用户名: 密码: 验证码:
~(99m)Tc-RGD-BN在乳腺肿瘤中的诊断价值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     通过99mTc-RGD-BN在乳腺癌动物模型及健康志愿者的实验研究,评价该新型SPECT显像剂的药代动力学和体内分布特性,证实99mTc-RGD-BN在临床上应用的安全性和可行性。在此基础上针对乳腺癌患者进行99mTc-RGD-BN的SPECT/CT核素显像相关研究,探讨新型SPECT显像分子探针99mTc-RGD-BN的临床应用前景。
     方法:
     于HYNIC-RGD-BN冻干药盒中加入99mTcO-4,制备出新型的放射性分子探针—99mTc-RGD-BN,通过放射性薄层层析(ITLC)法对新型SPECT显像分子探针99mTc-RGD-BN质量控制进行分析。荷人乳腺癌裸鼠模型制备,并分析99mTc-RGD-BN在荷人乳腺癌裸鼠的体内生物学分布状态,依据SPECT显像结果进一步评价其性质,应用99mTc-RGD-BN对6名正常志愿者(男、女各3名)进行全身SPECT核素显像,依次评估正常志愿者体内的99mTc-RGD-BN药代动力学、在各个时间点的生物学分布、并在此基础上得到其辐射吸收剂量学结果,应用99mTc-RGD-BN SPECT/CT显像对10例乳腺占位患者进行研究,以病理学诊断为金标准同时与超声和钼靶诊断方法的评判结果进行相互对比分析;通过计算SPECT/CT显像中乳腺占位的T/N值结果与测量GRPR、Integrin αvβ3的阳性细胞百分率结果对比分析,探讨乳腺肿瘤的99mTc-RGD-BN放射性摄取与其内Integrinαvβ3、GRPR表达的相关性,最终得到99mTc-RGD-BNSPECT/CT显像对乳腺肿瘤的临床诊断价值的初步结果。
     结果:
     ITLC法测得99mTc-RGD-BN的标记率在95%以上。乳腺癌T47D荷瘤裸鼠注射99mTc-RGD-BN后体内生物分布结果显示,99mTc-RGD-BN在血液中的放射性摄取较低且清除较快。注射后1h放射性摄取为(0.91±0.21)%ID/g,注射后8h降为(0.07±0.01)%ID/g。注射后1h到8h99mTc-RGD-BN在肾脏的摄取始终很高,保持在(14.54±0.89)%ID/g以上,提示99mTc-RGD-BN主要通过泌尿系统排泄,余脏器、组织均中、低度摄取。肿瘤组织的放射性摄取高,在1h为(4.17±1.12)%ID/g、2h为(3.76±0.67)%ID/g、4h为(2.71±0.64)%ID/g和8h为(1.42±0.35)%ID/g。由SPECT/CT乳腺荷瘤裸鼠99mTc-RGD-BN显像的T/N比值结果,表明注射后4h肿瘤对肌肉、血液、心脏的T/N值达到最高峰,依次为5.17±0.73、17.26±4.06、4.53±1.41。
     乳腺癌MDA-MB-435荷瘤裸鼠注射99mTc-RGD-BN后体内生物分布结果显示,99mTc-RGD-BN在血液中的放射性摄取较低且清除较快。注射后1h放射性摄取为(0.88±0.22)%ID/g,注射后8h降为(0.08±0.01)%ID/g。注射后1h到8h99mTc-RGD-BN在肾脏的摄取始终很高,保持在(14.55±0.91)%ID/g以上,提示99mTc-RGD-BN主要通过泌尿系统排泄,余脏器、组织均中、低度摄取。肿瘤组织的放射性摄取高,在1、2、4和8h分别为(4.55±1.08)%ID/g、(3.95±0.69)%ID/g、(2.86±0.65)%ID/g和(1.56±0.32)%ID/g。由SPECT/CT乳腺荷瘤裸鼠99mTc-RGD-BN显像的T/N比值结果,表明注射后4h肿瘤对肌肉、血液、心脏的T/N值达到最高峰,依次为5.53±0.70、18.56±3.98、5.18±1.37。
     6名正常志愿者接受99mTc-RGD-BN SPECT全身显像的药代动力学结果表明:99mTc-RGD-BN在人体血液中能够迅速清除,在全身显像10min时,人体内血液的放射性摄入百分比快速下降到(43.05±6.24)%,到注入99mTc-RGD-BN60min时血液的放射性摄入百分比下降到15%左右;注射99mTc-RGD-BN后24h,尿液累计放射性排泄一共占总注入放射性剂量的(73.56±2.04)%。99mTc-RGD-BN注射后不同时间点SPECT全身显像所获得的体内生物学分布数据表明:人体内肝脏有较高的放射性摄取,肾脏呈现非常明显的高放射性摄取,而胃肠道出现了持续偏高的放射性摄取。依据放射性分布数据得到辐射吸收剂量学结果显示:全身辐射吸收剂量为2.17×10-3mSv/MBq,其中辐射吸收剂量最大的是肾脏为2.55×10-2mSv/MBq。
     10例患者在行99mTc-RGD-BN SPECT/CT显像时均未出现不适反应,经术后或穿刺病理证实,7例为恶性肿瘤,其中浸润性导管癌5例,原位导管癌与浸润性小叶癌各1例。7例乳腺癌的患者经99mTc-RGD-BN SPECT/CT同机图像融合显像示,占位处放射性摄取均不同程度高于相应正常乳腺组织,T/N比值范围2.56-4.43。另3例经术后或穿刺病理证实为良性乳腺肿瘤,其中2例为乳腺纤维腺瘤,1例为乳腺腺病,99mTc-RGD-BN SPECT/CT同机融合显像图像结果表明乳腺占位处均未见明显的异常放射性增高或浓聚影,T/N比值范围1.01-1.10。同时超声和钼靶对于上述患者诊断也均与病理学结果相符。7例乳腺恶性肿瘤中至少有Integrin αvβ3、GRPR其中之一为表达阳性,单独阳性表达整合素1例、单独阳性表达GRPR2例,两者均为阳性表达的4例。在对1例乳腺占位患者行SPECT/CT显像时,除了可以看到乳腺原发病灶位置有明显的放射性分布异常浓聚外,在其右侧腋下水平也见到了明显的放射性分布异常浓聚,病理回报为淋巴结转移,另1例患者经99mTc-RGD-BN SPECT显像显示除原发灶外还有多根肋骨放射性分布浓聚,后行全身骨扫描及穿刺病理证实为乳腺癌骨转移。通过绘制散点图,发现乳腺占位性病变99mTc-RGD-BN摄取的T/N比值与病变组织的Integrinαvβ3、GRPR表达阳性细胞百分率之间呈线性正相关关系,相关系数r=0.958。
     结论:
     新型的放射性分子探针99mTc-RGD-BN其标记过程简单快速,同时标记率能够保证。作为一种新型的以Integrin αvβ3和GRPR为双靶点的新型的放射性分子探针,不管在荷人乳腺癌裸鼠模型中还是在健康志愿者的研究中,均具有理想的药代动力学和体内生物分布特性,并具有非常良好的辐射剂量学安全性。应用到乳腺占位患者的临床研究表明,99mTc-RGD-BN对乳腺癌临床诊断具有一定价值,尤其是在对远处转移病灶的检测方面对比传统检查方法具有一定优势。99mTc-RGD-BN显像肿瘤T/N比值与Integrin αvβ3和GRPR的表达之间具有正相关性,印证了99mTc-RGD-BN因其靶向Integrin αvβ3和GRPR,从而作为新型的放射性分子探针的显像定位机制。
Objective:
     This study was aimed to explore the feasibility of99mTc-RGD-BN for breasttumor imaging by evaluating correlated pharmacokinetics and biodistribution in nudemouse models bearing human breast carcinoma xenografts, followed by a pilot cinicaltrial involving recruited healthy volunteers, and further confirm the diagnostic valuesthrough the study of99mTc-RGD-BN SPECT/CT imaging in breast tumor patients.
