用户名: 密码: 验证码:
电力系统连锁故障机理及风险评估方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,各国相继发生连锁大停电事故,造成巨大的社会经济损失。随着我国跨区互联电网的建成,连锁故障可能成为危及我国电网安全的新问题。因此,充分认识连锁故障机理,深入开展相关领域研究,有助于我国形成合理的电网网架结构,有助于实施相应的预防措施。
     本文重点研究了系统状态搜索法、断路器拒分故障评估、相继故障演变模型以及电力系统连锁故障风险评估等内容。
     文章归纳了连锁故障的一般物理过程。根据连锁故障各阶段的特点,提出了连锁故障研究的指导思想。
     研究了针对连锁故障缓慢相继开断阶段的系统状态搜索法。首先概括了可能出现在缓慢相继开断阶段的元件故障模型。由于元件故障模型涉及系统网架、变电站结构两个层次,系统状态搜索必须协调好故障模型之间的关系,确保故障模型的完整性和一致性。本文通过功能组分解和事件树分析技术,实现了这个目的。特别研究了断路器拒分故障问题。文章对不同电气主接线正常运行方式下的断路器拒分故障进行了初步的风险评估。研究表明,双母线四分段、双母线四分段带旁路接线的风险最小,单母线无分段、桥式接线和角形接线的风险最大。
     针对连锁故障快速相继开断阶段,提出了用于研究输电设备过负荷连锁跳闸问题的相继故障演变模型。该模型基于时序推理思想,给出了考虑时序性的故障路径搜索策略,从而使模型具有时序特征。
     最后提出了一种电力系统连锁故障风险评估方法。调度和维修人员可以通过该方法,得到不同的风险指标,预防可能发生的连锁故障。仿真算例也表明,当断路器拒分概率和保护误动概率处于相同数量级时,断路器拒分故障更加危险;发电厂、变电站主接线在连锁故障研究中具有重要作用,这种作用可以通过断路器拒分故障表现出来。
In recent years, a series of cascading large blackouts have occurred in some countries, which caused huge social economy loss. When cross-region power network in our country is accomplished, cascading failures will possibly become a new question that endangers power system security. Therefore, both the full understanding of cascading failures mechanism and the deep study of related research area are beneficial to both form reasonable network configuration and implement corresponding preventive measure.
     The dissertation studied a search method for system state, a risk evaluation of circuit breaker open-failure, a continual fault evolution model and a probabilistic risk assessment method for cascading failure.
     A conclusion was derived from general physical process of cascading failures. According to characteristic of stages in cascading failures, a guiding principle of research on cascading failures was proposed.
     A search method for system state was studied, which aimed at slow continual outage stage. First, element fault models which possibly appear in this stage were summarized. Because element fault models are involved with configurations of power network and substation, the method must coordinate relations among fault models; guarantee both integrity and uniformity of them. This goal has been realized by use of function group decomposition and event tree analysis technique.
     The resist-operation on breaker was specially discussed. The preliminary risk assessment on breaker mal-operation with different electrical main wirings in normal operation way was brought forward. The result indicated that the risk of double bus four segment connection or double bus four segment connection with bypass is smallest; whereas that of single bus bar, bridge connection, or angle scheme is biggest.
     In view of fast continual outage stage, a continual fault evolution model used to study cascading outages for electric transmission equipment’s over load was proposed. Based on temporal reasoning thought, the model proposed fault path search strategy considering time sequence, which enabled the model to have temporal characteristic.
     Finally, a probabilistic risk assessment method for cascading failure of power system was introduced. Dispatch and maintenance staff can obtain different risk indicators to prevent possible cascading failures by use of this method. Simulation also indicated that if the probability of resist-operation on breaker is the same magnitude as that of misoperation of protection, the former is more dangerous. Bus configurations of power station and substation have an influential role in cascading failures research, which may display through open-failure of breaker.
引文
[1]甘德强,胡江溢,韩祯祥. 2003年国际若干停电事故思考.电力系统自动化, 2004, 28(3): 1-4, 9.
    [2] CIGRE WG B5.09. Optimization of protection performance during system disturbances. Technical brochure No.232, 2003.
