用户名: 密码: 验证码:
荞麦种质资源遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荞麦(Buckwheat)是蓼科(Polygonaceae)荞麦属(Fagopyrum Mill.)作物,广泛分布于亚洲和欧洲,仅甜荞(Fagopyrum esculentum)和苦荞(Fagopyrum tartaricum)两个栽培种。荞麦营养成分全面,籽粒富含黄酮、类黄酮、固醇和硫胺类结合蛋白,对一些慢性疾病具有潜在的疗效。荞麦中80%的类黄酮物质是芦丁,芦丁能降低血压和血管的通透性,防止动脉硬化和毛细管脆性增加引起的出血症,并具有抗浮肿和抗氧化活性。与其它作物相比,荞麦具有较高的营养价值和独特的药用价值。本文对荞麦种质资源遗传多样性进行了研究,主要结果如下:
     1.基于叶绿体基因组中的matk、rbcL及trnL-F序列分别对国产荞麦属24份材料进行克隆和测序,并与已经发表的荞麦属植物相关序列进行了分子系统发育关系研究。结果表明,荞麦属中trnL-F的进化速率比matK快,而matK进化速率又比rbcL的进化速率快。荞麦属大粒组和小粒组组间遗传差异较大,小粒组内遗传多样性比大粒组内的高。用最大简约法和贝叶斯分析方法建构的系统树基本一致,由matK和trnL-F序列构建的树比rbcL构建的树有更好的拓扑结构。除个别材料外,荞麦属各材料形成大粒组和小粒组两个单系分支。苦荞、甜荞及细柄野荞(变)种内各居群间亲缘关系较近;金荞和硬枝野荞的遗传多样性较高,亲缘关系较远。苦荞与金荞的亲缘关系较甜荞近。基于matK和rbcL分析表明,花叶野荞和金荞、甜荞及其野生近缘种等大粒组材料亲缘关系较近;基于trnL-F分析表明,花叶野荞和疏穗野荞、硬枝野荞等小粒组材料亲缘关系较近,而和金荞、甜荞及其野生近缘种亲缘关系较远。
     2.对国产荞麦属24份材料核基因组内转录间隔区(ITS)进行克隆和测序,并与已经发表的荞麦属植物的相应序列进行系统发育关系研究。结果表明,所有材料的整个ITS区长度变化范围为578~660bp。其中5.8SrDNA为163~164bp,ITS1和ITS2长度变幅分别为195~265bp、216~228bp。序列间的遗传分化距离为0~0.128,平均为0.093;ITS1和ITS2的进化速率为5.8 S的3~9倍。荞麦属大粒组和小粒组组间遗传差异较大,小粒组内遗传多样性比大粒组内的高。用最大简约法和贝叶斯分析方法建构的系统树基本一致。除个别材料外,荞麦属各材料形成大粒组和小粒组两个单系分支。苦荞与金荞的亲缘关系较甜荞近。线叶野荞和长柄野荞、小野荞均在ITS1有68bp的缺失,但线叶野荞和硬枝野荞亲缘关系较近,和长柄野荞、小野荞的亲缘关系较远。F.pleioramosum和F.capillatum为细柄野荞的姊妹群。花叶野荞麦和甜荞及其野生近缘种的亲缘关系较近。
     3.利用酸性聚丙烯酰胺凝胶电泳(A-PAGE)和十二烷基磺酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)技术对76份栽培荞麦(苦荞54份,甜荞22份)的贮藏蛋白遗传多样性进行了评价。A-PAGE结果表明,栽培荞麦存在一定程度的醇溶蛋白等位变异,共分离出18条迁移率不同的醇溶蛋白谱带(多态性带占88.89%)。利用SDS-PAGE共检测到15条清蛋白条带,主要由分子量29~97.2 KDa的大分子寡聚蛋白组成。基于A-PAGE和SDS-PAGE得到材料间平均遗传相似系数(GS)分别为0.784(苦荞、甜荞分别为0.892、0.681)、0.732(苦荞、甜荞分别为0.864、0.633)。栽培荞麦种间存在较大遗传差异,甜荞贮藏蛋白遗传多样性比苦荞丰富。聚类分析可将供试材料分为3大类,相同地理来源的材料能够部分地聚成一类或亚类,表明贮藏蛋白所揭示的遗传关系与地理来源有一定相关性。
     4.对76份栽培荞麦(苦荞54份,甜荞22份)9个主要农艺性状及蛋白质含量进行了统计分析。结果表明,苦荞和甜荞主要农艺性状存在丰富的遗传变异。供试材料具有中、矮秆,主茎节数、花簇数、蛋白质含量适中,一级分枝数偏多、总分枝数偏少,千粒重、单株粒重偏低等特点。多元回归分析表明,主茎节数、一级分枝数、总分枝数、花簇数、千粒重是影响苦荞单株粒重的主要因素,而影响甜荞单株粒重的主要因素为株高、花簇数、生育期。通径分析表明,花簇数对苦荞、甜荞单株籽粒产量的直接效应最大。主成分分析将苦荞、甜荞9个主要农艺性状分别简化为5个和4个综合指标,其累积贡献率分别为87.77%和92.09%。基于性状表现,供试苦荞可分为低产晚熟型、多分枝高蛋白型和早熟粒重型等三种类型,供试甜荞可分为早熟矮秆粒重型和高产优质型等两种类型。聚类结果与其地理来源并不完全一致。据以上分析,筛选出一批综合性状较好或具有一个以上突出优良性状的材料,可供育种利用。
     5.采用原子吸收、原子荧光光谱法测定了59份栽培荞麦(苦荞38份,甜荞21份)种子中Ca、Fe、Mg、Mn、Zn、Cr、Cu、Pb、Cd、As及Hg等11种无机元素的含量,并根据各元素含量对供试材料进行聚类分析。结果表明,荞麦富含Ca、Mg、Cu、Cr等元素,Fe、Mn、Zn等含量也颇高。不同材料同一元素含量均达到(极)显著差异。苦荞中除Fe、Cr含量高于甜荞、Pb含量与之相当外,其他元素含量均低于甜荞。聚类分析将供试材料归为6类,聚类结果与材料地理来源并不完全一致。共筛选出PI 427235、PI 481653和PI 600909等9份Fe、Zn、Cr含量均很高的材料。
     6.研究荞麦初花期不同器官总黄酮含量的日变化趋势,探讨了药用荞麦最佳取样时间及取样部位。采用正交试验对荞麦总黄酮提取工艺条件进行筛选,得到了最佳提取条件:75%乙醇,物料比1∶25,65℃振荡提取2h。据此条件对4份来自不同地区的甜荞和苦荞不同器官总黄酮含量进行了日变化研究。结果表明,一天中同一品种不同器官黄酮含量均表现为花>叶>茎>根,且花、叶中的含量显著大于茎和根。不同品种各器官中总黄酮含量的日变化差异较大。其中,花和叶中总黄酮含量以13:00和16:00时为最高。药用甜荞和苦荞宜在下午13:00时到19:00时采收花和叶为佳。
Buckwheat belongs to Fagopyrum Mill.(Polygonaceae) and it distributs in Asia and Europe extensively.In general,only two species of buckwheat,namely common buckwheat(Fagopyrum esculentum) and tartary buckwheat(Fagopyrum eseulentum) are cultivated species.Many kinds of nutritional ingredients are rich in buckwheat.Flavones, flavonoids,sterols,fagopyrin,and thiamin-binding proteins in buckwheat seeds possess potential effects in treating some chronic diseases.In buckwheat,the main component of flavonoids(80%) is rutin.Rutin can reduce high blood pressure,decrease the permeability of the blood vessels,reduce the risk of arteriosclerosis,antagonize the increase of capillary fragility associated with haemorrhagic disease,and have an antioedema effect and antioxidant activity.Genetic diversity of buckwheat germplasms were studied based on biochemistry and morphological markers The main results were described as following:
     1.Three segments of chloroplast DNA(cpDNA),namely matK,rbcL and trnL-F spacer were determined in 24 taxon of Fagopyrum were cloned and sequenced,some related published sequences of Fagopyrum were analyzed in this paper.Molecular phylogenetic relationships of the related taxon of Fagopyrum were studied.The result indicated that evolutionary rate of trnL-F spacer was faster than that of matK,and evolutionary rate of matK was faster than that of rbcL in Fagopyrum,the genetic diversity between the cymosurn group and the urophyllum group was larger,and within the urophyllum group was higher than that of within the cymosum group.The phylogenetic relationships were inferred using the maximum-parsimony and Bayesian analyses,and the two methods produced trees with largerly congruent topology.Better phylogenetic resolution was obtained from the matK and trnL-F dataset compared to the rbcL dataset. Except for very few materials,the cymosum group and the urophyllum group formed two monophyletic branches,respectively,matK,rbcL and trnL-F spacer sequences within the species of F.tataricum and F.tataricum ssp.potanini,F.esculentum and F.esculentum ssp. ancestralis,F.gracilipes and F.gracilipes var.odantopterum were homologous and there had close relationships within these species and their subspecies.The genetic diversity of F. cymosum and F.urophyllum was higher,and the relationships within two species were farther,relatively.F.eymosum and F.tataricum were much more closely related than that of F.cymosum and F.eseulentum.Based on matK and rbcL analysis showed that F. polychromofolium had close relationships with the cymosum group,such as F.cymosum,F. esculentum and their wild relatives,based on trnL-F analysis showed that F. polychromofolium had closed relationships with F.caudatum and F.urophyllum which belong to the urophyllum group,while had distant relationships with F.cymosum,F. esculentum and their wild relatives.
     2.The internal transcribed spacer(ITS) regions of the rDNA were determined in 24 taxones of Fagopyrum were cloned and sequenced;some related published sequences of genus Fagopyrum were analyzed in this paper.The result showed that the sequence of ITS ranged from 578 to 660 bp in length.The 5.8S subunit of Fagopyrum was found to consist of 163 or 164 bp nucleotides,while the length of ITS1 and ITS2 varied from 199 to 265bp and from 216 to 228 bp,respectively.The sequences of ITS(ITS1 and ITS2) were about 3~8 times more variable than those of the 5.8S subunit.The genetic distances varied from 0 to 0.128,with an average of 0.093.The genetic diversity between the cymosum group and the urophyllum group was larger,and within the urophyllum group was higher than that of within the cymosum group.The phylogenetic relationships were constructed using the maximum-parsimony and Bayesian analyses,and the two methods produced trees with largely congruent topology.Except for very few materials,the cymosum group and the urophyllum group formed two monophyletic branches,respectively.F.cymosum and F. tataricum were much more closely related than that of F.cymosum and F.esculentum. Although a 68 bp gap in ITS1 found in F.lineare,F.statice and F.leptopodum,yet a close relationship between F.lineare and F.urophyllum and a more farther relationship among F. lineare with F.statice and F.leptopodum.F.pleioramosum and F.capillatum were the sister species of F.gracilipes.Based on ITS analysis,it was showed that F.polychromofolium had close relationships with F.esculentum and F.esculentum ssp.ancestralis.
     3.The genetic diversity of the storage proteins of 76 cultivated buckwheat accessions (54 accessions of tartary buckwheat and 22 accessions of common buckwheat) was characterized by A-PAGE and SDS-PAGE,respectively.A total of 18 prolamin bands were detected by A-PAGE,among which 88.89%bands were polymorphic,indicating that some prolamin genetic variation was observed in cultivated buckwheat.15 albumn bands based on SDS-PAGE were observed in accessions.Most intense bands were in the range of molecular weights from 29 to 97.2 kDa.The average of genetic similarity coefficient based on prolamin bands was 0.784(in F.tataricum and F.esculentum were 0.892 and 0.681, respectively),while on prolamin and albumn bands was 0.742(in F.tataricum and F. esculentum were 0.864 and 0.633,respectively).Accessions of F.tataricum and F. esculentum showed significant interspecific variation in the A-PAGE and SDS-PAGE profile of the storage proteins.The cluster analysis indicated that all the accessions could be divided into 3 groups.The genetic variations among cultivated buckwheat accessions were associated with their geographic origins in some degree.