     Methods:
     The novel radioactive small molecular probe--99mTc-RGD-BN was prepared byHYNIC-RGD-BN lyophilized kits in a solution with Na99mTcO-4agents. Weperformed quality control for this purification process via Radioactive thin-layerchromatography (RTLC). The biodistribution and99mTc-RGD-BN SPECT/CTimaging in nude mouse models bearing human breast carcinoma were assessed forfurther usage in tumor imaging.
     In our pilot clinical trial,6healthy volunteers received a mean740-MBq dose of99mTc-RGD-BN administered through bolus injection in the arm. The safety andfeasibility were estimated through evaluations of pharmacokinetics, biodistribution atdifferent time points on the radiation dose of the volunteers. We also recuited10breast tumor patients for99mTc-RGD-BN SPECT/CT imaging. According to thefindings in pathological analysis, the correlation between radioactive uptake andexpression of integrin αvβ3or/and GRPR was assessed by calculating the ratios oftumor and non-tumor (T/N) and the percentage of positive cells in integrin αvβ3or/and GRPR staining. Then, the diagnostic valutes of99mTc-RGD-BN SPECT/CTimaging for breast tumor was evaluated.
     Results:
     The labeling yields was over95%by RTLC analysis. In the T47D nude mousexenograft model with human breast cancer, the99mTc-RGD-BN biodistributionshowed a low uptake and rapid clearance in blood stream (from (0.91±0.21)%ID/g of 1h to (0.07±0.01)%ID/g of8h). The kidneys maintained a high uptake value of(14.54±0.89)%ID/g at8h post-injection, which revealed a renal clearance of99mTc-RGD-BN. Other organs showed moderate or low uptake ratios. While thetumors had relatively high uptake values, as (4.17±1.12)%ID/g,(3.76±0.67)%ID/g,(2.71±0.64)%ID/g and (1.42±0.35)%ID/g at1,2,4and8h, respectively. The T/Nratios in99mTc-RGD-BN imaging of the T47D nude mouse showed that a highest ratioof tumor to blood, tumor to heart and tomor to muscle at4h after injection(17.26±4.06、4.53±1.41and5.17±0.73, respectively).
     In MDA-MB-435nude mouse xenograft model of human breast cancer, afterinjection of99mTc-RGD-BN, the biodistribution showed a low uptake and rapidclearance in blood (from (0.88±0.22)%ID/g of1h to (0.08±0.01)%ID/g of8h). Thekidneys maintained a high uptake value of (14.55±0.91)%ID/g at8h after injectionrevealling the renal clearance of99mTc-RGD-BN. The other organs showed moderateor low uptakes. The tumors had relatively high uptake values of (4.55±1.18)%ID/g,(3.95±0.69)%ID/g,(2.86±0.65)%ID/g and (1.56±0.32)%ID/g at1,2,4and8h,respectively.The T/N ratios in99mTc-RGD-BN imaging of the MDA-MB-435nudemouse showed that the highest ratio of tumor to blood, tumor to heart and tomor tomusle apeared at4h after injection (18.56±3.98、5.18±1.37and5.53±0.70,respectively).
     The pharmacokinetics of6healthy volunteers who accepted99mTc-RGD-BNinjection quickly removed the radioactive tracer in the blood. The radioactive uptakerate of the blood (43.05±6.24)%at10minutes, and the blood clearance extended byabout85%in60minutes. The excreted urine radioactivity showed a peak within inthe first24hours, about (73.56±2.04)%of total injection dose excretion in urine.
     After injection of99mTc-RGD-BN, at different time points, SPECT body imagingof in vivo biodistribution showed that a higher intake of radioactive in human bodyliver, kidneys and gastrointestinal. The basal body radiation absorbed dose for theradioactive distribution was2.17×10-3mSv/MBq, while the radiation absorbed dosein kidney was2.55×10-2mSv/MBq.
     In our study, no significant clinical abnormalities or abnormal biochemicaloutputs were recorded. Accepting99mTc-RGD-BN SPECT/CT imaging, sevenmalignant cases were diagnosed, of the10cases further confirmed by pathological examinations, including5invasive ductal carcinoma cases,1ductal carcinoma in situand1invasive lobular carcinoma. During the study,7malignant lesions showedaccumulation of abnormal radioactivities with T/N ratios ranging from2.56to4.43.The rest3were diagnosed as benign cases with2fibroadenoma and1adenosis. Noaccumulation was found in the3benign cases with T/N ratios ranging from1.01to1.10. The diagnostic outcomes of99mTc-RGD-BN SPECT/CT imaging were coincidedwith the ultrasound and mammography.
     Further, immunohistochemical staining results showed that integrin αvβ3and/orGRPR was/were expressed in all malignant cases (1case expressed αvβ3,1caseexpressed GRPR,4cases expressed both αvβ3and GRPR). In two imaging positivecases, an axillary lymph metastastic legion and a bone metastastic lesion showedpositve expressions of the two molecules. The T/N ratio and integrin αvβ3and/orGRPR correlation factor (r=0.958) had shown significantly positive connections withthe percentage of positive cells in tumor regions.
