(HBV-CpG)比HBV-CpG具有更强的活化pDCs、NK和T细胞的能力,进一步研究发现NP(HBV-CpG)同样可以诱导乙肝患者来源的PBMCs表达IFN-α。
     根据以上结果我们证明HBV-CpG在纳米材料包被下可以逆转HBV-ODN抑制IFN-a的能力并且可以诱导乙肝患者PBMCs表达IFN-α。
     4. NP(HBV-CpG)活化野生型小鼠的淋巴细胞
     小鼠体内试验中,通过静脉注射NP(HBV-CpG)可以显著提高pDCs和cDCs表面CD40和CD80的表达,以及上调NK和T细胞表面CD69和ICOS的表达。NP(HBV-CpG)体外刺激小鼠脾脏淋巴细胞,同样提高了pDCs和cDCs表面CD40和CD80以及NK和T细胞表面CD69的表达,而且pDCs和cDCs在NP(HBV-CpG)刺激下生存能力增强。以上结果证明NP(HBV-CpG)体内体外均具有活化小鼠淋巴细胞的能力。
     5. NP(HBV-CpG)协同增强乙肝疫苗的抗体应答
     NP(HBV-CpG)联合rHBsAg疫苗分别免疫BALB/c和C57BL/6小鼠,同时设空载体联合rHBsAg疫苗组、单独乙肝疫苗组和未处理组做对照,免疫2和4周后放射性免疫法检测发现,NP(HBV-CpG)联合rHBsAg疫苗组抗体应答水平显著提高,ELISA检测发现Thl型抗体亚型IgG2a水平也显著增强。上述结果证明NP(HBV-CpG)增强乙肝疫苗的抗体应答特别是Th1型抗体应答。
     6. NP(HBV-CpG)促进HBV携带小鼠的免疫应答
     将pAAV/HBV1.2质粒高压注射C57BL/6小鼠,构建HBV携带鼠模型,NP(HBV-CpG)静脉处理HBV携带鼠显著提高了cDCs表面CD40和CD80, NK细胞表面CD69和ICOS,以及CD4+和CD8+T细胞CD69的表达,并且NP(HBV-CpG)尾静脉注射HBV携带鼠诱导了血清中IFN-α的表达。以上结果证明NP(HBV-CpG)具有活化HBV携带鼠免疫应答的能力。
     7. NP(HBV-CpG)联合治疗有效清除HBV
     利用上述高压注射构建的HBV携带鼠模型,探讨NP(HBV-CpG)对于乙肝病毒的清除作用,将NP(HBV-CpG)联合rHBsAg疫苗治疗HBV携带鼠,经过连续三周的治疗,90%的HBV携带鼠血清HBsAg被清除,肝脏HBcAg和血清HBVDNA表达显著下降,保护性乙肝抗体HBsAb开始表达,并且表达IFN-y的CD8+T细胞上调,提示NP(HBV-CpG)促进了CTL功能,同时肝脏H&E染色显示肝脏结构正常,仅有轻微炎性浸润,血清转氨酶和胆红素检测进一步证明HBV携带鼠对这种NP(HBV-CpG)联合治疗是耐受的。
     根据以上结果我们证明了NP(HBV-CpG)联合治疗HBV携带鼠可以在短期内有效清除HBV,并且促进保护性抗体的产生。
Persistent infection with the HBV (Hepatitis B Virus) has become a severe public health problem, and more than360million people worldwide affect HBV. The infected individuals tend to progression to liver cirrhosis and hepatocellular carcinoma. The current rHBsAg (recombinant hepatitis B surface antigen) vaccine provides protection against HBV infection, but~10%of people cannot produce neutralizing antibody after vaccination, moreover, the vaccine cannot help HBV-infected patients. Now, antiviral drugs, including the nucleoside analogous and IFN-a, used for the treatment of HBV can suppress viral replication and reduce hepatic symptoms. However, the persistence of HBV cccDNA (covalently closed circular DNA) and defective immune responses lead to treatment failure and progression to severe liver disease. Consequently, it is necessary to develop more efficient therapeutic strategies to eradicate HBV infection.
     HBV is unlike other enveloped viruses, which seems to avoid inducing strong innate immune responses including the type I IFN (interferon). Therefore, it may play a critical role in finding ways to induce vigorous immune responses against HBV.The unmethylated CpG (cytosine-phosphate-guanosine) motifs presented in microbial DNA can stimulate the immune system by interacting with the TLR9(pattern-recognition receptor Toll-like receptor9). Unmethylated CpG DNA can trigger immune cascades that improves antigen presentation and the secretion of cytokines, including high levels of the type I IFN. A lot of investigations indicate that CpG ODNs can provide not only a basis for improved vaccines, but also immunotherapy for infectious diseases. However, the responses to CpG ODN-based treatments were generally not sustained and was always accompanied by side effects such as toxic shock or deleterious autoimmune reactions. So far, the clinical application of CpG ODNs to HBV has not been achieved.
     The genome of HBV is partially double-stranded DNA, and also contains CpG motifs. Whether these HBV genome-derived CpG ODNs can induce type I IFN has not been described. In this study, we successfully identified some CpG ODNs from the HBV genome (named HBV-CpG) that are capable of inducing IFN-a production. In addition to identifying HBV-CpG, We also identified inhibitory guanosine-rich ODNs from HBV DNA (named HBV-ODNs) which have capable of inhibiting HBV-CpG-mediated IFN-α production. Nanoparticle-encapsulated HBV-CpG (termed NP(HBV-CpG)) reversed the HBV-ODN-mediated suppression of IFN-α production and activated the innate immune system. In the following study, we focused on the function of NP(HBV-CpG) in prevention and treatment of HBV infection.
     In our study, we designed and screened HBV-CpG and HBV-ODN by ELISA and flow cytometry. The mechanism of inhibition of HBV-ODN was analyzed by the immunofluorescence.NP(HBV-CpG) reversing the HBV-ODN-mediated-block of IFN-a production was analyzed by ELISA. ELISA and intracellular cytokine staining were used to examine the secretion of IFN-a from HBV patient-derived PBMCs. RIA and ELISA were used to detect the antibody response to HBsAg. HBV carrier mouse models were established by hydrodynamically tail intravenously injection with the pAAV/HBV1.2plasmid. ELISA and flow cytometry were used to detect the production of serum IFN-a and the activation of lymphocytes. A double-emulsion method encapsulates HBV-CpG into nanoparticles. HBsAg and anti-HBsAg antibodies were measured by RIA. The level of HBV DNA and HBcAg was tested by RT-PCR and RIA. Tissue injury was assessed by H&E staining and the measurement of ALT and bilirubin. The intracellular cytokine staining was used to examine the HBsAg-specific IFN-y-producing CD8+T cells. The major findings and conclusions of our study are shown as follows:
     1. HBV-CpG potently induces the production of IFN-α by human pDCs.
     We hypothesized that endogenous CpG ODNs from the HBV genome could interact with TLR9to induce immune responses, so an extensive screen was performed to identify the HBV-CpG in the HBV genome. Therefore, we found two candidates to potently induce IFN-α release by PBMCs. We next measured which cell type within the PBMC populations produced IFN-α in response to HBV-CpG. IFN-α was exclusively produced by Lineagel-, CD123+, HLA-DR+cell populations (pDCs) determined by flow cytometry after stimulation with HBV-CpG. So pDCs are the only cells within the PBMC populations that can response to HBV-CpG to produce IFN-α.