     4.Nine mainly agronomic traits and grain protein content of 76 cultivated buckwheat accessions(54 accessions of tartary buckwheat and 22 accessions of common buckwheat) collected from seven countries,were investigated based on analysis of variance,correlation, principal component and cluster.Higher variations of the nine agronomic traits were observed.It has shown that these materials had mid-low stalk,moderate number of main stem nodes,number of inflorescences and grain protein content,more number of primary branches,shorter total number of branches,lower 1000-seed yield and seed yield per plant. Multiple regression analysis showed that node number of branch,number of primary branches,total number of branches,number of inflorescences and 1000-seed yield were the main traits affected seed yield per plant in tartary buckwheat,while in common buckwheat were the plant height,number of inflorescences and period of duration.The direct effect of number of inflorescences was strongest both in tartary buckwheat and in common buckwheat.9 mainly agronomic characters were changed into 5 and 4 indexes through principal components analysis and the principal factors were found to contribute 87.77% and 92.09%to yield in tartary buckwheat and in common buckwheat,respectively.By clustering analysis,all tartary buckwheat accessions were divided into four groups,namely low-yield and late-maturing type,multi-branch and high-protein type,early-mature and high weight type,all common buckwheat accessions were clustered into two groups, namely early-mature-low stalk and high weight type and high-yield and high-protein content type.The genetic distances based on agronomic traits were not associated with their geographic distribution.According to these main characters,a batch of accessions with one or some elite agronomic performances were screened out.
     5.The contents of element such as Ca,Fe,Mg,Mn,Zn,Cr,Cu,Pb,Cd,As and Hg in the seeds of 59 accessions of cultivated buckwheat(38 accessions of tartary buckwheat,21 accessions of common buckwheat) were determined by the method of atomic absorption spectrometry(AAS) and atomic fluorescence spectrometry(AFS).Cluster analysis was made based on the inorganic element's contents.The results showed that cultivated buckwheat was rich in the contents of Ca,Mg,Cu and Cr,and the contents of Fe,Mn and Zn were quite high.The same element's average content of different materials had significant or extremely significant deviation.Except that the contents of Fe and Cr were higher than those of in common buckwheat,Pb's content was approximately consistent to that of in common buckwheat,other element's contents in tartary buckwheat were all lower than those of in common buckwheat.59 varieties were divided into 6 groups based on the element's content,and the variation of cluster analysis was not much associated with its geographical distribution.Nine accessions(i.e.PI 427235,PI 481653and PI 600909,etc.) which had higher contents of Fe,Zn and Cr were selected out.
     6.The diurnal variation trend of the total flavonoids contents in different organs on early flowering of buckwheat were studied,and provided the best collecting time and organs.The orthogonal experimental design was used to screen the extraction process of total flavonoids in buckwheat.The optimal extracting conditions were 75%ethanol as solvent,raw material and solvent ratio 1:25,extracting temperature 65℃,extracting time 2h.The diurnal variation of total flavonoids content in different organs of 4 materials was determined in the optimum extracting conditions.The results showed that the total flavonoids contents in different organs of the same species with various harvesting time were as follows:the contents in flowers were the highest,then the contents in leaves,stems and roots,respectively.And the contents in flowers and leaves were significantly higher than that in stems and roots.The diurnal changes of the total flavonoids contents from different organs in the different varieties were also quite different.It had the highest contents at 13:00 pm and 16:00 pm for total flavonoids of the flowers and leaves of buckwheat.The optimal harvesting time of medicinal common buckwheat and tartary buckwheat were at 13:00 pm to 19:00 pm and the best organs were the flowers and leaves.
引文
[1]李安仁.中国植物志(第四十七卷,第二分册)[M].北京:科学出版社,2001,pp 108-116.
    [2]Lin R F,Zhou Y N,Wang R,et al.A study on the extract of tartary buckwheat.I.Toxicological safety of the extract of tartary buckwheat[A].Advances in Buckwheat Research[M],2001:602-607.
    [3]吴野敏,孙军.世界荞麦研究动向[J].世界农业,1992,(1):25-26.
    [4]叶能干.中国荞麦属的分类起源与演化[J]..荞麦动态,1993(1):3-11.
    [5]徐丽华,潘宏,赵英明.荞麦——一种新兴的多用途植物[J].国外农学-杂粮作物,1998,18(3):1-4.
    [6]Qing R W,Takao O,Li W.Research and development of new products from bitter-buckwheat [M].Current Advances in Buckwheat Research,1995,873-879.
    [7]杨克里.我国荞麦种质资源研究现状与展望[J].作物品种资源,1995,(3):11-13。
    [8]Zhao G,Tang Y,Hu Z,et al.Selection and application of tartary buckwheat new variety Xiqiao One.Advances in Buckwheat Research,2001:382-387.
    [9]Steward D L.The Polygonaceae of eastem Asia[M].Contributions from Gray Herbarium of Harvard University,1930,88:1-129.
    [10]Gross H.Remarques surles Polygonees de l'Asie Orientale[M].Bulletin de Geographie Botanique,1913,23:7-32.
    [11]Hedberg O.Pollen morphology in the genus Polygonum L.(s.lat.) and its taxonomical significance[M].Svensk Botanisk Tidskrift,1946,40:371-404.
    [12]Graham S A,Wood J C W.The genera of Polygonaceae in the southeastern United States[M].J.Arnold Arbor.Harv.Univ.,1965,46:91-121.
    [13]Ye N G,Guo G Q.Classification,origin and evolution of genus Fagopyrum in China[A].In:Lin R,Zhou M,Tao Y,Li J,Zhang Z eds.Proceedings of the 5th International Symposium on Buckwheat.Beijing:Chinese Agricultural Publishing House,1992,pp 19-28.
    [14]周荣汉著.药用植物分类学[M].中国上海:上海科技出版社,1988:239-259.
    [15]Roberty G,Vautier S.Les genres de Polygonacaes[M].Boissiera,1964,10:7-128.
    [16]Nakai Y.A new classification of Linnean Polygonum[M].Rigakka,1926,24:289-301.
    [17]Campbell CG.Buckwheat.In:Simmonds N W,ed.Evolution of crop plants[M].London:Longman.1976,235-237.