     Conclusion:
     New radioactive molecular probe99mTc-RGD-BN has been lyophilized for kitpreparation, and the tagging process is simple and fast to ensure that the labeling rates.The novel integrin αvβ3and GRPR as targets of novel radioactive molecular probes,in a nude mouse model of human breast cancer or normal human volunteers, hadshowed ideal pharmacokinetic and biodistributional characteristics, as well as a goodradiation dosimetry safety. Throught this study,99mTc-RGD-BN had been shown acertain diagnostic value in breast cancer cases, especially in the detection of distantmetastases compared to the traditional inspection methods in patients with breastplaceholder. Positive correlation between99mTc-RGD-BN imaging T/N ratios ofintegrin αvβ3and GRPR expression confirms that99mTc-RGD-BN as a new type ofradioactive molecules for in vivo imaging.
引文
[1] Anastasi A, Erspamer V, Bucci M. Isolation and structure of bombesin andalytesin,2analogous active peptides from the skin of the European amphibiansBombina and Alytes[J]. Experientia,1971,27(2):166-167.
    [2] Breeman WA, Kwekkeboom DJ, de Blois E, et al. Radiolabelled regulatorypeptides for imaging and therapy[J]. Anticancer Agents Med Chem,2007,7(3):345-357.
    [3] Schroeder RP, Muller C, Reneman S, et al. A standardised study to compareprostate cancer targeting efficacy of five radiolabelled bombesin analogues[J].Eur J Nucl Med Mol Imaging,2010,37(7):1386-1396.
    [4] Tweedle MF. Peptide-targeted diagnostics and radiotherapeutics[J]. Acc ChemRes,2009,42(7):958-968.
    [5] Breeman WA, Kwekkeboom DJ, de Blois E, et al. Radiolabelled regulatorypeptides for imaging and therapy[J]. Anticancer Agents Med Chem,2007,7(3):345-357.
    [6] Okarvi SM. Peptide-based radiopharmaceuticals and cytotoxic conjugates:potential tools against cancer[J]. Cancer Treat Rev,2008,34(1):13-26.
    [7] Gonzalez N, Moody TW, Igarashi H, et al. Bombesin-related peptides and theirreceptors: recent advances in their role in physiology and disease states[J]. CurrOpin Endocrinol Diabetes Obes,2008,15(1):58-64.
    [8] Erspamer V, Erspamer GF, Inselvini M, et al. Occurrence of bombesin andalytesin in extracts of the skin of three European discoglossid frogs andpharmacological actions of bombesin on extravascular smooth muscle[J]. Br JPharmacol,1972,45(2):333-348.
    [9] Erspamer V, Erpamer GF, Inselvini M. Some pharmacological actions ofalytesin and bombesin[J]. J Pharm Pharmacol,1970,22(11):875-876.
    [10] Erspamer V. Discovery, isolation, and characterization of bombesin-likepeptides[J]. Ann N Y Acad Sci,1988,547(1):3-9.
    [11] Jensen RT, Battey JF, Spindel ER, et al. International Union of Pharmacology.LXVIII. Mammalian bombesin receptors: nomenclature, distribution,pharmacology, signaling, and functions in normal and disease states[J].Pharmacol Rev,2008,60(1):1-42.
    [12] Fathi Z, Corjay MH, Shapira H, et al. BRS-3: a novel bombesin receptorsubtype selectively expressed in testis and lung carcinoma cells[J]. J Biol Chem,1993,268(8):5979-5984.
    [13] Ramos-Alvarez I, Martin-Duce A, Moreno-Villegas Z, et al. Bombesin receptorsubtype-3(BRS-3), a novel candidate as therapeutic molecular target in obesityand diabetes[J]. Mol Cell Endocrinol,2013,367(1-2):109-115.
    [14] Chobanian HR, Guo Y, Liu P, et al. The design and synthesis of potent,selective benzodiazepine sulfonamide bombesin receptor subtype3(BRS-3)agonists with an increased barrier of atropisomerization[J]. Bioorg Med Chem,2012,20(9):2845-2849.
    [15] Nagalla SR, Barry BJ, Creswick KC, et al. Cloning of a receptor for amphibian[Phe13]bombesin distinct from the receptor for gastrin-releasing peptide:identification of a fourth bombesin receptor subtype (BB4)[J]. Proc Natl AcadSci U S A,1995,92(13):6205-6209.
    [16] Battey JF, Way JM, Corjay MH, et al. Molecular cloning of thebombesin/gastrin-releasing peptide receptor from Swiss3T3cells[J]. Proc NatlAcad Sci U S A,1991,88(2):395-399.
    [17] McDonald TJ, Jornvall H, Nilsson G, et al. Characterization of a gastrinreleasing peptide from porcine non-antral gastric tissue[J]. Biochem BiophysRes Commun,1979,90(1):227-233.
    [18] Minamino N, Kangawa K, Matsuo H. Neuromedin B: a novel bombesin-likepeptide identified in porcine spinal cord[J]. Biochem Biophys Res Commun,1983,114(2):541-548.
    [19] Falconieri Erspamer G, Severini C, Erspamer V, et al. Parallel bioassay of27bombesin-like peptides on9smooth muscle preparations. Structure-activityrelationships and bombesin receptor subtypes[J]. Regul Pept,1988,21(1-2):1-11.
    [20] Majumdar ID, Weber HC. Biology of mammalian bombesin-like peptides andtheir receptors[J]. Curr Opin Endocrinol Diabetes Obes,2011,18(1):68-74.
    [21] Spindel ER, Gibson BW, Reeve JR, Jr., et al. Cloning of cDNAs encodingamphibian bombesin: evidence for the relationship between bombesin andgastrin-releasing peptide[J]. Proc Natl Acad Sci U S A,1990,87(24):9813-9817.
    [22] Flynn FW. Mammalian bombesin-like peptides suppress sham drinking of saltby sodium-deficient rats[J]. Peptides,1996,17(6):951-956.
    [23] Battey J, Wada E. Two distinct receptor subtypes for mammalian bombesin-likepeptides[J]. Trends Neurosci,1991,14(12):524-528.
    [24] Walsh JH, Reeve JR, Jr. Mammalian bombesin-like peptides: neuromodulatorsof gastric function and autocrine regulators of lung cancer growth[J]. Peptides,1985,6:63-68.
    [25] Ohki-Hamazaki H. Neuromedin B[J]. Prog Neurobiol,2000,62(3):297-312.