     To determine whether TLR9acted as the HBV-CpG ligand, TLR9expression was determined by flow cytometry after PBMCs were stimulated with HBV-CpG for8h. We found TLR9was significantly upregulated in PBMCs treated with HBV-CpG compared to PBMCs treated with IL-3. What is more, when we made use of chloroquine to block TLR7/9signaling, HBV-CpG-induced IFN-α production completely inhibited. We also found that there was little change in expression of TLR7on pDCs determined by flow cytometry when PBMCs were incubated with HBV-CpG.
     These data indicate that HBV-CpG induced a potent IFN-a response by human pDCs in a TLR9-dependent but TLR7-independent manner.
     2. HBV-ODN specifically blocked the HBV-CpG-mediated induction of IFN-a.
     Guanosine-rich ODNs specifically inhibiting TLR9signaling has been reported. Based on the considerations, we investigated HBV genome and found a high frequency of guanosine repetitive elements. We screened eight inhibitory ODNs derived from HBV genomic sequences (named HBV-ODNs) with guanosine-rich motifs. When we incubated PBMCs with HBV-CpG and different inhibitory HBV-ODNs, we found that the HBV-CpG-induced IFN-a production was inhibited. However, HBV-ODNs could not inhibit CpG-2216-induced IFN-a production. When Gen2.2cells incubated with HBV-CpG, we found that HBV-CpG colocalized with TLR9by the immunofluorescence and confocal microscopy. However, when Gen2.2incubated with HBV-CpG and HBV-ODN, HBV-ODN suppressed the uptake of HBV-CpG by Gen2.2and blocked the colocalization of HBV-CpG with TLR9.
     Taken together, these data suggest that inhibitory HBV-ODN specifically blocked the endogenous HBV-CpG-mediated induction of IFN-a.
     3. NP(HBV-CpG) reversed the HBV-ODN-mediated-block of IFN-a production.
     We used a double-emulsion method to encapsulate HBV-CpG into nanoparticles (termed NP(HBV-CpG)). The coadministration of PBMCs with NP(HBV-CpG) or HBV-CpG and inhibitory HBV-ODNs at a1:1ratio resulted in IFN-a production at barely detectable levels. However, the incubation of NP(HBV-CpG) and HBV-ODNs at a2:1ratio increased IFN-a production. Additional, NP(HBV-CpG) could activate NK, pDCs and T cells to a greater extent than nanoparticles and HBV-CpG. Furthermore, we also found that NP(HBV-CpG) could induce IFN-a production in HBV patient-derived PBMCs.
     Together, these results suggested that NP(HBV-CpG) could suppress the activity of inhibitory HBV-ODNs and stimulate strong immune responses from PBMCs.
     4. NP(HBV-CpG) exerted strong immunostimulatory effects on the lymphocytes of mice.
     In our previous study we found that NP(HBV-CpG) could activate human PBMCs in vitro. Subsequently, we challenged wild-type mice with NP(HBV-CpG) in vivo. Mice treated intravenously with NP(HBV-CpG) displayed higher levels of CD40and CD80on pDCs and cDCs than mice treated with PBS. Meanwhile, the expression of ICOS and CD69was strongly upregulated on the NK and T cells treated with NP(HBV-CpG) compared to the PBS treated. Furthermore, the coincubation of splenic lymphocytes with NP(HBV-CpG) increased the expression of CD80and CD40on pDC and cDC but also the expression of CD69on NK and T cells in agreement with the in vivo experiment. NP(HBV-CpG) treated also increased the viability of the pDCs and cDCs.
     These experiments indicate that NP(HBV-CpG) can induce a strong immunostimulatory effect on murine lymphocytes in vitro and in vivo.
     5. NP (HBV-CpG) enhanced the antibody response to HBsAg.
     BALB/c and C57BL/6mice were divided into four groups, including the rHBsAg vaccine plus NP(HBV-CpG), the rHBsAg vaccine plus NPs, rHBsAg vaccine alone and untreated control. The level of anti-HBsAg antibodies in the sera of the mice was examined2and4weeks after the final immunization. Immunization with the rHBsAg vaccine plus NP(HBV-CpG) greatly increased the anti-HBsAg antibody levels in both mice. Significantly, NP(HBV-CpG) administration was a large increase in the production of Thl-dependent IgG2a-antibodies.
     Together, these results suggested that NP(HBV-CpG) as an adjuvant can assist the rHBsAg vaccine in inducing vigorous Thl-biased anti-HBsAg antibody responses.
     6. NP (HBV-CpG) stimulated robust innate immune responses in HBV carrier mice.
     Given that NP(HBV-CpG) exerted a strong immunostimulatory effect on wild-type mice, we evaluated the effect of NP(HBV-CpG) on HBV carrier mice. The mouse model established by hydrodynamically tail intravenously injection with the pAAV/HBV1.2plasmid. The HBV carrier mice were administered NP(HBV-CpG), NPs, HBV-CpG or PBS respectively. The NP(HBV-CpG) treatment increased the expression of CD40and CD80on cDCs, ICOS and CD69on NK cells and CD69on CD4+and CD8+T cells. Significantly, high levels of serum IFN-α, but not IFN-β, were observed in the NP(HBV-CpG) treatment.
     These results indicated that NP(HBV-CpG) can trigger a robust immune response in HBV carrier mice.
     7. NP(HBV-CpG)-based theatment effectively cleared HBV in HBV carrier mice.
     Previous study had reported that the HBV carrier mice exhibit tolerance toward HBsAg because HBsAg failed to induce an immune response in these mice. However, our study indicated that NP(HBV-CpG) could stimulate the activation of lymphocyte, especially IFN-α expression in HBV carrier mice. Therefore, we speculated NP(HBV-CpG) may have the effect on the clearance of HBV. In fact, after we treated HBV carrier mice with NP(HBV-CpG) combined with rHBsAg or NPs combined with rHBsAg, we found that the HBsAg level in the serum of carrier mice treated with NP(HBV-CpG)-baesd treatment declined significantly. Actually HBV surface antigenemia disappeared in about90%of carrier mice within the NP(HBV-CpG)-based trerapy. However, the HBsAg level remained high in the mice treated with rHBsAg combined with NPs. Moreover, the HBcAg level in the liver tissues and the HBV DNA level in the serum declined significantly and were undetectable in some of the samples receiving the NP(HBV-CpG)-based treatment. Furthermore, anti-HBsAg antibodies began to appear after HBsAg clearance in the groups treated with NP(HBV-CpG) combined with rHBsAg. Moreover, the percentage of HBsAg-specific IFN-y-producing CD8+T cells upregulated by the NP(HBV-CpG)-based therapy that suggest that the combination treatment augmented CTL function. Meanwhile, the livers of the HBV carrier mice receiving the NP(HBV-CpG) combined administration showed normal architecture with mild inflammatory infiltrate. Normalization of serum bilirubin and ALT further suggested that HBV carrier mice had good tolerance to the NP(HBV-CpG)-based treatment.
     Taken together, these data suggest that NP(HBV-CpG)-based theatment can effectively eradicates HBV infection, thereby exerting strong anti-HBV activity.
引文
Ank, N., West, H., Bartholdy, C., Eriksson, K., Thomsen, A.R., and Paludan, S.R. (2006). Lambda interferon (IFN-lambda), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. J Virol 80,4501-4509.
    Asabe, S., Wieland, S.F., Chattopadhyay, P.K., Roederer, M., Engle, R.E., Purcell, R.H., and Chisari, F.V. (2009). The size of the viral inoculum contributes to the outcome of hepatitis B virus infection. J Virol 83,9652-9662.
    Bar-On, L., Birnberg, T., Lewis, K.L., Edelson, B.T., Bruder, D., Hildner, K., Buer, J., Murphy, K.M., Reizis, B., and Jung, S. (2010). CX3CR1+ CD8alpha+ dendritic cells are a steady-state population related to plasmacytoid dendritic cells. Proc Natl Acad Sci U S A 107,14745-14750.