    [18]Ohnishi O.Search for the wild ancestor of buckwheat.I.Description of new Fagopyrum (Polygonaceae) species and their distribution in China and Himalayan hills[J].Fagopyrum,1998,(15):18-28.
    [19]Chen Q F.A study of resource of Fagopyrum(Polygonaceae) native to China[J].Botanical Journal of the Linnean Society,1999a,130:53-64.
    [20]Chen Q F.Hybridization between Fagopyrum(Polygonaceae) species native to China [J].Botanical Joumal of the Linnean Society,1999b,131:177-185.
    [21]Chen Q F.Discussion on the origin of cultivated buckwheat in genus Fagopyrum[J].Advances in Buckwheat Research,2001:206-213.
    [22]吴征镒主编.云南植物志(第十一卷)[M].北京:科学出版社,2000,pp 301-370.
    [23]Ohsako T,Ohnishi O.New Fagopyrum species revealed by morphogical and molecular analyses[J].Genes Genet.syst,1998,73(2):85-94.
    [24]Ohsako T,Yamane K,Ohnishi O.Two new Fagopyrum(Polygonaceae) species,F.gracilipedoides and F.jinshaense form Yunnan,China[J].Genes Genet.Syst.,2002,77(6):399-408.
    [25]Chen Q F.,Hsam Sai L.K.;Zeller Friedrich J.A study of cytology,isozyme,and interspecific hybridization on the big-achene group of buckwheat species(Fagopyrum,Polygonaceae)[J].Crop Sciences,2004,44(15):1511-1518.
    [26]夏明忠,王安虎等.中国四川荞麦属(蓼科)一新种——花叶野荞麦[J].西昌学院学报,2007,2(2)11-12.
    [27]Liu Jianlin,Tang Yu,Xia Mingzhong,et al.Morphological Characteristics and the Habitats of Three new Species of the Fagopyrum(Polygonaceae) in Panxi Area of Sichuan,China.Rroceedings of the 10th International Symposium on Buckwheat,Advances in Buckwheat Research,2007:46-49.
    [28]蒋俊方,贾星.四川大凉山地区是苦荞麦的起源地之一[J].荞麦动态,1990,12(1):18-19.
    [29]李钦元,杨曼霞.荞麦起源于云南初探[J].荞麦动态,1992,14(1):6-10.
    [30]Nakao S.Transmittance of cultivated plants through the Sino-Himalayan route,in Peoples of Nepal Himalaya(H.Kihara,ed.).Fauna and Flora Research Society[C],Kyoto.1957,pp397-420
    [31]林如法.中国荞麦[M].北京:中国农业出版社,1994:97-105.
    [32]Li Q,Yang M.Preliminary investigation on buckwheat origin in Yurman,China[A].In:in R,Zhou M,Tao Y,Li J,Zhang Z,eds.Proceedings of the 5th international Symposium on Buckwheat[C].Beijing:Chinese Agricultural Pulishing house,1992,pp 44-48.
    [33]Ohnishi O,Konishi T.Cultivated and wild buckwheat species in eastern Tibet[J].Fagopyrum,2001,18:3-8.
    [34]Tsuji K,Ohnishi O.Origin of cultivated Tartary buckwheat(Fagopyrum tataricum Gaert.)revealed by RAPD analyses[J].Genetic Resources and Crop Evolution,2000,47:431-438.
    [35]Tsuji K,Ohnishi O.Phylogenetic relationships among wild and cultivated Tartary buckwheat (Fagopyrum tataricum Gaert.) populations revealed by AFLP analyses[J].Genes Genet.Syst.,2001a,76(1),47-52.
    [36]李淑久,张惠珍,袁庆军,等.四种荞麦营养器官的形态学与解剖学比较研究[J].贵州农业科学,1992a,(5):10-14
    [37]李淑久,张惠珍,袁庆军.四种荞麦生殖器官的形态学研究[J].贵州农业科学,1992b,(6): 32-36.
    [38]周忠泽,赵佐成,汪旭莹,等.中国荞麦属花粉形态及花被片和果实微形态特征的研究[J].植物分类学报,2003,41(1):63-78.
    [39]Hirose T,Ujihara A,Kitayashi H,et al.Interspecific cross-compatibility in Fagopyrum according to pollen tube growth[J].Breeding Science.1994,44:307-314.
    [40]Hirose T,Ujihara A,Kitayashi H,et al.Pollen tube behavior related to self-incompatibility in interspecific crosses of Fagopyrum[J].Breeding Science.1995,45:65-70.
    [41]Ohnishi O,Matsuoka Y.Search for the wild progenitor of buckwheat Ⅱ.Taxonoamy of Fagopyrum(Polygonaceae) species based on morphology,isozymes and cpDNA variability[J].Genes and Genetic Systems,1996,71:383-380.
    [42]Minami M,Gomi M,Ujihara A.Pollen tube growth in interspecific crosses in Fagopyrum.J.Fac.Agr.Shinshu University,1992,29:129-135.
    [43]Ujihara A Y,Nakamura Y,Minami M.Interspecific hybridization in genus Fagopyrum.Properties of hybrids(F.esculentum×F.cymosum) through ovule culture[J].Gamma Field Symposia,1990,29:45-33.
    [44]Lee B S,Ujihara A,Minami M,et al.Breeding of interspecific hybrids in genus Fagopyrum.(4).Production of interspecific hybrids ovule culture among F.esculentum,F.tataricum and F.cymosum[J].Breed.Sci,1994,44(suppl.1):183.
    [45]Woo S H,WangY J,Campbell C G.Interspecific hybrids with Fagopyrum cymosum in the genus Fagopyrum[J].Fagopyrum,1999,16:13-18.
    [46]Shaikh N Y,Guan L M,Adachi T J.Failure of fertilization associated with absence of zygote development in the interspecific cross of F.tataricum×F.esculentim[J].Breed.Sci,2002,52(1):9-13.
    [47]吴渝生.荞麦主要农艺性状的遗传相关分析[J].云南农业大学学报,1996,11(4):258-262.
    [48]安守海,郑显明,宋志成,等.贵州省部分苦荞的农艺性状和品质特性[J].贵州农业科学,1997,25(4):42-45.