    [3] U.S.-Canada Power system outage TF. Final report on the august 14 2003 blackout in the United States and Canada: cause and recommendations. 2004.
    [4] Gomes P. New strategies to improve bulk power system security: lessons learned from large blackouts. Proceedings of IEEE PES 2004 general meeting, Denver, USA, 2004.
    [5]何大愚.对于美国西部电力系统1996年7月2日大停电事故的初步认识.电网技术, 1996, 20(9): 35-39.
    [6]卢卫星,舒印彪,史连军.美国西部电力系统1996年8月10日大停电事故.电网技术, 1996, 20(9): 40-42.
    [7]王梅义.有感于美国西部电网大停电.电网技术, 1996, 20(9): 43-46.
    [8]郭永基.加强电力系统可靠性的研究和应用-北美东部大停电的思考.电力系统自动化, 2003, 27(19): 1-5.
    [9]胡学浩.美加联合电网大面积停电事故的反思和启示.电网技术, 2003,27(9): 2-6.
    [10]印永华,郭剑波,赵建军,等.美加“8.14”大停电事故初步分析以及应吸取的教训.电网技术, 2003, 27(10): 8-11.
    [11]唐葆生.伦敦南部地区大停电及其教训.电网技术, 2003, 27(11): 1-5, 12.
    [12] Union for the Coordination of Electricity Transmission (UCTE). Interim report of the investigation committee on the 28 September 2003 blackout in Italy. 2003.
    [13]鲁宗相.莫斯科“5.25”大停电的事故调查及简析.电力设备, 2005, 6(8): 14-17.
    [14]唐斯庆,张弥,李建设,等.海南电网“9.26”大面积停电事故的分析与总结.电力系统自动化, 2006, 30(1): 1-7, 16.
    [15]葛睿,董昱,吕跃春.欧洲“11.4”大停电事故分析及对我国电网运行工作的启示.电网技术, 2007, 31(3): 1-6.
    [16]杨卫东,徐政,韩祯祥.电力系统灾变防治系统研究的现状与目标.电力系统自动化, 2000, 24(1): 7-12.
    [17]杨卫东,徐政,韩祯祥.电力系统灾变防治研究中的一些问题.电力系统自动化, 2000, 24(6): 7-11.
    [18]薛禹胜.综合防御由偶然故障演化为电力灾难-北美“8.14”大停电的警示.电力系统自动化, 2003, 27(18): 1-5, 37.
    [19]陈德树.大电网安全保护技术初探.电网技术, 2004, 28(9): 14-17, 27.
    [20]韩祯祥,曹一家.电力系统的安全性及防治措施.电网技术, 2004, 28(9): 1-6.
    [21]杨以涵,张东英,马骞,等.大电网安全防御体系的基础研究.电网技术, 2004, 28(9): 23-27.
    [22]徐征雄,姚国灿,郭剑波.“十五”末我国电网发展的展望.国际电力, 2001, 5(3): 7-10.
    [23]赵希正.强化电网安全保障可靠供电-美加“8.14”停电事件给我们的启示.电网技术, 2003, 27(10): 1-7.
    [24]袁季修.防御大停电的广域保护和紧急控制.北京:中国电力出版社, 2007.
    [25]鲁宗相.大面积连锁故障的缓解和预防. http://www.chinaer.org.
    [26]王梅义,吴竞昌,蒙定中.大电网系统技术.北京:中国电力出版社, 1995.
    [27]王梅义.电网继电保护应用.北京:中国电力出版社, 1999.
    [28]张保会.电网继电保护与实时安全性控制面临的问题与需要开展的研究.电力自动化设备, 2004, 27(7):1-6.
    [29]薛禹胜.时空协调的大停电防御框架-(一)从孤立防线到综合防御.电力系统自动化, 2006, 30(1): 8-16.
    [30]薛禹胜.时空协调的大停电防御框架-(二)广域信息、在线量化分析和自适应优化控制.电力系统自动化, 2006, 30(2): 1-10.
    [31]薛禹胜.时空协调的大停电防御框架-(三)各道防线内部的优化和不同防线之间的协调.电力系统自动化, 2006, 30(3): 1-10, 106.