    Barchet, W., Cella, M., Odermatt, B., Asselin-Paturel, C., Colonna, M., and Kalinke, U. (2002). Virus-induced interferon alpha production by a dendritic cell subset in the absence of feedback signaling in vivo. J Exp Med 195,507-516.
    Barrat, F.J., Meeker, T., Gregorio, J., Chan, J.H., Uematsu, S., Akira, S., Chang, B., Duramad, O., and Coffman, R.L. (2005). Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J Exp Med 202,1131-1139.
    Baumert, T.F., Rosler, C., Malim, M.H., and von Weizsacker, F. (2007). Hepatitis B virus DNA is subject to extensive editing by the human deaminase APOBEC3C. Hepatology 46,682-689.
    Boni, C., Fisicaro, P., Valdatta, C., Amadei, B., Di Vincenzo, P., Giuberti, T., Laccabue, D., Zerbini, A., Cavalli, A., Missale, G., et al. (2007). Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J Virol 81,4215-4225.
    Boni, C., Penna, A., Bertoletti, A., Lamonaca, V., Rapti, I., Missale, G., Pilli, M., Urbani, S., Cavalli, A., Cerioni, S., et al. (2003). Transient restoration of anti-viral T cell responses induced by lamivudine therapy in chronic hepatitis B. J Hepatol 39,595-605.
    Boonstra, A., Asselin-Paturel, C., Gilliet, M., Crain, C., Trinchieri, G., Liu, Y.J., and O'Garra, A. (2003). Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development:dependency on antigen dose and differential toll-like receptor ligation. J Exp Med 197,101-109.
    Bosinger, S.E., Li, Q., Gordon, S.N., Klatt, N.R., Duan, L., Xu, L., Francella, N., Sidahmed, A., Smith, A.J., Cramer, E.M., et al. (2009). Global genomic analysis reveals rapid control of a robust innate response in SIV-infected sooty mangabeys. J Clin Invest 119,3556-3572.
    Brahmer, J.R., Drake, C.G., Wollner, I., Powderly, J.D., Picus, J., Sharfman, W.H., Stankevich, E., Pons, A., Salay, T.M., McMiller, T.L., et al. (2010). Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors:safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 28,3167-3175.
    Buster, E.H., Flink, H.J., Cakaloglu, Y, Simon, K., Trojan, J., Tabak, F., So, T.M., Feinman, S.V., Mach, T., Akarca, U.S., et al. (2008). Sustained HBeAg and HBsAg loss after long-term follow-up of HBeAg-positive patients treated with peginterferon alpha-2b. Gastroenterology 135,459-467.
    Cao, W., Bover, L., Cho, M., Wen, X., Hanabuchi, S., Bao, M., Rosen, D.B., Wang, Y.H., Shaw, J.L., Du, Q., et al. (2009). Regulation of TLR7/9 responses in plasmacytoid dendritic cells by BST2 and ILT7 receptor interaction. J Exp Med 206,1603-1614.
    Cassano, N., Mastrandrea, V., Principi, M., Loconsole, F., De Tullio, N., Di Leo, A., and Vena, G.A. (2011). Anti-tumor necrosis factor treatment in occult hepatitis B virus infection:a retrospective analysis of 62 patients with psoriatic disease. J Biol Regul Homeost Agents 25, 285-289.
    Cella, M., Jarrossay, D., Facchetti, F., Alebardi, O., Nakajima, H., Lanzavecchia, A., and Colonna, M. (1999). Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med 5,919-923.
    Chang, J., Block, T.M., and Guo, J.T. (2012). The innate immune response to hepatitis B virus infection:implications for pathogenesis and therapy. Antiviral Res 96,405-413.
    Chehimi, J., Starr, S.E., Kawashima, H., Miller, D.S., Trinchieri, G., Perussia, B., and Bandyopadhyay, S. (1989). Dendritic cells and IFN-alpha-producing cells are two functionally distinct non-B, non-monocytic HLA-DR+cell subsets in human peripheral blood. Immunology 68, 486-490.
    Chisari, F.V., Isogawa, M., and Wieland, S.F. (2010). Pathogenesis of hepatitis B virus infection. Pathol Biol (Paris) 58,258-266.
    Cisse, B., Caton, M.L., Lehner, M., Maeda, T., Scheu, S., Locksley, R., Holmberg, D., Zweier, C., den Hollander, N.S., Kant, S.G., et al. (2008). Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell 135,37-48.
    Colonna, M., Trinchieri, G., and Liu, Y.J. (2004). Plasmacytoid dendritic cells in immunity. Nat Immunol 5,1219-1226.
    Corcoran, L., Ferrero, I., Vremec, D., Lucas, K., Waithman, J., O'Keeffe, M., Wu, L., Wilson, A., and Shortman, K. (2003). The lymphoid past of mouse plasmacytoid cells and thymic dendritic cells. J Immunol 170,4926-4932.
    Crozat, K., Guiton, R., Guilliams, M., Henri, S., Baranek, T., Schwartz-Cornil, I., Malissen, B., and Dalod, M. (2010). Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets. Immunol Rev 234,177-198.
    Damm, J., Wiegand, F., Harden, L.M., Gerstberger, R., Rummel, C., and Roth, J. (2012). Fever, sickness behavior, and expression of inflammatory genes in the hypothalamus after systemic and localized subcutaneous stimulation of rats with the Toll-like receptor 7 agonist imiquimod. Neuroscience 201,166-183.
    Das, A., Hoare, M., Davies, N., Lopes, A.R., Dunn, C., Kennedy, P.T., Alexander, G., Finney, H., Lawson, A., Plunkett, F.J., et al. (2008). Functional skewing of the global CD8 T cell population in chronic hepatitis B virus infection. J Exp Med 205,2111-2124.
    Decalf, J., Fernandes, S., Longman, R., Ahloulay, M., Audat, F., Lefrerre, F., Rice, C.M., Pol, S., and Albert, M.L. (2007). Plasmacytoid dendritic cells initiate a complex chemokine and cytokine network and are a viable drug target in chronic HCV patients. J Exp Med 204,2423-2437.
    Deny, P., and Zoulim, F. (2010). Hepatitis B virus:from diagnosis to treatment. Pathol Biol (Paris) 58,245-253.
    Diebold, S.S., Montoya, M., Unger, H., Alexopoulou, L., Roy, P., Haswell, L.E., Al-Shamkhani, A., Flavell, R., Borrow, P., and Reis e Sousa, C. (2003). Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature 424,324-328.
    Duan, X.Z., Zhuang, H., Wang, M., Li, H.W., Liu, J.C., and Wang, F.S. (2005). Decreased numbers and impaired function of circulating dendritic cell subsets in patients with chronic hepatitis B infection (R2). J Gastroenterol Hepatol 20,234-242.
    Dunn, C., Peppa, D., Khanna, P., Nebbia, G., Jones, M., Brendish, N., Lascar, R.M., Brown, D., Gilson, R.J., Tedder, R.J., et al. (2009). Temporal analysis of early immune responses in patients with acute hepatitis B virus infection. Gastroenterology 137,1289-1300.
    Duramad, O., Fearon, K.L., Chan, J.H., Kanzler, H., Marshall, J.D., Coffman, R.L., and Barrat, F.J. (2003). IL-10 regulates plasmacytoid dendritic cell response to CpG-containing immunostimulatory sequences. Blood 102,4487-4492.