    [49]罗定泽,赵佐成,沈国坤,等.苦荞麦(Fagopyrum tataricum)栽培居群的聚类分析和主成分分析[J].四川师范大学学报(自然科学版),2000,(3):272-276.
    [50]张小燕,苏敏,卢宗凡,等.荞麦品种资源聚类分析[J].西北农业学报,2000,9(2):121-124.
    [51]盛晋华,张海明,李卫国.内蒙古自治区荞麦地方品种资源的研究[J].内蒙古农业大学学报,2000,21(3):7-12.
    [52]杨明君,郭忠贤,陈有清,等.苦荞麦主要经济性状遗传参数研究[J].内蒙古农业科技,2005(5).19-20
    [53]Zhang X L,Ren S H.A preliminary study on heritability and genetic correlation of main characters in common buckwheat[A].Proceeding of the 5th international symposium on buckwheat[C].Beijing:Agricultural Publishing House,1992,207-210.
    [54]李秀莲,林汝法,乔爱华.苦荞主要性状的相关及通径分析[J].国外农学——杂粮作物,1997, 17(2):25-27.
    [55]李秀莲,张耀文,赵雪英,等.苦荞数量性状遗传距离的测定[J].国外农学——杂粮作物,1998,18(2):27-29.
    [56]Morris M R.Cytogentic studies on buckwheat[J].Journal of Heredity,1951,42:85-89.
    [57]朱凤绥.荞麦不同类型染色体研究初报[J].细胞生物学杂志,1984,(3):130-131.
    [58]朱必才,高立荣.同源四倍体荞麦的研究Ⅰ.同源四倍体荞麦与二倍体普通荞麦的外部形态及细胞学比较[J].遗传,1988,10(6):6-8.
    [59]朱必才,田先华,高立荣.同源四倍体荞麦的细胞学研究[J].遗传,1992,14(1):1-4.
    [60]何凤发,田丰炉.荞麦染色体组型分析[J].西南农业大学学报,1992,14(5):522-524.
    [61]吴云江,陈庆富.二倍体和四倍体栽培苦荞的细胞学比较研究[J].广西植物,2001,21(4):344-346.
    [62]陈庆富.五个中国荞麦种的核型分析[J].广西植物,2001,21(2):107-110.
    [63]张长顺.荞麦染色体G-带BrdU-风油精显带的研究[J].生物学杂志,1997,14(4):27-28.
    [64]王健胜,柴岩,赵喜特,等.中国荞麦栽培品种的核型比较分析.西北植物学报,2005,25(6):1114-1117.
    [65]杜幸,陈敏燕,刘鹏:等.两个荞麦品种的核型分析[J].亚热带植物科学,2005,34(2):36-38.
    [66]Ohnishi O.Isozyme variation in common buckwheat,F.esculentum Moench,and its relatedspecies[A].Proceeding of the 2th international symposium on buckwheat[C].1983,39-50.
    [67]Ohnishi O.Geographical distribution of allozymes in natural populations of wild tartary buckwheat[J].Fagopyrum,2000,17:29-34.
    [68]Huh H W,Huh M K.Allozyme variation and population structure of common buckwheat,Fagopyrum esculentum,in Korea[J].Plant Germplasm Institute,2000,17:21-27.
    [69]Yamane K,Ohnishi O.Phylogenetic relationships among natural populations of perrmial buckwheat,Fagopyrum cymosum Meisn.,revealed by allozyme variation[J].Genet.Resour.Crop Evol,2001,48(1):69-77.
    [70]高洪君.侯旭光.李丹,等.六种荞麦过氧化物酶同工酶研究初报[J].哲里木畜牧学院学报,1994,4(2):53-56.
    [71]王转花.马文丽.荞麦同工酶多态分析[J].山西农业科学,1998,26(2):24-26.
    [72]罗定泽,侯鑫.西南地区金荞麦(Fagopyrum dibotrys(D.Don)Hara)居群遗传多样性研究[J].四川师范大学学报(自科版),2000,23(4):421-424.
    [73]罗定泽,侯鑫,赵佐成,等.西南地区硬枝野荞麦(Fagopyrum urophyllum)居群的遗传多样性研究[J].武汉植物学研究,2001,19(2):107-112.
    [74]赵佐成,周明德,王中仁,等.中国苦荞麦及其近缘种的遗传多样性研究[J].遗传学报,2002,29(8):723-734。
    [75]罗定泽,侯鑫,赵佐成,等.西南地区硬枝野养麦(Fagopyrum urophyllum(Bur.et Franch.)H.Gross)天然居群的等位酶变异[J].四川师范大学学报(自然科学版),2005,25(1):63-66.
    [76]#12
    [77]Dvoracek V,Cepkova P,Michalova A,et al.Seed storage protein polymorphism of buckwheat varieties(Fagopyrum esculentum Moench;Fagopyrum tataricum Gaert.)[A].Proceeding of the 9th international symposium on buckwheat[C].2004,412-418.
    [78]Nikhil K,Chrungoo A.Genetic diversity in accession soluble protein extracted from single seeds and RAPD based DNA fingerprinting[A].Proceeding of the 9th international Symposium on Buckwheat[C].2004,326-334.
    [79]Murai M,Ohnishi O.Population genetics of cultivated common buckwheat,Fagopyrum esculentum Moench.X.Diffusion routes revealed by RAPD markers[J].Genes and Genetic Systems,1996,71(4):211-218.
    [80]Aii J,Nagano M,Penner G A,et al.Identification of RAPD markers linked to the homostylar (Ho) gene in buckwheat(Fagapyrum)[J].Japanese Journal of Breeding,1998,48(1):59-62.
    [81]Suvorova G N,Funatsuki H,Terami F.Phylogenetic relationships among cultivars,species,and hybrids in the genus Fagopyrum Mill.assessed by RAPD analysis[J].Russian Journal of Genetics,1999,35(12):1428-1432.
    [82]Tsuji K,Ohnishi O.Phylogenetic position of east Tibetan natural populations in Tartary buckwheat(Fagopyrum tataricum Gaert.) revealed by RAPD analyses[J].Genetic Resources and Crop Evolution,2001b,48:63-67.