    [32] North American Electric Reliability Council. NERC planning standards. http://www.nerc.com.
    [33] North American Electric Reliability Council. Disturbance Analysis Working Group (DAWG) Database. Information on blackouts in North America. http://www.nerc.com/~darg/database.html.
    [34] Phadke A G, Thorp J S. Expose hidden failures to prevent cascading outages in power systems. IEEE Computer Applications in Power, 1996, 9(3): 20-23.
    [35] Electric Power Research Institute (EPRI)/ US Department of Defense (DoD). Complex interactive networks/system initiative: second annual report 1006089, development of analytical and computational methods for the strategic power infrastructure defense system. 2001.
    [36]孙可,韩祯祥,曹一家.复杂电网连锁故障模型评述.电网技术, 2005, 29 (13): 1-9.
    [37]卢强.“我国电力大系统灾变防治和经济运行的重大科学问题的研究”项目简介.电力系统自动化, 2000, 24(1): 1-6.
    [38] Waldrop M.复杂:诞生于秩序与混沌边缘的科学.北京:北京三联书店. 1997.
    [39]钱学森,于景元,戴汝为.一个科学新领域-开放复杂巨系统及其方法论.自然杂志, 1990, 13(1): 3-10.
    [40]王寿云,于景元,戴汝为,等.开放的复杂巨系统.杭州:浙江科学技术出版社, 1996.
    [41]戴汝为.复杂巨系统科学-一门21世纪的科学.自然杂志, 1997, 19(4): 187-192.
    [42]张知彬,王祖望,李典谟.生态复杂性研究-综述与展望.生态学报, 1998, 18(4): 433-441.
    [43] Gleick J. Chaos: making a new science. New York: Viking, 1987.
    [44] Langton C G. Artificial life. Volume VI of SFI studies in the sciences of complexity, Addison-Wesley, Redwook City, CA, 1989.
    [45] Nicolis G, Prigogine I.探索复杂性.成都:四川教育出版社, 1986.
    [46] Haken H. Advanced Synergetics, 2nd. Corr.Belin: Springer-Verlag, 1987.
    [47] Bak P, Tang C, Wiesenfeld K. Self-organized criticality: an explanation of 1/f noise. Phys. Rev. Lett., 1987, 59(4): 381-384.
    [48] Bak P, Tang C, Wiesenfeld K. Self-organized criticality. Phys. Rev. A, 1988, 38: 364-374.
    [49] Carson M, Langer J S. Mechanical model of an earthquake fault. Phys. Rev. A, 1989, 40: 6470-6484.
    [50] Barabasi A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286: 509-512.
    [51] Barabasi A L, Albert R, Jeong H, et al. Power-law distribution of the world wide web (reply). Science, 2000, 287: 2115.
    [52] Lawrence S, Giles CL. Searching the world wide web. Science, 1998, 280: 98-100.
    [53] Adamic L A, Huberman B A. Power-law distribution of the world wide web. Science, 2000, 287: 2115.
    [54] Huberman B A, Adamic L A. Growth dynamics of the world-wide web. Nature, 1999, 401: 131.
    [55] Albert R, Jeong H, Brabasi A L. Diameter of the world-wide web. Nature, 1999, 401(9): 130-131.
    [56] Miyazima S, Lee Y, Nagamine T, et al. Power-law distribution of family names in Japanese societies. Physica A, 2000, 278: 282-288.
    [57] Pinho S T R, Andrade R F S. An abelian model for rainfall. Physica A, 1998, 255: 483-495.
    [58] Redner S. How popular is your paper? An empirical study of the citation distribution. The European Physical Journal B, 1998, 4: 131-134.
    [59] Okuyama K, Takayasu M, Takayasu H. Zipf's law in income distribution of companies. Physica A, 1999, 269:125-131.
    [60] Gopikrishnan P, Plerou V, Liu Y, et al. Scaling and correlation in financial time series. Physica A, 2000, 287: 362-373.
    [61] Blank A, Solomon S. Power laws in cities population, financial markets and internet sites (scaling in systems with a variable number of components). Physica A, 2000, 287: 279-288.
    [62] Crawley M J, Harral J E. Scale dependence in plant biodiversity. Science, 2001, 291: 864-868.