    Eidenschenk, C., Crozat, K., Krebs, P., Arens, R., Popkin, D., Arnold, C.N., Blasius, A.L., Benedict, C.A., Moresco, E.M., Xia, Y., and Beutler, B. (2010). Flt3 permits survival during infection by rendering dendritic cells competent to activate NK cells. Proc Natl Acad Sci U S A 107,9759-9764.
    Facchetli, F., De Wolf-Peeters, C., Kennes, C., Rossi, G., De Vos, R., van den Oord, J.J., and Desmet, V.J. (1990). Leukemia-associated lymph node infiltrates of plasmacytoid monocytes (so-called plasmacytoid T-cells). Evidence for two distinct histological and immunophenotypical patterns. Am J Surg Pathol 14,101-112.
    Facchetti, F., de Wolf-Peeters, C., Mason, D.Y., Pulford, K., van den Oord, J.J., and Desmet, V.J. (1988). Plasmacytoid T cells. Immunohistochemical evidence for their monocyte/macrophage origin. Am J Pathol 133,15-21.
    Fauriat, C., Long, E.O., Ljunggren, H.G., and Bryceson, Y.T. (2010). Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood 115,2167-2176.
    Feldman, M., and Fitzgerald-Bocarsly, P. (1990). Sequential enrichment and immunocytochemical visualization of human interferon-alpha-producing cells. J Interferon Res 10,435-446.
    Fitzgerald-Bocarsly, P. (1993). Human natural interferon-alpha producing cells. Pharmacol Ther 60,39-62.
    Fitzgerald-Bocarsly, P., and Jacobs, E.S. (2010). Plasmacytoid dendritic cells in HIV infection: striking a delicate balance. J Leukoc Biol 87,609-620.
    Geissmann, F., Manz, M.G., Jung, S., Sieweke, M.H., Merad, M., and Ley, K. (2010). Development of monocytes, macrophages, and dendritic cells. Science 327,656-661.
    Ghosh, H.S., Cisse, B., Bunin, A., Lewis, K.L., and Reizis, B. (2010). Continuous expression of the transcription factor e2-2 maintains the cell fate of mature plasmacytoid dendritic cells. Immunity 33,905-916.
    Gilliet, M., Cao, W., and Liu, Y.J. (2008). Plasmacytoid dendritic cells:sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 8,594-606.
    Grimm, D., Heeg, M., and Thimme, R. (2013). Hepatitis B virus:from immunobiology to immunotherapy. Clin Sci (Lond) 124,77-85.
    Grouard, G., Rissoan, M.C., Filgueira, L., Durand, I., Banchereau, J., and Liu, Y.J. (1997). The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J Exp Med 185,1101-1111.
    Groux, H., Bigler, M., de Vries, J.E., and Roncarolo, M.G. (1998). Inhibitory and stimulatory effects of IL-10 on human CD8+T cells. J Immunol 160,3188-3193.
    Guidotti, L.G., Rochford, R., Chung, J., Shapiro, M., Purcell, R., and Chisari, F.V. (1999). Viral clearance without destruction of infected cells during acute HBV infection. Science 284,825-829.
    Guo, H., Jiang, D., Ma, D., Chang, J., Dougherty, A.M., Cuconati, A., Block, T.M., and Guo, J.T. (2009). Activation of pattern recognition receptor-mediated innate immunity inhibits the replication of hepatitis B virus in human hepatocyte-derived cells. J Virol 83,847-858.
    Guo, J.T., Zhou, H., Liu, C., Aldrich, C., Saputelli, J., Whitaker, T., Barrasa, M.I., Mason, W.S., and Seeger, C. (2000). Apoptosis and regeneration of hepatocytes during recovery from transient hepadnavirus infections. J Virol 74,1495-1505.
    Guy, C.S., Mulrooney-Cousins, P.M., Churchill, N.D., and Michalak, T.I. (2008). Intrahepatic expression of genes affiliated with innate and adaptive immune responses immediately after invasion and during acute infection with woodchuck hepadnavirus. J Virol 82,8579-8591.
    Hadeiba, H., Sato, T., Habtezion, A., Oderup, C., Pan, J., and Butcher, E.C. (2008). CCR9 expression defines tolerogenic plasmacytoid dendritic cells able to suppress acute graft-versus-host disease. Nat Immunol 9,1253-1260.
    Han, Q., Zhang, C., Zhang, J., and Tian, Z. (2011). Reversal of hepatitis B virus-induced immune tolerance by an immunostimulatory 3p-HBx-siRNAs in a retinoic acid inducible gene I-dependent manner. Hepatology 54,1179-1189.
    Hochrein, H., O'Keeffe, M., and Wagner, H. (2002). Human and mouse plasmacytoid dendritic cells. Hum Immunol 63,1103-1110.
    Hoeffel, G., Ripoche, A.C., Matheoud, D., Nascimbeni, M., Escriou, N., Lebon, P., Heshmati,F., Guillet, J.G., Gannage, M., Caillat-Zucman, S., et al. (2007). Antigen crosspresentation by human plasmacytoid dendritic cells. Immunity 27,481-492.
    Hosel, M., Quasdorff, M., Wiegmann, K., Webb, D., Zedler, U., Broxtermann, M., Tedjokusumo, R., Esser, K., Arzberger, S., Kirschning, C.J., et al. (2009). Not interferon, but interleukin-6 controls early gene expression in hepatitis B virus infection. Hepatology 50,1773-1782.
    Irla, M., Kupfer, N., Suter, T., Lissilaa, R., Benkhoucha, M., Skupsky, J., Lalive, P.H., Fontana, A., Reith, W., and Hugues, S. (2010). MHC class Ⅱ-restricted antigen presentation by plasmacytoid dendritic cells inhibits T cell-mediated autoimmunity. J Exp Med 207,1891-1905.
    Isogawa, M., Robek, M.D., Furuichi, Y., and Chisari, F.V. (2005). Toll-like receptor signaling inhibits hepatitis B virus replication in vivo. J Virol 79,7269-7272.
    Ito, T., Yang, M., Wang, Y.H., Lande, R., Gregorio, J., Perng, O.A., Qin, X.F., Liu, Y.J., and Gilliet, M. (2007). Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J Exp Med 204,105-115.
    Iwakoshi, N.N., Pypaert, M., and Glimcher, L.H. (2007). The transcription factor XBP-1 is essential for the development and survival of dendritic cells. J Exp Med 204,2267-2275.
    Izaguirre, A., Barnes, B.J., Amrute, S., Yeow, W.S., Megjugorac, N., Dai, J., Feng, D., Chung, E., Pitha, P.M., and Fitzgerald-Bocarsly, P. (2003). Comparative analysis of IRF and IFN-alpha expression in human plasmacytoid and monocyte-derived dendritic cells. J Leukoc Biol 74, 1125-1138.
    Jacquelin, B., Mayau, V., Targat, B., Liovat, A.S., Kunkel, D., Petitjean, G., Dillies, M.A., Roques, P., Butor, C., Silvestri, G., et al. (2009). Nonpathogenic SFV infection of African green monkeys induces a strong but rapidly controlled type IIFN response. J Clin Invest 119,3544-3555.
    Kanzler, H., Barrat, F.J., Hessel, E.M., and Coffman, R.L. (2007). Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med 13,552-559.
    Kassel, R., Cruise, M.W., Iezzoni, J.C., Taylor, N.A., Pruett, T.L., and Hahn, Y.S. (2009). Chronically inflamed livers up-regulate expression of inhibitory B7 family members. Hepatology 50,1625-1637.
    Kerkmann, M., Rothenfusser, S., Hornung, V., Towarowski, A., Wagner, M., Sarris, A., Giese, T., Endres, S., and Hartmann, G. (2003). Activation with CpG-A and CpG-B oligonucleotides reveals two distinct regulatory pathways of type I IFN synthesis in human plasmacytoid dendritic cells. J Immunol 170,4465-4474.