    [83]Kump B,Javomik B.Genetic diversity and relationships among cultivated and wild accessions of tartary buckwheat(Fagopyrum tataricum Gaertn.) as revealed by RAPD markers[J].Genetic resources and crop evolution,2002,49(6):565-572.
    [84]Sharma T R,Jana S.Random amplified polymorphic DNA(RAPD) variation in Fagopyrum tataricum Gaertn.accessions from China and the Himalayan region[J].Euphytica,2002a,127:327-333.
    [85]Sharma T R,Jana S.Species relationships in Fagopyrum revealed by PCR-based DNA fingerprinting[J].Theor.Appl.Genet,2002b,105(2-3):306-312.
    [86]Iwata H,Imon K,Tsumura Y,et al.Genetic diversity among Japanese indigenous common buckwheat(Fagopyrum esculentum) cultivars as determined from anaplified fragment length polymorphism and simple sequence repeat markers and quantitative agronomic traits[J].Genome.National Research Council of Canada,2005,48(3):367-377.
    [87]Anusuya R.,Nikhil C.Genetic variation and species relationships in Himalayan buckwheats as revealed by SDS-PAGE of endosperm proteins extracted from single seeds and RAPD based DNA fingerprints[J].Genet Resour Crop Evol,2007,54:767-777.
    [88]王莉花,殷富有,刘继梅,等.利用RAPD分析云南野生荞麦资源的多样性和亲缘关系[J].荞麦动态,2004(2):10-12.
    [89]樊冬丽,牛西午,马小军,等.苦叶七种质资源的随机扩增多态性分析[J].时珍国医国药,2006,17(12):2471-2473.
    [90]谭萍,王玉株,李红宁,等.十种栽培苦荞麦的随机扩增多态性DNA(RAPD)研究[J].种子,2006,25(7):46-49.
    [91]赵丽娟,张宗文,黎裕,等.苦荞种质资源遗传多样性的ISSR分析[J].植物遗传资源学报,2006,7(2):159-164.
    [92]Adachi T,Mizushima K,Ogura K,et al.Chloroplast genomes of genus Fagopyrum.Ⅱ.Phylogenetic relationship among the main three species.Jpn.J.Breed.1992,42(suppl.1):272-273.
    [93]Yasui Y,Ohnishi O.Comparative study of rbcL gene sequences in Fagopyrum and related taxa[J].Genes and Genetic Systems,1996,71(4):219-224.
    [94]Yasui Y,Ohnishi O Interspecific relationships in Fagopyrum(Polygonaceae) revealed by the nucleotide sequences of the rbcL and accD genes and their intergenetic region[J].American Journal of Botany,1998a,85:1134-1142.
    [95]Yasui Y,Ohnishi O.Phylogenetic relationships among Fagopyrum species revealed by nucleotide sequences of the ITS region of the nuclear rRNA gene[J].Genes and Genetic Systems,1998b,73:201-210.
    [96]Ohsako T,Ohnishi O.Intra-and Interspecific phylogeny of wild Fagopyrum(Polygonaceae)species based on nucleotide sequences of noncoding regions in chloroplast DNA[J].American Journal of Botany,2000,87(4):573-582.
    [97]Ohsako T,Ohnishi O.Nucleotide sequence variation of the chloroplast trnK/matK region in two wild Fagopyrum(Polygonaceae) species,F.leptopodum and F.statice[J].Genes and Genetic Systems,2001,76:39-46.
    [98]Yamane K,Yasui Y,Ohinishi O.Intraspecific cpDNA variations of diploid and tetraploid perennial buckwheat,Fagopyrum cymosum(Polygonaceae)[J].Am.J.Bot,2003,90:339-346.
    [99]Ohnishi O.Discovery of the wild ancestor of common buckwheat[J].Fagopyrum,1991,11:5-10.
    [100]Ohnishi O.Buckwheat in Karakoram and the Hindkush[J].Fagopyrum,1994,14:17-25.
    [101]Ohnishi O.Discovery.of new Fagopyrum species and its implication for the study of evolution of Fagopyrum and the origin of cultivated buckwheat[A].In Proceedings of the 6th International Symposium of Buckwheat at lna[C],1995,175-190.
    [102]Tsuji K,Yasui Y,Ohnishi O.Search for Fagopyrum species in eastern Tibet.Fagopyrum,1999,16:1-6.
    [103]Minami M,Ujihara A,Cmapbell C.Morphology of semi-dwarf common buckwheat 'G410'and its response to growth conditions[A].Advances in buckwheat research.Proceeding of the 7th international symposium on buckwheat[C].1998,285-292.
    [104]Chai Y,Feng B L,HuY G,et al.Analysis on the rutin other quality traits in different buckwheat genotypes[A].Advances in buckwheat research.Proceeding of the 9th international symposium on buckwheat[C].2004:201-201.
    [105]Xiong Z,Yan C,Bin W,et al.A study on protein properties of buckwheat seed[A].Proceeding of the 5th International symposium on buckwheat[C].China,1992,20-26,pp 100-105.
    [106]魏益民,张国权.同源四倍体荞麦子粒品质性状研究[J].中国农业科学,1995,28(增刊):34-40.
    [107]杨克理,陆大彪.不同类型荞麦籽粒营养成分与营养价值[J].内蒙古农业科技,1990,(6):14-16.
    [108]尹礼国,钟耕,刘雄,等.荞麦营养特性、生理功能和药用价值研究进展[J].粮食与油脂,2002,(5):32-34
    [109]张宏志,管正学,刘湘元.荞麦资源在我国的开发利用[J].资源科学,1996(4):38-44.
    [110]Dietrych,Szostak D.Effect of processing on flavonid content in buckwheat grain[J].J.Agri.Food Chem,1999,47(10):4384-4387.
    [111]章华伟,刘邻渭,白雪莲.荞麦淀粉糊特性的研究[J].食品科学,2003,24(10):43-45.
    [112]宋金翠.荞麦产业具有良好的发展前景[J].食品科学,2004,25(10):415-419.
    [113]顾尧臣.小宗粮食加工(四)—荞麦加工[J].粮食与饲料工业,1999(7):19-22.
    [114]胡亚军,赵夷年,许佩珉,等.北京地区肺癌患者血硒水平研究[J].中华流行病杂志,1993,14(6):346.