    [63] Turcotte D L. A fractal approach to probabilistic seismic hazard assessment. Tectonophysics, 1989, 167: 171-177.
    [64] Drossel B, Schwabl F. Self-organized critical forest-fire model. Physical Review Letters, 1992, 69(11): 1629-1632.
    [65] Barabasi A L. The new science of network. Massachusetts: Persus Publishing, 2002.
    [66] Watts D J. The‘new’science of networks. Annual Review of Sociology, 2004, 30: 243-270.
    [67] Watts D J, Strogatz S H. Collective dynamics of‘small-world’networks. Nature, 1998, 393: 440-442.
    [68]汪小帆,李翔,陈关荣.复杂网络理论及其应用.北京:清华大学出版社, 2006.
    [69] Carreras B A, Newman D E, Dobson I, et al. Initial evidence for self-organized criticality in electric power system blackouts. Proceedings of the 33rd Hawaii International Conference on System Sciences, Maui, USA, 2000.
    [70] Chen J, Thorp J S, Parashar M. Analysis of electric power system disturbance data. Proceedings of the 34th Hawaii International Conference on System Sciences, Maui, USA, 2001.
    [71] Carreras B A, Newman D E, Dobson I, et al. Evidence for self organized criticality in electric power system blackouts. Proceedings of the 34th Hawaii International Conference on System Sciences, Maui, USA, 2001.
    [72] Carreras B A, Newman D E, Dobson I, et al. Evidence for self organized criticality in electric power system blackouts. IEEE Trans on Circuits and Systems, 2004, 51(9): 1733-1740.
    [73] Carreras B A, Lynch V E, Newman D E, et al. Complex dynamics of blackouts in power transmission systems. Chaos, 2004, 14(3): 643-652.
    [74] Dobson I, Carreras B A, Lynch V, et al. Complex systems analysis of series of blackouts: cascading failure, criticality, and self-organization. Volume VI of Bulk Power System Dynamics and Control, Cortina d’Ampezzo, Italy, 2004.
    [75]鲁宗相.电网复杂性及大停电事故的可靠性研究.电力系统自动化, 2005, 29(12): 93-97.
    [76]曹一家,江全元,丁理杰.电力系统大停电的自组织临界现象.电网技术, 2005, 29(15): 1-5.
    [77]丁明,韩平平.基于复杂系统理论的电网连锁故障研究.合肥工业大学学报(自然版), 2005, 28(9): 1047-1052.
    [78]于群,郭剑波.中国电网停电事故统计与自组织临界性特征.电力系统自动化, 2006, 30(2): 16-21.
    [79]于群,郭剑波.电网停电事故的自组织临界性及其极值分析.电力系统自动化, 2007, 31(3): 1-3.
    [80]邓慧琼,艾欣,赵亮,等.大停电自组织临界特征的若干问题探讨.电网技术, 2007, 31(8): 42-46.
    [81]曹一家,丁理杰,江全元,等.基于协同学原理的电力系统大停电预测模型.中国电机工程学报, 2005, 25(18): 13-19.
    [82]国家电力调度通信中心.全国电网典型事故分析(1988-1998).北京:中国电力出版社, 2000.
    [83]国家电力调度通信中心.全国网省调度局(所)电网责任事故分析(1990 -1997).北京:中国电力出版社, 2000.
    [84]电力部电力科学研究院.“八五”期间全国电网稳定事故统计分析(1991 -1995).北京:电力部电力科学研究院, 1996.
    [85]电力部电力科学研究院.近十年全国电网稳定事故统计分析(1981-1991).北京:电力部电力科学研究院, 1993.
    [86]赵遵廉.《电力系统安全稳定导则》学习与辅导.北京:中国电力出版社, 2001.
    [87]屈靖,郭剑波.“九五”期间我国电网事故统计分析.电网技术, 2004, 28(21): 60-62.
    [88]郭剑波,印永华,姚国灿. 1981~1991年电网稳定事故统计分析.电网技术, 1994, 18(2): 58-61.
    [89]郭剑波.“八五”期间电网事故统计分析.电网技术, 1998, 22(2): 72-74.