    Kumar, M., Jung, S.Y., Hodgson, A.J., Madden, C.R., Qin, J., and Slagle, B.L. (2011). Hepatitis B vims regulatory HBx protein binds to adaptor protein IPS-1 and inhibits the activation of beta interferon. J Virol 85,987-995.
    Kurbanov, F., Tanaka, Y., and Mizokami, M. (2010). Geographical and genetic diversity of the human hepatitis B virus. Hepatol Res 40,14-30.
    Lande, R., Gregorio, J., Facchinetti, V., Chatterjee, B., Wang, Y.H., Homey, B., Cao, W., Su, B., Nestle, F.O., Zal, T., et al. (2007). Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449,564-569.
    Law, H.K., Cheung, C.Y., Ng, H.Y., Sia, S.F., Chan, Y.O., Luk, W., Nicholls, J.M., Peiris, J.S., and Lau, Y.L. (2005). Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood 106,2366-2374.
    Li, J., Liu, K, Liu, Y, Xu, Y., Zhang, F., Yang, H., Liu, J., Pan, T., Chen, J., Wu, M., et al. (2013). Exosomes mediate the cell-to-cell transmission of IFN-alpha-induced antiviral activity. Nat Immunol 14,793-803.
    Liu, J., and Fan, D. (2007). Hepatitis B in China. Lancet 369,1582-1583.
    Liu, K., Victora, G.D., Schwickert, T.A., Guermonprez, P., Meredith, M.M., Yao, K., Chu, F.F., Randolph, G.J., Rudensky, A.Y., and Nussenzweig, M. (2009). In vivo analysis of dendritic cell development and homeostasis. Science 324,392-397.
    Lopes, A.R., Kellam, P., Das, A., Dunn, C., Kwan, A., Turner, J., Peppa, D., Gilson, R.J., Gehring, A., Bertoletti, A., and Maini, M.K. (2008). Bim-mediated deletion of antigen-specific CD8 T cells in patients unable to control HBV infection. J Clin Invest 118,1835-1845.
    Lucifora, J., Durantel, D., Testoni, B., Hantz, O., Levrero, M., and Zoulim, F. (2010). Control of hepatitis B virus replication by innate response of HepaRG cells. Hepatology 51,63-72.
    Lutgehetmann, M., Bornscheuer, T., Volz, T., Allweiss, L., Bockmann, J.H., Pollok, J.M., Lohse, A.W., Petersen, J., and Dandri, M. (2011). Hepatitis B virus limits response of human hepatocytes to interferon-alpha in chimeric mice. Gastroenterology 140,2074-2083,2083 e2071-2072.
    Ma, W.L., Hsu, C.L., Wu, M.H., Wu, C.T., Wu, C.C., Lai, J.J., Jou, Y.S., Chen, C.W., Yeh, S., and Chang, C. (2008). Androgen receptor is a new potential therapeutic target for the treatment of hepatocellular carcinoma. Gastroenterology 135,947-955,955 e941-945.
    Mandl, J.N., Barry, A.P., Vanderford, T.H., Kozyr, N., Chavan, R., Klucking, S., Barrat, F.J., Coffman, R.L., Staprans, S.I., and Feinberg, M.B. (2008). Divergent TLR7 and TLR9 signaling and type I interferon production distinguish pathogenic and nonpathogenic AIDS virus infections. Nat Med 14,1077-1087.
    Mao, R., Zhang, J., Jiang, D., Cai, D., Levy, J.M., Cuconati, A., Block, T.M., Guo, J.T., and Guo, H. (2011). Indoleamine 2,3-dioxygenase mediates the antiviral effect of gamma interferon against hepatitis B virus in human hepatocyte-derived cells. J Virol 85,1048-1057.
    Marcellin, P., Bonino, F., Lau, G.K., Farci, P., Yurdaydin, C., Piratvisuth, T., Jin, R., Gurel, S., Lu, Z.M., Wu, J., et al. (2009). Sustained response of hepatitis B e antigen-negative patients 3 years after treatment with peginterferon alpha-2a. Gastroenterology 136,2169-2179 e2161-2164.
    Martinelli, E., Cicala, C., Van Ryk, D., Goode, D.J., Macleod, K., Arthos, J., and Fauci, A.S. (2007). HIV-1 gp120 inhibits TLR9-mediated activation and IFN-{alpha} secretion in plasmacytoid dendritic cells. Proc Natl Acad Sci U S A 104,3396-3401.
    Martinet, J., Leroy, V., Dufeu-Duchesne, T., Larrat, S., Richard, M.J., Zoulim, F., Plumas, J., and Aspord, C. (2012). Plasmacytoid dendritic cells induce efficient stimulation of antiviral immunity in the context of chronic hepatitis B virus infection. Hepatology 56,1706-1718.
    McMahon, B.J. (2009). The natural history of chronic hepatitis B virus infection. Hepatology 49, S45-55.
    Meier, A., Chang, J.J., Chan, E.S., Pollard, R.B., Sidhu, H.K., Kulkarni, S., Wen, T.F., Lindsay, R.J., Orellana, L., Mildvan, D., et al. (2009). Sex differences in the Toll-like receptor-mediated response of plasmacytoid dendritic cells to HIV-1. Nat Med 15,955-959.
    Mitchell, D., and Olive, C. (2010). Regulation of Toll-like receptor-induced chemokine production in murine dendritic cells by mitogen-activated protein kinases. Mol Immunol 47,2065-2073.
    Nestle, F.O., Conrad, C., Tun-Kyi, A., Homey, B., Gombert, M., Boyman, O., Burg, G., Liu, Y.J., and Gilliet, M. (2005). Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J Exp Med 202,135-143.
    Nguyen, D.H., and Hu, J. (2008). Reverse transcriptase-and RNA packaging signal-dependent incorporation of APOBEC3G into hepatitis B virus nucleocapsids. J Virol 82,6852-6861.
    O'Neill, L.A., and Bowie, A.G. (2010). Sensing and signaling in antiviral innate immunity. Curr Biol 20, R328-333.
    Onai, N., Obata-Onai, A., Schmid, M.A., Ohteki, T., Jarrossay, D., and Manz, M.G. (2007). Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat Immunol 8,1207-1216.
    Onoguchi, K., Yoneyama, M., Takemura, A., Akira, S., Taniguchi, T., Namiki, H., and Fujita,T. (2007). Viral infections activate types I and III interferon genes through a common mechanism. J Biol Chem 282,7576-7581.
    Pagliaccetti, N.E., Chu, E.N., Bolen, C.R., Kleinstein, S.H., and Robek, M.D. (2010). Lambda and alpha interferons inhibit hepatitis B virus replication through a common molecular mechanism but with different in vivo activities. Virology 401,197-206.
    Pelayo, R., Hirose, J., Huang, J., Garrett, K.P., Delogu, A., Busslinger, M., and Kincade, P.W. (2005). Derivation of 2 categories of plasmacytoid dendritic cells in murine bone marrow. Blood 105,4407-4415.
    Peppa, D., Micco, L., Javaid, A., Kennedy, P.T., Schurich, A., Dunn, C., Pallant, C., Ellis, G., Khanna, P., Dusheiko, G., et al. (2010). Blockade of immunosuppressive cytokines restores NK cell antiviral function in chronic hepatitis B virus infection. PLoS Pathog 6, e1001227.