    [26] Jensen RT, Coy DH, Saeed ZA, et al. Interaction of bombesin and relatedpeptides with receptors on pancreatic acinar cells[J]. Ann N Y Acad Sci,1988,547:138-149.
    [27] Gonzalez N, Mantey SA, Pradhan TK, et al. Characterization of putative GRP-and NMB-receptor antagonist's interaction with human receptors[J]. Peptides,2009,30(8):1473-1486.
    [28] Sjovall M, Holst JJ, Olbe L, et al. Somatostatin release induced bygastrin-releasing peptide in man. Effect of proximal gastric vagotomy andcholinergic blockade[J]. Regul Pept,1990,29(2-3):133-141.
    [29] Holst JJ, Harling H, Messell T, et al. Identification of theneurotransmitter/neuromodulator functions of the neuropeptide gastrin-releasingpeptide in the porcine antrum, using the antagonist (Leu13-psi-CH2NH-Leu14)-bombesin[J]. Scand J Gastroenterol,1990,25(1):89-96.
    [30] Miyata M, Rayford PL, Thompson JC. Hormonal (gastrin, secretin,cholecystokinin) and secretory effects of bombesin and duodenal acidificationin dogs[J]. Surgery,1980,87(2):209-215.
    [31] Bitar KN, Zhu XX. Expression of bombesin-receptor subtypes and theirdifferential regulation of colonic smooth muscle contraction[J].Gastroenterology,1993,105(6):1672-1680.
    [32] Chu KU, Evers BM, Ishizuka J, et al. Role of bombesin on gut mucosalgrowth[J]. Ann Surg,1995,222(1):94-100.
    [33] Chu KU, Higashide S, Evers BM, et al. Bombesin stimulates mucosal growth injejunal and ileal Thiry-Vella fistulas[J]. Ann Surg,1995,221(5):602-609.
    [34] de Visser M, Verwijnen SM, de Jong M. Update: improvement strategies forpeptide receptor scintigraphy and radionuclide therapy[J]. Cancer BiotherRadiopharm,2008,23(2):137-157.
    [35] Okarvi SM. Peptide-based radiopharmaceuticals: future tools for diagnosticimaging of cancers and other diseases[J]. Med Res Rev,2004,24(3):357-397.
    [36] Zhou J, Chen J, Mokotoff M, et al. Targeting gastrin-releasing peptide receptorsfor cancer treatment[J]. Anticancer Drugs,2004,15(10):921-927.
    [37] Moody TW, Chan D, Fahrenkrug J, et al. Neuropeptides as autocrine growthfactors in cancer cells[J]. Curr Pharm Des,2003,9(6):495-509.
    [38] Reubi JC, Macke HR, Krenning EP. Candidates for peptide receptorradiotherapy today and in the future[J]. J Nucl Med,2005,46(Suppl1):67S-75S.
    [39] Reubi JC, Wenger S, Schmuckli-Maurer J, et al. Bombesin receptor subtypes inhuman cancers: detection with the universal radioligand (125)I-[D-TYR(6),beta-ALA(11), PHE(13), NLE(14)] bombesin(6-14)[J]. Clin Cancer Res,2002,8(4):1139-1146.
    [40] Forrer F, Valkema R, Kwekkeboom DJ, et al. Neuroendocrine tumors. Peptidereceptor radionuclide therapy[J]. Best Pract Res Clin Endocrinol Metab,2007,21(1):111-129.
    [41] van Essen M, Krenning EP, Kam BL, et al. Peptide-receptor radionuclidetherapy for endocrine tumors[J]. Nat Rev Endocrinol,2009,5(7):382-393.
    [42] Krenning EP, Kwekkeboom DJ, Bakker WH, et al. Somatostatin receptorscintigraphy with [111In-DTPA-D-Phe1]-and [123I-Tyr3]-octreotide: theRotterdam experience with more than1000patients[J]. Eur J Nucl Med,1993,20(8):716-731.
    [43] Lamberts SW, Reubi JC, Krenning EP. Validation of somatostatin receptorscintigraphy in the localization of neuroendocrine tumors[J]. Acta Oncol,1993,32(2):167-170.
    [44] Lamberts SW, Hofland LJ, de Herder WW, et al. Octreotide and relatedsomatostatin analogs in the diagnosis and treatment of pituitary disease andsomatostatin receptor scintigraphy[J]. Front Neuroendocrinol,1993,14(1):27-55.
    [45] Donahoo WT, Jensen DR, Yost TJ, et al. Isoproterenol and somatostatindecrease plasma leptin in humans: a novel mechanism regulating leptinsecretion[J]. J Clin Endocrinol Metab,1997,82(12):4139-4143.
    [46] Gibril F, Jensen RT. Diagnostic uses of radiolabelled somatostatin receptoranalogues in gastroenteropancreatic endocrine tumours[J]. Dig Liver Dis,2004,36Suppl1(S106-120.
    [47] Kwekkeboom D, Krenning EP, de Jong M. Peptide receptor imaging andtherapy[J]. J Nucl Med,2000,41(10):1704-1713.
    [48] Metz DC, Jensen RT. Gastrointestinal neuroendocrine tumors: pancreaticendocrine tumors[J]. Gastroenterology,2008,135(5):1469-1492.
    [49] Giladi E, Nagalla SR, Spindel ER. Molecular cloning and characterization ofreceptors for the mammalian bombesin-like peptides[J]. J Mol Neurosci,1993,4(1):41-54.
    [50] Moody TW, Mantey SA, Pradhan TK, et al. Development of high affinitycamptothecin-bombesin conjugates that have targeted cytotoxicity for bombesinreceptor-containing tumor cells[J]. J Biol Chem,2004,279(22):23580-23589.
    [51] Moody TW, Pradhan T, Mantey SA, et al. Bombesin marine toxin conjugatesinhibit the growth of lung cancer cells[J]. Life Sci,2008,82(15-16):855-861.
    [52] Moody TW, Sun LC, Mantey SA, et al. In vitro and in vivo antitumor effects ofcytotoxic camptothecin-bombesin conjugates are mediated by specificinteraction with cellular bombesin receptors[J]. J Pharmacol Exp Ther,2006,318(3):1265-1272.
    [53] Nagy A, Schally AV. Targeting cytotoxic conjugates of somatostatin,luteinizing hormone-releasing hormone and bombesin to cancers expressingtheir receptors: a "smarter" chemotherapy[J]. Curr Pharm Des,2005,11(9):1167-1180.