    [90] Dobson I, Carreras B A, Lynch V E, et al. An initial model for complex dynamics in electric power system blackouts. Proceedings of the 34th Hawaii International Conference on System Sciences, Maui, USA, 2001.
    [91] Carreras B A, Lynch V E, Sachtjen M L, et al. Modeling blackout dynamics in power transmission networks with simple structure. Proceedings of the 34th Hawaii International Conference on System Sciences, Maui, USA, 2001.
    [92] Carreras B A, Lynch V E, Dobson I, et al. Dynamics, criticality and self-organization in a model for blackouts in power transmission systems. Proceedings of the 35th Hawaii International Conference on System Sciences, Maui, USA, 2002.
    [93] Carreras B A, Lynch V E, Dobson I, et al. Blackout mitigation in an electric power transmission system. Proceedings of the 36th Hawaii International Conference on System Sciences, Maui, USA, 2003.
    [94] Dobson I, Chen J, Carreras B A, et al. Examining criticality of blackouts in power system models with cascading events. Proceedings of the 34th Hawaii International Conference on System Sciences, Maui, USA, 2001.
    [95] Carreras B A, Lynch V E, Dobson I, et al. Critical points and transitions in an electric power transmission model for cascading failure blackouts. Chaos, 2002, 12(4): 985-994.
    [96] Dobson I, Chen J, Thorp J S, et al. Examining criticality of blackouts in power system models with cascading events. Proceedings of the 35th Hawaii International Conference on System Sciences, Maui, USA, 2002.
    [97] Carreras B A, Lynch V E, Newman D E, et al. Blackout mitigation assessment in power transmission systems. Proceedings of the 36th Hawaii International Conference on System Sciences, Maui, USA, 2003.
    [98] Newman D E, Carreras B A, Lynch V E, et al. The impact of various upgrade strategies on the long-term dynamics and robustness of the transmission grid. Electricity Transmission in Deregulated Markets Conference, Pittsburgh PA, USA, 2004.
    [99] Nedic D P, Dobson I, Kirschen D S, et al. Criticality in a cascading failure blackout model. Proceedings of the 15th Power Systems Computation Conference, Liege, Belgium, 2005.
    [100]何飞,梅生伟,薛安成,等.基于直流潮流的电力系统停电分布及自组织临界性分析.电网技术, 2006, 30(14): 7-12.
    [101]梅生伟,翁晓峰,薛安成,等.基于最优潮流的停电模型及自组织临界性分析.电力系统自动化, 2006, 30(13):1-5.
    [102]王刚,梅生伟,胡伟.计及无功/电压特性的停电模型及自组织临界性分析.电力系统自动化, 2007, 31(1): 9-13.
    [103]夏德明,梅生伟,侯云鹤.基于OTS的停电模型及其自组织临界性分析.电力系统自动化, 2007, 31(12): 12-18, 91.
    [104]刘映尚,吴文传,冯永青,等.基于自组织临界理论的南方电网停电事故宏观规律研究.中国电力, 2007, 40(7): 37-41.
    [105]黄欣荣.复杂性科学与哲学.北京:中央编译出版社, 2007.
    [106]孙可,韩祯祥,曹一家.复杂电网连锁故障模型评述.电网技术, 2005, 29(13): 1-9.
    [107] Dobson I, Carreras B A, Newman D E. A probabilistic loading dependent model of cascading failure and possible implications for blackouts. Proceedings of the 36th Hawaii International Conference on System Sciences, Maui, USA, 2003.
    [108] Consul P C. A simple urn model dependent upon predetermined strategy. The Indian Journal of Statistics, Series B, 1974, 36(4): 391-399.
    [109] Dobson I, Carreras B A, Newman D E. A probabilistic loading dependent model of cascading failure and possible implications for blackouts. Probability in the Engineering and Informational Sciences, 2005, 19(1): 15-32.
    [110] Dobson I, Carreras B A, Newman D E. A branching process approximation to cascading load-dependent system failure. Proceedings of the 37th Hawaii International Conference on System Sciences, Maui, USA, 2004.
    [111] Dobson I, Carreras B A, Newman D E. A criticality approach to monitoring cascading failure risk and failure propagation in transmission systems. Electricity Transmission in Deregulated Markets Conference, Pittsburgh, USA, 2004.