    Pichyangkul, S., Endy, T.P., Kalayanarooj, S., Nisalak, A., Yongvanitchit, K., Green, S., Rothman, A.L., Ennis, F.A., and Libraty, D.H. (2003). A blunted blood plasmacytoid dendritic cell response to an acute systemic viral infection is associated with increased disease severity. J Immunol 171, 5571-5578.
    Puro, R., and Schneider, R.J. (2007). Tumor necrosis factor activates a conserved innate antiviral response to hepatitis B virus that destabilizes nucleocapsids and reduces nuclear viral DNA. J Virol 81,7351-7362.
    Rehermann, B. (2013). Pathogenesis of chronic viral hepatitis:differential roles of T cells and NK cells. Nat Med 19,859-868.
    Rijckborst, V., ter Borg, M.J., Cakaloglu, Y, Ferenci, P., Tabak, F., Akdogan, M., Simon, K., Raptopoulou-Gigi, M., Ormeci, N., Zondervan, P.E., et al. (2010). A randomized trial of peginterferon alpha-2a with or without ribavirin for HBeAg-negative chronic hepatitis B. Am J Gastroenterol 105,1762-1769.
    Robbins, S.H., Walzer, T., Dembele, D., Thibault, C., Defays, A., Bessou, G., Xu, H., Vivier, E., Sellars, M., Pierre, P., et al. (2008). Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol 9, R17. Ronnblom, L., Ramstedt, U., and Alm, G.V. (1983). Properties of human natural interferon-producing cells stimulated by tumor cell lines. Eur J Immunol 13,471-476.
    Salio, M., Palmowski, M.J., Atzberger, A., Hermans, I.F., and Cerundolo, V. (2004). CpG-matured murine plasmacytoid dendritic cells are capable of in vivo priming of functional CD8 T cell responses to endogenous but not exogenous antigens. J Exp Med 199,567-579.
    Sandberg, K., Eloranta, M.L., Johannisson, A., and Alm, G.V. (1991). Flow cytometric analysis of natural interferon-alpha producing cells. Scand J Immunol 34,565-576.
    Sapoznikov, A., Fischer, J.A., Zaft, T., Krauthgamer, R., Dzionek, A., and Jung, S. (2007). Organ-dependent in vivo priming of naive CD4+, but not CD8+, T cells by plasmacytoid dendritic cells. J Exp Med 204,1923-1933.
    Savva, A., and Roger, T. (2013). Targeting Toll-Like Receptors:Promising Therapeutic Strategies for the Management of Sepsis-Associated Pathology and Infectious Diseases. Front Immunol 4, 387.
    Sharma, M.D., Baban, B., Chandler, P., Hou, D.Y., Singh, N., Yagita, H., Azuma, M., Blazar, B.R., Mellor, A.L., and Munn, D.H. (2007). Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest 117, 2570-2582.
    Shigematsu, H., Reizis, B., Iwasaki, H., Mizuno, S., Hu, D., Traver, D., Leder, P., Sakaguchi, N., and Akashi, K. (2004). Plasmacytoid dendritic cells activate lymphoid-specific genetic programs irrespective of their cellular origin. Immunity 21,43-53.
    Siegal, F.P., Kadowaki, N., Shodell, M., Fitzgerald-Bocarsly, P.A., Shah, K., Ho, S., Antonenko, S., and Liu, Y.J. (1999). The nature of the principal type 1 interferon-producing cells in human blood. Science 284,1835-1837.
    Sitnicka, E., Bryder, D., Theilgaard-Monch, K., Buza-Vidas, N., Adolfsson, J., and Jacobsen, S.E. (2002). Key role of flt3 ligand in regulation of the common lymphoid progenitor but not in maintenance of the hematopoietic stem cell pool. Immunity 17,463-472.
    Sonneveld, M.J., Brouwer, W.P., and Janssen, H.L. (2013). Studies of IL28B genotype and response to peginterferon in chronic hepatitis B should be stratified by HBV genotype. Hepatology 57,1283.
    Sonneveld, M.J., Wong, V.W., Woltman, A.M., Wong, G.L., Cakaloglu, Y, Zeuzem, S., Buster, E.H., Uitterlinden, A.G., Hansen, B.E., Chan, H.L., and Janssen, H.L. (2012). Polymorphisms near IL28B and serologic response to peginterferon in HBeAg-positive patients with chronic hepatitis B. Gastroenterology 142,513-520 e511.
    Starr, S.E., Bandyopadhyay, S., Shanmugam, V., Hassan, N., Douglas, S., Jackson, S.J., Trinchieri, G., and Chehimi, J. (1993). Morphological and functional differences between HLA-DR+ peripheral blood dendritic cells and HLA-DR+ IFN-alpha producing cells. Adv Exp Med Biol 329, 173-178.
    Takahashi, K., Asabe, S., Wieland, S., Garaigorta, U., Gastaminza, P., Isogawa, M., and Chisari, F.V. (2010). Plasmacytoid dendritic cells sense hepatitis C virus-infected cells, produce interferon, and inhibit infection. Proc Natl Acad Sci U S A 107,7431-7436.
    Tian, J., Avalos, A.M., Mao, S.Y., Chen, B., Senthil, K., Wu, H., Parroche, P., Drabic, S., Golenbock, D., Sirois, C., et al. (2007). Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8, 487-496.
    Tinoco, R., Alcalde, V., Yang, Y., Sauer, K., and Zuniga, E.I. (2009). Cell-intrinsic transforming growth factor-beta signaling mediates virus-specific CD8+T cell deletion and viral persistence in vivo. Immunity 31,145-157.
    Untergasser, A., Zedler, U., Langenkamp, A., Hosel, M., Quasdorff, M., Esser, K., Dienes, H.P., Tappertzhofen, B., Kolanus, W., and Protzer, U. (2006). Dendritic cells take up viral antigens but do not support the early steps of hepatitis B virus infection. Hepatology 43,539-547.
    Urban, S., Schulze, A., Dandri, M., and Petersen, J. (2010). The replication cycle of hepatitis B virus. J Hepatol 52,282-284.
    van der Molen, R.G., Sprengers, D., Binda, R.S., de Jong, E.C., Niesters, H.G., Kusters, J.G., Kwekkeboom, J., and Janssen, H.L. (2004). Functional impairment of myeloid and plasmacytoid dendritic cells of patients with chronic hepatitis B. Hepatology 40,738-746.
    Vartanian, J.P., Henry, M., Marchio, A., Suspene, R., Aynaud, M.M., Guetard, D., Cervantes-Gonzalez, M., Battiston, C., Mazzaferro, V., Pineau, P., et al. (2010). Massive APOBEC3 editing of hepatitis B viral DNA in cirrhosis. PLoS Pathog 6, e1000928.
    Visvanathan, K., Skinner, N.A., Thompson, A.J., Riordan, S.M., Sozzi, V., Edwards, R., Rodgers, S., Kurtovic, J., Chang, J., Lewin, S., et al. (2007). Regulation of Toll-like receptor-2 expression in chronic hepatitis B by the precore protein. Hepatology 45,102-110.
    Vollenweider, R., and Lennert, K. (1983). Plasmacytoid T-cell clusters in non-specific lymphadenitis. Virchows Arch B Cell Pathol Incl Mol Pathol 44,1-14.
    Wang, H., and Ryu, W.S. (2010). Hepatitis B virus polymerase blocks pattern recognition receptor signaling via interaction with DDX3:implications for immune evasion. PLoS Pathog 6, e1000986. Wang, S.H., Yeh, S.H., Lin, W.H., Wang, H.Y, Chen, D.S., and Chen, P.J. (2009). Identification of androgen response elements in the enhancer I of hepatitis B virus:a mechanism for sex disparity in chronic hepatitis B. Hepatology 50,1392-1402.