    [54] Schally AV. New approaches to the therapy of various tumors based on peptideanalogues[J]. Horm Metab Res,2008,40(5):315-322.
    [55] Preston SR, Miller GV, Primrose JN. Bombesin-like peptides and cancer[J].Crit Rev Oncol Hematol,1996,23(3):225-238.
    [56] Yegen BC. Bombesin-like peptides: candidates as diagnostic and therapeutictools[J]. Curr Pharm Des,2003,9(12):1013-1022.
    [57] Coy DH, Jiang NY, Kim SH, et al. Covalently cyclized agonist and antagonistanalogues of bombesin and related peptides[J]. J Biol Chem,1991,266(25):16441-16447.
    [58] Severi C, Jensen RT, Erspamer V, et al. Different receptors mediate the actionof bombesin-related peptides on gastric smooth muscle cells[J]. Am J Physiol,1991,260(5): G683-G690.
    [59] Shapira H, Wada E, Battey JF, et al. Distinguishing bombesin receptor subtypesusing the oocyte assay[J]. Biochem Biophys Res Commun,1991,176(1):79-86.
    [60] Wada E, Way J, Shapira H, et al. cDNA cloning, characterization, and brainregion-specific expression of a neuromedin-B-preferring bombesin receptor[J].Neuron,1991,6(3):421-430.
    [61] Jensen RT, Coy DH. Progress in the development of potent bombesin receptorantagonists[J]. Trends Pharmacol Sci,1991,12(1):13-19.
    [62] Wang LH, Coy DH, Taylor JE, et al. Desmethionine alkylamide bombesinanalogues: a new class of bombesin receptor antagonists with potentantisecretory activity in pancreatic acini and antimitotic activity in Swiss3T3cells[J]. Biochemistry,1990,29(3):616-622.
    [63] Wang LH, Coy DH, Taylor JE, et al. des-Met carboxyl-terminally modifiedanalogues of bombesin function as potent bombesin receptor antagonists, partialagonists, or agonists[J]. J Biol Chem,1990,265(26):15695-15703.
    [64] Coy D, Wang LH, Jiang NY, et al. Short chain bombesin pseudopeptides withpotent bombesin receptor antagonist activity in rat and guinea pig pancreaticacinar cells[J]. Eur J Pharmacol,1990,190(1-2):31-38.
    [65] von Schrenck T, Wang LH, Coy DH, et al. Potent bombesin receptorantagonists distinguish receptor subtypes[J]. Am J Physiol,1990,259(3): G468-G473.
    [66] Mantey SA, Weber HC, Sainz E, et al. Discovery of a high affinity radioligandfor the human orphan receptor, bombesin receptor subtype3, whichdemonstrates that it has a unique pharmacology compared with othermammalian bombesin receptors[J]. J Biol Chem,1997,272(41):26062-26071.
    [67] Ryan RR, Weber HC, Hou W, et al. Ability of various bombesin receptoragonists and antagonists to alter intracellular signaling of the human orphanreceptor BRS-3[J]. J Biol Chem,1998,273(22):13613-13624.
    [68] Pradhan TK, Katsuno T, Taylor JE, et al. Identification of a unique ligand whichhas high affinity for all four bombesin receptor subtypes[J]. Eur J Pharmacol,1998,343(2-3):275-287.
    [69] Lin JT, Coy DH, Mantey SA, et al. Comparison of the peptide structuralrequirements for high affinity interaction with bombesin receptors[J]. Eur JPharmacol,1995,294(1):55-69.
    [70] Ginj M, Zhang H, Waser B, et al. Radiolabeled somatostatin receptorantagonists are preferable to agonists for in vivo peptide receptor targeting oftumors[J]. Proc Natl Acad Sci U S A,2006,103(44):16436-16441.
    [71] Ginj M, Schmitt JS, Chen J, et al. Design, synthesis, and biological evaluationof somatostatin-based radiopeptides[J]. Chem Biol,2006,13(10):1081-1090.
    [72] Cescato R, Schulz S, Waser B, et al. Internalization of sst2, sst3, and sst5receptors: effects of somatostatin agonists and antagonists[J]. J Nucl Med,2006,47(3):502-511.
    [73] Cescato R, Erchegyi J, Waser B, et al. Design and in vitro characterization ofhighly sst2-selective somatostatin antagonists suitable for radiotargeting[J]. JMed Chem,2008,51(13):4030-4037.
    [74] Cescato R, Maina T, Nock B, et al. Bombesin receptor antagonists may bepreferable to agonists for tumor targeting[J]. J Nucl Med,2008,49(2):318-326.
    [75] Baidoo KE, Lin KS, Zhan Y, et al. Design, synthesis, and initial evaluation ofhigh-affinity technetium bombesin analogues[J]. Bioconjug Chem,1998,9(2):218-225.
    [76] Lin KS, Luu A, Baidoo KE, et al. A new high affinitytechnetium-99m-bombesin analogue with low abdominal accumulation[J].Bioconjug Chem,2005,16(1):43-50.
    [77] Santos-Cuevas CL, Ferro-Flores G, Arteaga de Murphy C, et al. Design,preparation, in vitro and in vivo evaluation of(99m)Tc-N2S2-Tat(49-57)-bombesin: a target-specific hybridradiopharmaceutical[J]. Int J Pharm,2009,375(1-2):75-83.
    [78] Gourni E, Paravatou M, Bouziotis P, et al. Evaluation of a series of new99mTc-labeled bombesin-like peptides for early cancer detection[J]. AnticancerRes,2006,26(1A):435-438.
    [79] Gourni E, Bouziotis P, Benaki D, et al. Structural assessment and biologicalevaluation of two N3S bombesin derivatives[J]. J Med Chem,2009,52(14):4234-4246.
    [80] Fragogeorgi EA, Zikos C, Gourni E, et al. Spacer site modifications for theimprovement of the in vitro and in vivo binding properties of(99m)Tc-N(3)S-X-bombesin[2-14] derivatives[J]. Bioconjug Chem,2009,20(5):856-867.
    [81] Hoffman TJ, Smith CJ. True radiotracers: Cu-64targeting vectors based uponbombesin peptide[J]. Nucl Med Biol,2009,36(6):579-585.
    [82] Van de Wiele C, Dumont F, Vanden Broecke R, et al. Technetium-99m RP527,a GRP analogue for visualisation of GRP receptor-expressing malignancies: afeasibility study[J]. Eur J Nucl Med,2000,27(11):1694-1699.