    [115]王峰峰,奉小兵,王明正,等.苦荞麦对大鼠血糖、血脂的影响[J].中国中西医结合杂志,1995,15(5):296-297.
    [116]张宏伟,李延红,徐荷,等.荞麦饲喂与血糖关系的实验研究明[J].劳动医学,2001,18(2):93-95.
    [117]高铁样,游秋云.复方苦荞麦对Ⅱ型糖尿病大鼠治疗作用的实验研究[J].中国中医药科技,2003,10(1):15-17.
    [118]赵明和,何玲玲,李慧娟.鞑靼荞食用药用研究[J].粮食与油脂,1995(4):4-7.
    [119]李丹.苦荞麦加工与利用研究[D].博士学位论文.无锡轻工业大学,2001.
    [120]丁文军,柴之芳,钱琴芳,等.铬的代谢和葡萄糖耐量因子的研究[J].微量元素与健康研究,1997,14(2):53-55.
    [121]冯晋光,李亚玉,于艳梅.非胰岛素依赖型糖尿病患者血清微量元素的研究[J].营养学报,1997,19(4):458-460.
    [122]韩淑英,贾秀荣,喇万英.荞麦提取物对血脂及脂质过氧化产物丙二醛的影响[J].华北煤炭医学院学报,2002,4(3):282-253.
    [123]韩淑英,吕华,朱丽莎.荞麦种子总黄酮降血脂、血糖及抗脂质过氧化作用的研究[J].中国药理学通报,2002,17(6):694-696.
    [124]张政.苦荞蛋白复合物的营养成分及其抗衰老作用的研究[J].营养学报,1999,21(2):159-162.
    [125]Richard G O,Jeffrey D P.Chloroplast DNA systematics:a review of methods and data analysisi [J].Am.J.Bot.1994, 81: 1205-1224.
    [126] Kenneth M.C, Mark W C, Whitten W M, et al. A phylogenetic analysis of the Orchidaceae: evidence from rbcL nucleotide sequences. Am.J.Bot.1999. 86: 208-224.
    [127] Hiorkai S, Takeshi A, Pintaud J C, et. al. Phylogenetic relationships within Arauecariaceae based on rbcL gene sqeuenecs. Am. J.Bot. 1998, 85: 1507-1516.
    [128] Petra K, Paul K. Phylogenetic relationships in Selaginellaceae based on rbcL sequences[J]. Am.J.Bot, 2002, 89: 506-517.
    [129] Qiu Y L, Chase M W, Parks C R. A phylogenetic reappraisal of the fossil Magnolia rbcL sequence[J]. Am. J. Bot., 1993, 80: 172-173.
    [130] Chase M W, Slotis D E, Olmstead RG, et al. Phylogentics of seed plants: an analysis of nucleotide sequences from the plastid gene[J]. Ann.Missouri.Bot.G. 1993, 80: 528-586.
    [131] Khidir W H, Lawrence A A. Evolutionary implications of matK indels in Poaceae[J]. AmJ.Bot. 1999, 86: 1735-1741.
    [132] Khidir W H, Thomas B, Kai M r, et al. Phylogeny based on matK sequence information [J]. Am.J.Bot., 2003, 90: 1758-1776.
    [133] Kenneth M C, Mark W C, Willima R A, et al. Molecular systematics of Malpighiaceae: evidence from plastid rbcL and matK sequences[J]. Am.J.Bot., 2001, 88: 1847-1862.
    [134] Taberlet P, Gielly L, Pautou G, et al. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology, 1991, 17: 1105-1109.
    [135] Mason-Gamer R J, Orme N L, Anderson C M. Phylogenetic analysis of North American Elymus and the monogenomic Triticeae (Poaceae ) using three chloroplast DNA data sets[J]. Genome, 2002, 45 (6): 991-1002.
    [136] Mason-Gamer R J. Reticulate evolution, introgression, and intertribal gene capture in an allohexaploid grass [J]. Systematic Biology, 2004, 53: 25-37.
    [137] Liu Q L, Ge S, Tang H B, et al. Phylogenetic relationships in Elymus (Poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences[J]. New Phytologist, 2006, 170: 411-420.
    [138] Kishima Y, Ogura K, Mizukami K, et al. Chloroplast DNA analysis in buckwheat species: phylogenetic relationships, origin of the reproductive systems and extended inverted repeats[J]. Plant Sci., 1995, 108: 173-179.
    [139] Doyle J J, Doyle J L. A rapid DNA isolation procedure from small quantities of fresh leaf tissues. [J].Phytochem Bull, 1987, 19: 11-15.
    [140] Yasui Y, Ohnishi O. Phylogenetic relationships among Fagopyrum species revealed by DNA sequencing of rbcL, accD and their intergenic region. Unpublished, 1997
    [141] Thompson J D, Gibson T J, Plewniak F, et al. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Research, 1997, 24: 4876-4882.
    [142] Swofford D L. PAUP*v.4.0b10: phylogenetic analysis using parsimony (*and other methods) [M]. Sinauer, Sunderland, Massachusetts, USA, 2002.
    [143] Huelsenbeck J P, Ronquist F. MRBAYES: Bayesian inference of phylogeny[J]. Bioinformatics, 2001, 17: 754-755.
    [144] Nylander J A A. MrModeltest 2.0. Program distributed by the author[M]. Evolutionary Biology Centre, Uppsala University, Sweden, 2004.
    [145] Yang Z. Estimating the pattern of nucleotide substitution[J]. Journal of Molecular Evolution 1994, 39: 105-111.
    [146] Palmer J D.Chloroplast DNA evolution and biosystematics uses of chloroplast DNA variation. In: CleggMT (ed) [J]. Plant molecular evolution.Am Nat, 1987, 130, Supplement: 6-29.
    [147] Wolfe K H, Sharp P M Rates of nucleotide substitution vary greatly among plant mitoehondrial, chloroplast, and nuelear DNAs[J]. Proc Natl Acad Sci, USA, 1987, 84: 9054-9058.
    [148] Clegg M T, Learn G H, Golenberg E M. Molecular evolution of chloroplast DNA[M]. In: Selander et al. (eds) Evolution at molecular level. Sinauer Associates. Sunderland, Massachusetts, 1991, ppl35-149.