    [112] Watts D J. Small worlds-the dynamics of networks between order and randomness. Princeton (NJ): Princeton University Press, 1998.
    [113] Surdutovich G, Cortez C,Vitilina R, et al. Dynamics of‘small world’networks and vulnerability of the electric power grid. Proceedings of VIII Symposium of Specialists in Electric Operational and Expansion Planning, Brasilia, 2002.
    [114]孟仲伟,鲁宗相,宋靖雁.中美电网的小世界拓扑模型比较分析.电力系统自动化, 2004, 28(15): 21-24, 29.
    [115]丁明,韩平平.基于小世界拓扑模型的大型电网脆弱性评估.中国电机工程学报, 2005, 25(25): 118-122.
    [116] Motter A E, Lai Y C. Cascade-based attacks on complex networks. Phys. Rev. E, 2002, 66: 065102.
    [117] Crucitti P, Latora V, Marchiori M. Model for cascading failures in complex networks. Phys. Rev. E, 2004, 69: 045104.
    [118] Kinney R, Crucitti P, Albert R, et al. Modeling cascading failures in the North American power grid. http://arXiv:cond-mat/0410318.
    [119] Tamronglak S. Analysis of power system disturbances due to relay hidden failures. Virginia Polytechnic and State University, Blacksburg, Virginia, 1994.
    [120] Tamronglak S, Horowitz S H, Phadke A G, et al. Anatomy of power system blackouts: preventive relaying strategies. IEEE Transactions on Power Delivery, 1996, 11(2): 708-715.
    [121] Yu X B, Singh C. Power system reliability analysis considering protection failures. IEEE PES Summer Meeting, Chicago, USA, 2002, 2: 963-968.
    [122] Yu X B, Singh C. Integrated power system vulnerability analysis considering protection failures. IEEE Power Engineering Society General Meeting, Toronto, Canada, 2003, 2: 706-711.
    [123] Bae K, Thorp J S. A stochastic study of hidden failures in power system protection. Decision Support Systems, 1999, 24(3): 259-268.
    [124] Thorp J S,Wang H. Computer simulation of cascading disturbances in electric power systems: impact of protection systems on transmission system reliability final report. New York, USA: PSERC Publication 01-01, 2001.
    [125] Koeunyi B, Thorp J S. An importance sampling application: 179 bus WSCC system under voltage based hidden failures and relay misoperations. Proceedings of the 31th Hawaii International Conference on System Sciences, Hawaii, USA, 1998, 3: 39-46.
    [126] Thorp J S, Phadke A G, Horowitz S H, et al. Anatomy of power system disturbances: importance sampling. Electrical power & Energy System, 1998, 20(2): 147-152.
    [127] Wang H, Thorp J S. Optimal locations for protection system enhancement: a simulation of cascading outages. IEEE Transactions on Power Delivery, 2001,16(4): 528-533.
    [128] Chen J, Thorp J S. Study on cascading dynamics in power transmission systems via a DC hidden failure model. IEE Fifth International Conference on Power System Management and Control, London, UK, 2002: 384-389.
    [129]易俊,周孝信.基于连锁故障搜索模型的降低电网发生连锁故障风险的方法.电网技术, 2007, 31(6): 19-22.
    [130]易俊,周孝信.考虑系统频率特性以及保护隐藏故障的电网连锁故障模型.电力系统自动化, 2006, 30(14): 1-5.
    [131]易俊,周孝信,肖逾男.用连锁故障搜索算法判别系统的自组织临界状态.中国电机工程学报, 2007, 27(25): 1-5.
    [132]张保会,周德才,姚峰,等.预防连锁过载避免大停电发生.电力系统及其自动化专业第二十一届学术年会论文集,南宁, 2005, (3): 1102-1106.
    [133]邓慧琼,艾欣,罗啸.电网连锁故障防治策略初探及连锁过载识别方法研究.现代电力, 2007, 24(1): 5-11.
    [134]徐慧明,毕天姝,黄少锋,等.基于WAMS的潮流转移识别算法.电力系统自动化, 2006, 30(14): 14-19.