    [83] Alves S, Correia JD, Santos I, et al. Pyrazolyl conjugates of bombesin: a newtridentate ligand framework for the stabilization of fac-[M(CO)3]+moiety[J].Nucl Med Biol,2006,33(5):625-634.
    [84] Seckl M, Rozengurt E. Tyrphostin inhibits bombesin stimulation of tyrosinephosphorylation, c-fos expression, and DNA synthesis in Swiss3T3cells[J]. JBiol Chem,1993,268(13):9548-9554.
    [85] Prasanphanich AF, Nanda PK, Rold TL, et al.[64Cu-NOTA-8-Aoc-BBN(7-14)NH2] targeting vector for positron-emissiontomography imaging of gastrin-releasing peptide receptor-expressing tissues[J].Proc Natl Acad Sci U S A,2007,104(30):12462-12467.
    [86] Ma L, Yu P, Veerendra B, et al. In vitro and in vivo evaluation of Alexa Fluor680-bombesin[7-14]NH2peptide conjugate, a high-affinity fluorescent probewith high selectivity for the gastrin-releasing peptide receptor[J]. Mol Imaging,2007,6(3):171-180.
    [87] Alves S, Correia JD, Gano L, et al. In vitro and in vivo evaluation of a novel99mTc(CO)3-pyrazolyl conjugate of cyclo-(Arg-Gly-Asp-d-Tyr-Lys)[J].Bioconjug Chem,2007,18(2):530-537.
    [88] Prasanphanich AF, Lane SR, Figueroa SD, et al. The effects of linkingsubstituents on the in vivo behavior of site-directed, peptide-based, diagnosticradiopharmaceuticals[J]. In Vivo,2007,21(1):1-16.
    [89] Kunstler JU, Veerendra B, Figueroa SD, et al. Organometallic99mTc(III)'4+1' bombesin(7-14) conjugates: synthesis, radiolabeling, and in vitro/in vivostudies[J]. Bioconjug Chem,2007,18(5):1651-1661.
    [90] Lane SR, Veerendra B, Rold TL, et al.99mTc(CO)3-DTMA bombesinconjugates having high affinity for the GRP receptor[J]. Nucl Med Biol,2008,35(3):263-272.
    [91] Faintuch BL, Teodoro R, Duatti A, et al. Radiolabeled bombesin analogs forprostate cancer diagnosis: preclinical studies[J]. Nucl Med Biol,2008,35(4):401-411.
    [92] Shi J, Jia B, Liu Z, et al.99mTc-labeled bombesin(7-14)NH2with favorableproperties for SPECT imaging of colon cancer[J]. Bioconjug Chem,2008,19(6):1170-1178.
    [93] Retzloff LB, Heinzke L, Figureoa SD, et al. Evaluation of[99mTc-(CO)3-X-Y-Bombesin(7-14)NH2] conjugates for targetinggastrin-releasing peptide receptors overexpressed on breast carcinoma[J].Anticancer Res,2010,30(1):19-30.
    [94] Poulain AJ, Garcia E, Amyot M, et al. Biological and chemical redoxtransformations of mercury in fresh and salt waters of the high arctic duringspring and summer[J]. Environ Sci Technol,2007,41(6):1883-1888.
    [95] Garcia Garayoa E, Schweinsberg C, Maes V, et al. Influence of the molecularcharge on the biodistribution of bombesin analogues labeled with the[99mTc(CO)3]-core[J]. Bioconjug Chem,2008,19(12):2409-2416.
    [96] Schweinsberg C, Maes V, Brans L, et al. Novel glycated [99mTc(CO)3]-labeledbombesin analogues for improved targeting of gastrin-releasing peptidereceptor-positive tumors[J]. Bioconjug Chem,2008,19(12):2432-2439.
    [97] Maes V, Brans L, Schweinsberg C, et al. Carbohydrated[99mTc(CO)3](NalphaHis)Ac-bombesin(7-14) analogs[J]. Adv Exp Med Biol,2009,611(409-410.
    [98] Nock BA, Nikolopoulou A, Galanis A, et al. Potent bombesin-like peptides forGRP-receptor targeting of tumors with99mTc: a preclinical study[J]. J MedChem,2005,48(1):100-110.
    [99] Hoffman TJ, Gali H, Smith CJ, et al. Novel series of111In-labeled bombesinanalogs as potential radiopharmaceuticals for specific targeting ofgastrin-releasing peptide receptors expressed on human prostate cancer cells[J].J Nucl Med,2003,44(5):823-831.
    [100]Yurt Lambrecht F, Durkan K, Ozgur A, et al. In vitro evaluation of(99m)Tc-EDDA/tricine-HYNIC-Q-Litorin in gastrin-releasing peptide receptorpositive tumor cell lines[J]. J Drug Target,2013,21(4):383-388.
    [101]Durkan K, Lambrecht FY, Unak P. Radiolabeling of bombesin-like peptide with99mTc:99mTc-litorin and biodistribution in rats[J]. Bioconjug Chem,2007,18(5):1516-1520.
    [102]Barra D, Falconieri Erspamer G, Simmaco M, et al. Rohdei-litorin: a newpeptide from the skin of Phyllomedusa rohdei[J]. FEBS Lett,1985,182(1):53-56.
    [103]Anastasi A, Montecucchi P, Angelucci F, et al. Glu(OMe)3-litorin, the secondbombesin-like peptide occurring in methanol extracts of the skin of theAustralian frog Litoria aurea[J]. Experientia,1977,33(10):1289.
    [104]Endean R, Erspamer V, Falconieri Erspamer G, et al. Parallel bioassay ofbombesin and litorin, a bombesin-like peptide from the skin of Litoria aurea[J].Br J Pharmacol,1975,55(2):213-219.
    [105]Houben H, Vandenbroucke AT, Verheyden AM, et al. Expression of the genesencoding bombesin-related peptides and their receptors in anterior pituitarytissue[J]. Mol Cell Endocrinol,1993,97(1-2):159-164.
    [106]Falda M, Busca A, Baldi I, et al. Nonmyeloablative allogeneic stem celltransplantation in elderly patients with hematological malignancies: results fromthe GITMO (Gruppo Italiano Trapianto Midollo Osseo) multicenter prospectiveclinical trial[J]. Am J Hematol,2007,82(10):863-866.
    [107]Garrison JC, Rold TL, Sieckman GL, et al. Evaluation of the pharmacokineticeffects of various linking group using the111In-DOTA-X-BBN(7-14)NH2structural paradigm in a prostate cancer model[J]. Bioconjug Chem,2008,19(9):1803-1812.