    Wang, X., Li, Y, Mao, A., Li, C., and Tien, P. (2010). Hepatitis B virus X protein suppresses virus-triggered IRF3 activation and IFN-beta induction by disrupting the VISA-associated complex. Cell Mol Immunol 7,341-348.
    Wang, Z., Ni, J., Li, J., Shi, B., Xu, Y., and Yuan, Z. (2011). Inhibition of hepatitis B virus replication by cIAP2 involves accelerating the ubiquitin-proteasome-mediated destruction of polymerase. J Virol 85,11457-11467.
    Waskow, C., Liu, K., Darrasse-Jeze, G., Guermonprez, P., Ginhoux, F., Merad, M., Shengelia, T., Yao, K., and Nussenzweig, M. (2008). The receptor tyrosine kinase FIt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol 9,676-683.
    Webster, G.J., Reignat, S., Brown, D., Ogg, G.S., Jones, L., Seneviratne, S.L., Williams, R., Dusheiko, G., and Bertoletti, A. (2004). Longitudinal analysis of CD8+ T cells specific for structural and nonstructural hepatitis B virus proteins in patients with chronic hepatitis B: implications for immunotherapy. J Virol 78,5707-5719.
    Wei, C., Ni, C., Song, T., Liu, Y., Yang, X., Zheng, Z., Jia, Y., Yuan, Y., Guan, K., Xu, Y., et al (2010). The hepatitis B virus X protein disrupts innate immunity by downregulating mitochondrial antiviral signaling protein. J Immunol 185,1158-1168.
    Wieland, S., Thimme, R., Purcell, R.H., and Chisari, F.V. (2004). Genomic analysis of the host response to hepatitis B virus infection. Proc Natl Acad Sci U S A 101,6669-6674.
    Woltman, A.M., Op den Brouw, M.L., Biesta, P.J., Shi, C.C., and Janssen, H.L. (2011). Hepatitis B virus lacks immune activating capacity, but actively inhibits plasmacytoid dendritic cell function. PLoS One 6,e15324.
    Wu, J., Lu, M., Meng, Z., Trippler, M., Broering, R., Szczeponek, A., Krux, F., Dittmer, U., Roggendorf, M., Gerken, G., and Schlaak, J.F. (2007). Toll-like receptor-mediated control of HBV replication by nonparenchymal liver cells in mice. Hepatology 46,1769-1778.
    Wu, J., Meng, Z., Jiang, M., Pei, R., Trippler, M., Broering, R., Bucchi, A., Sowa, J.P., Dittmer, U., Yang, D., et al. (2009). Hepatitis B virus suppresses toll-like receptor-mediated innate immune responses in murine parenchymal and nonparenchymal liver cells. Hepatology 49,1132-1140.
    Xu, C., Guo, H., Pan, X.B., Mao, R., Yu, W., Xu, X., Wei, L., Chang, J., Block, T.M., and Guo, J.T. (2010). Interferons accelerate decay of replication-competent nucleocapsids of hepatitis B virus. J Virol 84,9332-9340.
    Xu, D., Fu, J., Jin, L., Zhang, H., Zhou, C., Zou, Z., Zhao, J.M., Zhang, B., Shi, M., Ding, X., et al. (2006). Circulating and liver resident CD4+CD25+ regulatory T cells actively influence the antiviral immune response and disease progression in patients with hepatitis B. J Immunol 177, 739-747.
    Yang, Z.Y., Huang, Y., Ganesh, L., Leung, K., Kong, W.P., Schwartz, O., Subbarao, K., and Nabel, G.J. (2004). pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J Virol 78, 5642-5650.
    Yonkers, N.L., Rodriguez, B., Milkovich, K.A., Asaad, R., Lederman, M.M., Heeger, P.S., and Anthony, D.D. (2007). TLR ligand-dependent activation of naive CD4 T cells by plasmacytoid dendritic cells is impaired in hepatitis C virus infection. J Immunol 178,4436-4444.
    Yu, S., Chen, J., Wu, M., Chen, H., Kato, N., and Yuan, Z. (2010). Hepatitis B virus polymerase inhibits RIG-I- and Toll-like receptor 3-mediated beta interferon induction in human hepatocytes through interference with interferon regulatory factor 3 activation and dampening of the interaction between TBK1/IKKepsilon and DDX3. J Gen Virol 91,2080-2090.
    Zhang, Z., Zhang, H., Chen, D., Yao, J., Fu, J., Jin, L., and Wang, F.S. (2007). Response to interferon-alpha treatment correlates with recovery of blood plasmacytoid dendritic cells in children with chronic hepatitis B. J Hepatol 47,751-759.
    Zhang, Z., Zhang, S., Zou, Z., Shi, J., Zhao, J., Fan, R., Qin, E., Li, B., Li, Z., Xu, X., et al. (2011). Hypercytolytic activity of hepatic natural killer cells correlates with liver injury in chronic hepatitis B patients. Hepatology 53,73-85.
    Zhou, Y., and Holmes, E.C. (2007). Bayesian estimates of the evolutionary rate and age of hepatitis B virus. J Mol Evol 65,197-205.
    Ashman, R.F., Goeken, J.A., and Lenert, P.S. (2011). Aggregation and secondary loop structure of oligonucleotides do not determine their ability to inhibit TLR9. Int Immunopharmacol 11, 1032-1037.
    Ballas, Z.K., Rasmussen, W.L., and Krieg, A.M. (1996). Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J Immunol 157, 1840-1845.
    Bertoletti, A., and Gehring, A.J. (2006). The immune response during hepatitis B virus infection. J Gen Virol 87,1439-1449.
    Choudhury,S.A., and Peters, V.B. (1995). Responses to hepatitis B vaccine boosters in human immunodeficiency virus-infected children. Pediatr Infect Dis J 14,65-67.
    Colonna, M., Trinchieri, G., and Liu, Y.J. (2004). Plasmacytoid dendritic cells in immunity. Nat Immunol 5,1219-1226.
    Dandri, M., Lutgehetmann, M., and Petersen, J. (2013). Experimental models and therapeutic approaches for HBV. Semin Immunopathol 35,7-21.
    Deny, P., and Zoulim, F. (2010). Hepatitis B virus:from diagnosis to treatment. Pathol Biol (Paris) 58,245-253.
    Duan, X.Z., Wang, M., Li, H.W., Zhuang, H., Xu, D., and Wang, F.S. (2004). Decreased frequency and function of circulating plasmocytoid dendritic cells (pDC) in hepatitis B virus infected humans. J Clin Immunol 24,637-646.
    Dunn, C., Peppa, D., Khanna, P., Nebbia, G., Jones, M., Brendish, N., Lascar, R.M., Brown, D., Gilson, R.J., Tedder, R.J., et al. (2009). Temporal analysis of early immune responses in patients with acute hepatitis B virus infection. Gastroenterology 137,1289-1300.
    Gilliet, M., Cao, W., and Liu, Y.J. (2008). Plasmacytoid dendritic cells:sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 8,594-606.
    Gilliet, M., and Liu, Y.J. (2002). Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J Exp Med 195,695-704.
    Gondois-Rey, F., Dental, C., Halfon, P., Baumert, T.F., Olive, D., and Hirsch, I. (2009). Hepatitis C virus is a weak inducer of interferon alpha in plasmacytoid dendritic cells in comparison with influenza and human herpesvirus type-1. PLoS One 4, e4319.
    Gursel, I., Gursel, M., Yamada, H., Ishii, K.J., Takeshita, F., and Klinman, D.M. (2003). Repetitive elements in mammalian telomeres suppress bacterial DNA-induced immune activation. J 171,1393-1400.