    [135]徐慧明,毕天姝,黄少锋,等.计及暂态过程的多支路切除潮流转移识别算法研究.中国电机工程学报, 2007, 27(16): 24-30.
    [136]李生虎,丁明,王敏,等.考虑故障不确定性和保护动作性能的电网连锁故障模式搜索.电网技术, 2004, 28(13): 27-31, 44.
    [137]邓慧琼,艾欣,张东英,等.基于不确定多属性决策理论的电网连锁故障模式搜索方法.电网技术, 2005, 29(13): 50-55.
    [138]周宗发,艾欣,邓慧琼,等.基于故障树和模糊推理的电网连锁故障分析方法.电网技术, 2006, 30(8): 86-91.
    [139]刘昊,艾欣,邓慧琼.基于循环完善法和树状结构事故链的电网连锁故障研究.现代电力, 2006, 23(2): 24-29.
    [140]别朝红,王锡凡.复杂电力系统一类连锁反应事故可靠性评估初探.电力系统自动化, 2001, 25(15): 25-28, 42.
    [141]别朝红,王锡凡.复杂电力系统一类连锁反应事故可靠性评估模型和算法.电力系统自动化, 2001, 25(20): 30-34.
    [142] Bie Z H, Wang X F. Evaluation of power system cascading outages. International Conference on Power System Technology, Kuming, China, 2002, 1: 415-419.
    [143]别朝红.电力系统的灾难性事故和可靠性综合评估的研究.西安交通大学博士学位论文, 1998.
    [144]陈晓刚,陶佳,江全元,等.考虑高风险连锁故障的PMU配置方法.电力系统自动化, 2008, 32(4): 11-14.
    [145] Mccalley J D, Zhu K, Chen Q M. Dynamic decision-event trees for rapid response to unfolding events in bulk transmission systems. Power Engineering Society Summer Meeting, Vancouver, Canada, 2001, 2: 15-19.
    [146]朱旭凯,刘文颖,杨以涵,等.电网连锁故障演化机理与博弈预防.电力系统自动化, 2008, 32(5), 29-33.
    [147] DL 755-2001.电力系统安全稳定导则.北京:中国电力出版社, 2001.
    [148]丁明,刘友翔,戴仁昶,等.输电系统的分层可靠性建模及概率模拟.清华大学学报(自然科学版)(增刊), 1997, 37(S1): 99-103.
    [149] GB 14285-1993.继电保护和安全自动装置技术规程.北京:水力电力出版社, 1993.
    [150]周玉兰,王玉玲,赵曼勇. 2004年全国电网继电保护与安全自动装置运行情况.电网技术, 2005, 29(16): 42-48.
    [151] Chen Q M, Mccalley J D. Identifying high risk N-k contingencies for online security assessment. IEEE Transactions on Power Systems, 2005, 20(2): 823 -834.
    [152]周玉兰,詹荣荣,舒治淮,等. 2003年全国电网继电保护与安全自动装置运行情况与分析.电网技术, 2004, 28(20): 48-53.
    [153]宋杲,崔景春,袁大陆. 2004年高压开关设备运行统计分析.电力设备, 2006, 7(2): 10-14.
    [154] Thorp J S, Phadke A G. Protecting power systems in the post- restructuring era. IEEE Computer Applications in Power, 1999, 12(1): 33-37.
    [155] Koyama Y, Sasaki T, Ihara S, et al. Voltage collapse scenario search. Proceedings of International Conference on Power System Technology, Kunming, China, 2002: 344-348.
    [156] Raymond T. Logics for artificial intelligence. Ellis Horwood Limited, 1984.
    [157] Mcdermott D V. A temporal logic for reasoning about processes and plans. Cognitive Science, 1982, 6(2): 101-155.
    [158] Vilain M, Kautz H. Constraint propagation algorithms for temporal reasoning. Proceedings of the 5th National Conference on Artificial Intelligence, Philadelphia, Pa., USA, 1986: 377-382.
    [159] Allen J. Maintaining knowledge about temporal intervals. Communications of the ACM, 1983, 26(11): 832-843.
    [160] Reliability Test System Task Force. IEEE reliability test system. IEEE Trans on PAS, 1979, 98(6): 2047-2054.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700