    [108]Breeman WA, De Jong M, Bernard BF, et al. Pre-clinical evaluation of[(111)In-DTPA-Pro(1), Tyr(4)]bombesin, a new radioligand forbombesin-receptor scintigraphy[J]. Int J Cancer,1999,83(5):657-663.
    [109]Bernard BF, Krenning E, Breeman WA, et al. Use of the rat pancreaticCA20948cell line for the comparison of radiolabelled peptides forreceptor-targeted scintigraphy and radionuclide therapy[J]. Nucl Med Commun,2000,21(11):1079-1085.
    [110]Johnson WJ, Jang SY, Bernard DW. Hormone sensitive lipase mRNA in bothmonocyte and macrophage forms of the human THP-1cell line[J]. CompBiochem Physiol B Biochem Mol Biol,2000,126(4):543-552.
    [111]Cimini A, Cristiano L, Bernardo A, et al. Presence and inducibility ofperoxisomes in a human glioblastoma cell line[J]. Biochim Biophys Acta,2000,1474(3):397-409.
    [112]Breeman WA, van der Wansem K, Bernard BF, et al. The addition of DTPA to
    [177Lu-DOTA0,Tyr3]octreotate prior to administration reduces rat skeletonuptake of radioactivity[J]. Eur J Nucl Med Mol Imaging,2003,30(2):312-315.
    [113]Slooter GD, Aalbers AG, Breeman WA, et al. The inhibitory effect of(111)In-DTPA(0)-octreotide on intrahepatic tumor growth after partialhepatectomy[J]. J Nucl Med,2002,43(12):1681-1687.
    [114]Breeman WA, de Jong M, Erion JL, et al. Preclinical comparison of(111)In-labeled DTPA-or DOTA-bombesin analogs for receptor-targetedscintigraphy and radionuclide therapy[J]. J Nucl Med,2002,43(12):1650-1656.
    [115]Valkema R, De Jong M, Bakker WH, et al. Phase I study of peptide receptorradionuclide therapy with [In-DTPA]octreotide: the Rotterdam experience[J].Semin Nucl Med,2002,32(2):110-122.
    [116]de Visser M, Bernard HF, Erion JL, et al. Novel111In-labelled bombesinanalogues for molecular imaging of prostate tumours[J]. Eur J Nucl Med MolImaging,2007,34(8):1228-1238.
    [117]de Visser M, van Weerden WM, de Ridder CM, et al. Androgen-dependentexpression of the gastrin-releasing peptide receptor in human prostate tumorxenografts[J]. J Nucl Med,2007,48(1):88-93.
    [118]Zhang H, Chen J, Waldherr C, et al. Synthesis and evaluation of bombesinderivatives on the basis of pan-bombesin peptides labeled with indium-111,lutetium-177, and yttrium-90for targeting bombesin receptor-expressingtumors[J]. Cancer Res,2004,64(18):6707-6715.
    [119]Ho CL, Chen LC, Lee WC, et al. Receptor-binding, biodistribution, dosimetry,and micro-SPECT/CT imaging of111In-[DTPA(1), Lys(3), Tyr(4)]-bombesinanalog in human prostate tumor-bearing mice[J]. Cancer Biother Radiopharm,2009,24(4):435-443.
    [120]Scopinaro F, Varvarigou AD, Ussof W, et al. Technetium labeled bombesin-likepeptide: preliminary report on breast cancer uptake in patients[J]. CancerBiother Radiopharm,2002,17(3):327-335.
    [121]De Vincentis G, Scopinaro F, Varvarigou A, et al. Phase I trial of technetium[Leu13] bombesin as cancer seeking agent: possible scintigraphic guide forsurgery?[J]. Tumori,2002,88(3): S28-S30.
    [122]Soluri A, Scopinaro F, De Vincentis G, et al.99MTC [13LEU] bombesin and anew gamma camera, the imaging probe, are able to guide mammotome breastbiopsy[J]. Anticancer Res,2003,23(3A):2139-2142.
    [123]Scopinaro F, De Vincentis G, Corazziari E, et al. Detection of colon cancer with99mTc-labeled bombesin derivative (99mTc-leu13-BN1)[J]. Cancer BiotherRadiopharm,2004,19(2):245-252.
    [124]De Vincentis G, Remediani S, Varvarigou AD, et al. Role of99mTc-bombesinscan in diagnosis and staging of prostate cancer[J]. Cancer Biother Radiopharm,2004,19(1):81-84.
    [125]Scopinaro F, De Vincentis G, Varvarigou AD, et al.99mTc-bombesin detectsprostate cancer and invasion of pelvic lymph nodes[J]. Eur J Nucl Med MolImaging,2003,30(10):1378-1382.
    [126]Scopinaro F, Varvarigou A, Ussof W, et al. Breast cancer takes up99mTcbombesin. A preliminary report[J]. Tumori,2002,88(3): S25-S28.
    [127]Van de Wiele C, Dumont F, Dierckx RA, et al. Biodistribution and dosimetry of(99m)Tc-RP527, a gastrin-releasing peptide (GRP) agonist for the visualizationof GRP receptor-expressing malignancies[J]. J Nucl Med,2001,42(11):1722-1727.
    [128]Santos-Cuevas CL, Ferro-Flores G, Arteaga de Murphy C, et al. Targetedimaging of gastrin-releasing peptide receptors with99mTc-EDDA/HYNIC-[Lys3]-bombesin: biokinetics and dosimetry inwomen[J]. Nucl Med Commun,2008,29(8):741-747.
    [129]Liu Z, Yan Y, Chin FT, et al. Dual integrin and gastrin-releasing peptidereceptor targeted tumor imaging using18F-labeled PEGylated RGD-bombesinheterodimer18F-FB-PEG3-Glu-RGD-BBN[J]. J Med Chem,2009,52(2):425-432.
    [130]Liu S, Liu Z, Chen K, et al.18F-labeled galacto and PEGylated RGD dimers forPET imaging of alphavbeta3integrin expression[J]. Mol Imaging Biol,2010,12(5):530-538.
    [131]Liu Z, Niu G, Wang F, et al.(68)Ga-labeled NOTA-RGD-BBN peptide for dualintegrin and GRPR-targeted tumor imaging[J]. Eur J Nucl Med Mol Imaging,2009,36(9):1483-1494.
    [132]Liu Z, Liu S, Wang F, et al. Noninvasive imaging of tumor integrin expressionusing (18)F-labeled RGD dimer peptide with PEG (4) linkers[J]. Eur J NuclMed Mol Imaging,2009,36(8):1296-1307.