    Halperin, S.A., Dobson, S., McNeil, S., Langley, J.M., Smith, B., McCall-Sani, R., Levitt, D., Nest, G.V., Gennevois, D., and Eiden, J.J. (2006). Comparison of the safety and immunogenicity of hepatitis B virus surface antigen co-administered with an immunostimulatory phosphorothioate oligonucleotide and a licensed hepatitis B vaccine in healthy young adults. Vaccine 24,20-26.
    Heikenwalder, M., Polymenidou, M., Junt, T., Sigurdson, C., Wagner, H., Akira, S., Zinkernagel, R., and Aguzzi, A. (2004). Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nat Med 10,187-192.
    Horner, A.A., Takabaysahi, K., Zubeldia, J.M., and Raz, E. (2002). Immunostimulatory DNA-based therapeutics for experimental and clinical allergy. Allergy 57 Suppl 72,24-29.
    Houghton, M. (2011). Prospects for prophylactic and therapeutic vaccines against the hepatitis C viruses. Immunol Rev 239,99-108.
    Huang, L.R., Wu, H.L., Chen, P.J., and Chen, D.S. (2006). An immunocompetent mouse model for the tolerance of human chronic hepatitis B virus infection. Proc Natl Acad Sci U S A 103, 17862-17867.
    Ito, T., Yang, M., Wang, Y.H., Lande, R., Gregorio, J., Perng, O.A., Qin, X.F., Liu, Y.J., and Gilliet, M. (2007). Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J Exp Med 204,105-115.
    Klinman, D.M. (2004). Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol 4,249-258.
    Krieg, A.M. (2012). CpG still rocks! Update on an accidental drug. Nucleic Acid Ther 22,77-89.
    Krug, A., Rothenfusser, S., Hornung, V., Jahrsdorfer, B., Blackwell, S., Ballas, Z.K., Endres, S., Krieg, A.M., and Hartmann, G. (2001). Identification of CpG oligonucleotide sequences with high induction of IFN-alph/beta in plasmacytoid dendritic cells. Eur J Immunol 31,2154-2163.
    Kwon, H., and Lok, A.S. (2011). Hepatitis B therapy. Nat Rev Gastroenterol Hepatol 8,275-284.
    Lai, C.L., Ratziu, V., Yuen, M.F., and Poynard, T. (2003). Viral hepatitis B. Lancet 362, 2089-2094.
    Liu, Y.J. (2005). IPC:professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23,275-306.
    Lund, J., Sato, A., Akira, S., Medzhitov, R., and Iwasaki, A. (2003). Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med 198,513-520.
    Mason, K.A., and Hunter, N.R. (2012). CpG plus radiotherapy:a review of preclinical works leading to clinical trial. Front Oncol 2,101.
    McHutchison, J.G., Bacon, B.R., Gordon, S.C., Lawitz, E., Shiffman, M., Afdhal, N.H., Jacobson, I.M., Muir, A., Al-Adhami, M., Morris, M.L., et al. (2007). Phase 1B, randomized, double-blind, dose-escalation trial of CPG 10101 in patients with chronic hepatitis C virus. Hepatology 46, 1341-1349.
    Meier, A., Chang, J.J., Chan, E.S., Pollard, R.B., Sidhu, H.K., Kulkarni, S., Wen, T.F., Lindsay, R.J., Orellana, L., Mildvan, D., et al. (2009). Sex differences in the Toll-like receptor-mediated response of plasmacytoid dendritic cells to HFV-1. Nat Med 15,955-959.
    Milich, D.R., and Chisari, F.V. (1982). Genetic regulation of the immune response to hepatitis B surface antigen (HBsAg). I. H-2 restriction of the murine humoral immune response to the a and d determinants of HBsAg. J Immunol 129,320-325.
    Moseman, E.A., Liang, X., Dawson, A.J., Panoskaltsis-Mortari, A., Krieg, A.M., Liu, Y.J., Blazar, B.R., and Chen, W. (2004). Human plasmacytoid dendritic cells activated by CpG oligodeoxynucleotides induce the generation of CD4+CD25+regulatory T cells. J Immunol 173, 4433-4442.
    Peter, M., Bode, K., Lipford, G.B., Eberle, F., Heeg, K., and Dalpke, A.H. (2008). Characterization of suppressive oligodeoxynucleotides that inhibit Toll-like receptor-9-mediated activation of innate immunity. Immunology 123,118-128.
    Rehermann, B., and Nascimbeni, M. (2005). Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol 5,215-229.
    Reizis, B., Bunin, A., Ghosh, H.S., Lewis, K.L., and Sisirak, V. (2011). Plasmacytoid dendritic cells:recent progress and open questions. Annu Rev Immunol 29,163-183.
    Siegrist, C.A., Pihlgren, M., Tougne, C., Efler, S.M., Morris, M.L., AlAdhami, M.J., Cameron, D.W., Cooper, C.L., Heathcote, J., Davis, H.L., and Lambert, P.H. (2004). Co-administration of CpG oligonucleotides enhances the late affinity maturation process of human anti-hepatitis B vaccine response. Vaccine 23,615-622.
    Sun, S., Zhang, X., Tough, D.F., and Sprent, J. (1998). Type I interferon-mediated stimulation of T cells by CpG DNA. J Exp Med 188,2335-2342.
    Takeshita, F., Leifer, C.A., Gursel, I., Ishii, K.J., Takeshita, S., Gursel, M., and Klinman, D.M. (2001). Cutting edge:Role of Toll-like receptor 9 in CpG DNA-induced activation of human cells. J Immunol 167,3555-3558.
    Tiegs, G., and Lohse, A.W. (2010). Immune tolerance:what is unique about the liver. J Autoimmun 34,1-6.
    Verthelyi, D., Kenney, R.T., Seder, R.A., Gam, A.A., Friedag, B., and Klinman, D.M. (2002). CpG oligodeoxynucleotides as vaccine adjuvants in primates. J Immunol 168,1659-1663.
    Vincent, I.E., Zannetti, C., Lucifora, J., Norder, H., Protzer, U., Hainaut, P., Zoulim, F., Tommasino, M., Trepo, C., Hasan, U., and Chemin, I. (2011). Hepatitis B virus impairs TLR9 expression and function in plasmacytoid dendritic cells. PLoS One 6, e26315.
    Wagner, H. (2002). Interactions between bacterial CpG-DNA and TLR9 bridge innate and adaptive immunity. Curr Opin Microbiol 5,62-69.
    Wei, Q., Wei, W., Tian, R., Wang, L.Y., Su, Z.G., and Ma, G.H. (2008). Preparation of uniform-sized PELA microspheres with high encapsulation efficiency of antigen by premix membrane emulsification. J Colloid Interface Sci 323,267-273.
    Wieland, S., Thimme, R., Purcell, R.H., and Chisari, F.V. (2004). Genomic analysis of the host response to hepatitis B virus infection. Proc Natl Acad Sci U S A 101,6669-6674.
    Wong, E.K., Bodsworth, N.J., Slade, M.A., Mulhall, B.P., and Donovan, B. (1996). Response to hepatitis B vaccination in a primary care setting:influence of HIV infection, CD4+ lymphocyte count and vaccination schedule. Int J STD AIDS 7,490-494.
    Xiao, R.Z., Zeng, Z.W., Zhou, G.L., Wang, J.J., Li, F.Z., and Wang, A.M. (2010). Recent advances in PEG-PLA block copolymer nanoparticles. Int J Nanomedicine 5,1057-1065.
    Yang, X.Z., Dou, S., Sun, T.M., Mao, C.Q., Wang, H.X., and Wang, J. (2011). Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy. J Control Release 156,203-211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700