    [133]Liu Z, Niu G, Shi J, et al.(68)Ga-labeled cyclic RGD dimers with Gly3andPEG4linkers: promising agents for tumor integrin alphavbeta3PET imaging[J].Eur J Nucl Med Mol Imaging,2009,36(6):947-957.
    [134]Liu S. Radiolabeled multimeric cyclic RGD peptides as integrin alphavbeta3targeted radiotracers for tumor imaging[J]. Mol Pharm,2006,3(5):472-487.
    [135]Jia B, Liu Z, Shi J, et al. Linker effects on biological properties of111In-labeledDTPA conjugates of a cyclic RGDfK dimer[J]. Bioconjug Chem,2008,19(1):201-210.
    [136]Liu Z, Yan Y, Liu S, et al.(18)F,(64)Cu, and (68)Ga labeled RGD-bombesinheterodimeric peptides for PET imaging of breast cancer[J]. Bioconjug Chem,2009,20(5):1016-1025.
    [137]Liu Z, Huang J, Dong C, et al.99mTc-labeled RGD-BBN peptide forsmall-animal SPECT/CT of lung carcinoma[J]. Mol Pharm,2012,9(5):1409-1417.
    [138]The2007Recommendations of the International Commission on RadiologicalProtection. ICRP publication103[J]. Ann ICRP,2007,37(2-4):1-332.
    [139]Kehoe T. International Commission on Radiological Protection publications97and98: radiation protection can be fun![J]. Clin Oncol (R Coll Radiol),2007,19(7):539-541.
    [140]Pradhan AS. Evolution of dosimetric quantities of International Commission onRadiological Protection (ICRP): Impact of the forthcoming recommendations[J].J Med Phys,2007,32(3):89-91.
    [141]Kubo A, Nakamura K, Sanmiya T, et al. Phase I clinical study on99mTc-MIBI[J]. Kaku Igaku,1991,28(10):1133-1142.
    [142]Mehta S, Hughes NP, Buffa FM, et al. Assessing early therapeutic response tobevacizumab in primary breast cancer using magnetic resonance imaging andgene expression profiles[J]. J Natl Cancer Inst Monogr,2011,2011(43):71-74.
    [143]Panageas KS, Sima CS, Liberman L, et al. Use of high technology imaging forsurveillance of early stage breast cancer[J]. Breast Cancer Res Treat,2012,131(2):663-670.
    [144]English RE, Li J, Parker AJ, et al. A pilot study to evaluate assisted freehandultrasound elasticity imaging in the sizing of early breast cancer: a comparisonof B-mode and AFUSON elasticity ultrasound with histopathologymeasurements[J]. Br J Radiol,2011,84(1007):1011-1019.
    [145]Yang M, Gao H, Sun X, et al. Multiplexed PET probes for imaging breastcancer early response to VEGF(1)(2)(1)/rGel treatment[J]. Mol Pharm,2011,8(2):621-628.
    [146]Cooper KL, Meng Y, Harnan S, et al. Positron emission tomography (PET) andmagnetic resonance imaging (MRI) for the assessment of axillary lymph nodemetastases in early breast cancer: systematic review and economic evaluation[J].Health Technol Assess,2011,15(4):1-134.
    [147]Abe H, Mori T, Umeda T, et al. Indocyanine green fluorescence imaging systemfor sentinel lymph node biopsies in early breast cancer patients[J]. Surg Today,2011,41(2):197-202.
    [148]Jose I, Deodhar KD, Desai UB, et al. Early detection of breast cancer: synthesisand characterization of novel target specific NIR-fluorescent estrogen conjugatefor molecular optical imaging[J]. J Fluoresc,2011,21(3):1171-1177.
    [149]Poellinger A, Burock S, Grosenick D, et al. Breast cancer: early-andlate-fluorescence near-infrared imaging with indocyanine green--a preliminarystudy[J]. Radiology,2011,258(2):409-416.
    [150]Haubner R, Weber WA, Beer AJ, et al. Noninvasive visualization of theactivated alphavbeta3integrin in cancer patients by positron emissiontomography and [18F]Galacto-RGD[J]. PLoS Med,2005,2(3): e70.
    [151]Wang L, Yan C, Zhao S, et al. Comparison of (99m)Tc-MIBI SPECT/18F-FDGPET imaging and cardiac magnetic resonance imaging in patients withidiopathic dilated cardiomyopathy: assessment of cardiac function andmyocardial injury[J]. Clin Nucl Med,2012,37(12):1163-1169.
    [152]Bar R, Przewloka K, Karry R, et al. Half-time SPECT acquisition withresolution recovery for Tc-MIBI SPECT imaging in the assessment ofhyperparathyroidism[J]. Mol Imaging Biol,2012,14(5):647-651.
    [153]Liu M, Ma Z, Guo X, et al. Technetium-99m-labelled HL91andtechnetium-99m-labelled MIBI SPECT imaging for the detection of ischaemicviable myocardium: a preliminary study[J]. Clin Physiol Funct Imaging,2012,32(1):25-32.
    [154]Shiroodi MK, Shafiei B, Baharfard N, et al.99mTc-MIBI washout as acomplementary factor in the evaluation of idiopathic dilated cardiomyopathy(IDCM) using myocardial perfusion imaging[J]. Int J Cardiovasc Imaging,2012,28(1):211-217.
    [155]Cornelio DB, Roesler R, Schwartsmann G. Gastrin-releasing peptide receptor asa molecular target in experimental anticancer therapy[J]. Ann Oncol,2007,18(9):1457-1466.
    [156]Wester HJ, Kessler H. Molecular targeting with peptides or peptide-polymerconjugates: just a question of size?[J]. J Nucl Med,2005,46(12):1940-1945.
    [157]Smith CJ, Volkert WA, Hoffman TJ. Radiolabeled peptide conjugates fortargeting of the bombesin receptor superfamily subtypes[J]. Nucl Med Biol,2005,32(7):733-740.
    [158]Line BR, Mitra A, Nan A, et al. Targeting tumor angiogenesis: comparison ofpeptide and polymer-peptide conjugates[J]. J Nucl Med,2005,46(9):1552-1560.
    [159]Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD andintegrins[J]. Science,1987,238(4826):491-497.
    [160]Strande V, Canelle L, Tastet C, et al. The proteome of the human breast cancercell line MDA-MB-231: Analysis by LTQ-Orbitrap mass spectrometry[J].Proteomics Clin Appl,2009,3(1):41-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700