    [149] Parducii L, Szmidt A E. PCR-RFLP of cpDNA in the genus Abies[J].Theor. Appl. Genet., 1999, 98: 802-808.
    [150] Parani M, Rajesh K, Lakshmi M, et al.Species identification in seven small millet species using polymerase chain reaction restrition fragment length polymorphism of trnS-psbC gene region[J]. Genome, 2001, 44:. 495-499.
    [151] Parani M, Lakshmi M, Ziegenhagen B. et al. Molecular phytogeny of Mangrove Ⅶ PCR-RFLP of trnS-psbC and rbcL gene regions in 24 mangrove and mangrove associate species. Theor. Appl. Genet., 2000, 100: 454-460.
    [152] Schilling E E. Phylogenetic analysis of Helianthus (Asteraceae) based on chloroplast DNA restriction-site data [J]. Theor Appl Genet, 1997, 94: 925-933.
    [153] Nishimoto Y, Ohnishi O, Hsegawa M. Topological incongruence between nuclear and chloroplast DNA trees suggesting hybridization in the urophyllum group of the genus Fagopyrum (Polygonaceae) [J]. Genes Genet Syst., 2003, 78: 139-153.
    
    [154] 陈之端,冯昊. 植物系统学进展[M]. 北京: 科学出版社, 1998.
    
    [155] Amheim N. Concerted evolution of multigene families.IN M.Nei and R.K.Koeho[eds.][M]. Evolution of genes and proteins, 38-61.Sinauer, Sunderlnad, MA.1983.
    [156] Campbell C S, Baldwin B G, M.J et al. A phylogeny of Maloideae (Rosaceae) from sequences of the internal transcribed spacers of nuclear ribosomal DNA[J]. Am. J.Bot, 1993, 80, 135.
    [157] Baldwin B G Molecular phylogenetics of Calycadenia (Compomtae) based on ITS sequences of nuclear ribosomal DNA : choromosomal and morphological evolution reexmained[J].Am.J.Bot.1993, 80: 220-238.
    [158] Baldwin B G, Snaderson M J, Potter M , et al. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny[J]. Ann. Missouri Bot.Gard, 1995, 82: 247-277.
    [159] Sang T, Crawofrd D J, Sutessy T F. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonies (Paeonia) [J].Am.J.Bot.1995a, 84: 1120-1136.
    [160] Sang T, Crawford D J, Sutessy T F.Documentation of reticulate evolution in Paeonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution[M]. Poreeedings of the national academy of science, USA, 1995b, 92: 6813-6817.
    [161] Zhang D, Sang T. Physical mapping of ribosomal RNA genes in Peonies (Paeonia, Paeoniaceae) by fluorescent in stiu hybridization : implications for phylogeny and concerted evolution[J].Am.J.Bot.1999, 86: 735-735.
    [162] Feliner G N, Larena B G, Aguilar J F. Fine-scale geographical structure, intra-individual polymorphism and recombination in nuclear ribosomal internal transcribed spacers in Armefia (Plumbaginaceae) [J]. Annals of botany, 2004, 93: 189-200.
    [163] Volkov R A, Borisjuk N V, Panchuk I I, et al. Elimination and rearrangement of parental rDNA in the alloterpaloid nicotiana tabacum[J]. Molecular biology and evolution, 1999, 16: 311 -320.
    [164] Sun G Interspecific polymorphism at non-coding regions of chloroplast, mitochondrial DNA and rRNAIGS region in Elymus species[J]. Hereditas, 2002, 137 (2), 119-124.
    [165] Stebbins G L, Pun FT. Artificial and natural hybrids in the Gramineae, tribe Hordeae. V. Diploid hybrids of Agropyron[J]. American Journal of Botany, 1953, 40: 444-449
    [166] Wendel J F, Schnabel A, Seelanan T.Bidirectional interiocus concerted evolution following allopolyploid speciation in cotton (Gossypium) [M]. Proccedings of the National Academy of Sciences, USA, 1995, 88: 2540-2544.
    [167] Skrabanja. Protein-polyphenol interactions and in vivo digestibility of buckwheat groat proteins [J].Pflu gers Archiv, 2000, 440: 129-131.
    [168] Hiroyuki T.A buckwheat protein product suppresses gallstone formation and plasma cholesterol more strongly than soy protein Isolate in Hamsters[J].Nutr., 2000, 130 (7): 1670-1674.
    [169] Kayashita J, Shimaoka I, Nakajoh M, et al. Consumption of a buckwheat protein extract retards 7, 12-dimethylbenzanthracene induced mammary carcinogenesisin rats [J].Biosci. Biotechnol. Bio chem, 1999, 63 (4): 1837-1839.
    [170] Liu Z H, Ishikawa W, Huang X X, et al. A buckwheat protein product suppresses 1, 2-dimethylhydrazine induced colon carcinogenesis in rats by reducing cell proliferation[J].The Journal of Nutrition, 2001, 131 (6): 1850-1853.
    [171] Kayashita J, Shimaoka I, Nakajoh M. Hypochole-sterolemic effect of buckwheat protein extract in rats fed cholesterol enrich diets [J]. Nutr Res, 1995, 15: 691 -698.
    [172] Kayashita. Consumption of buckwheat protein lowers plasma cholesterol and raises fecal neutral sterols in cholesterol of its low digestibility [J]. The Journal of Nutrition, 1997, 127: 1395-1400.
    [173]Kayashita J,Shimaoka I.Muscle hypertrophy in rats fed on a buckwheat protein extract[J].Biosci.Biotechnol.Biochem,1999,63(7):1242-1245.
    [174]Oka T,Ohwada K.Arginine-enriched solution induces a marked increase in muscle glutamine concentration and enhances muscle protein synthesis in tumor-bearing rats[J].Parenter.Enteral Nutr.,1994,18:491-496.
    [175]Draper S R.ISTA vatiety committee report of the working group for biochemical tests for cultivar identification 1983-1986.Seed Sci Technol,1987,15:431-434.
    [176]Nei M.Analysis of gene diversity in subdivided population.Proc Nat Acad Sci USA.1973,70:3321-3323
    [177]Bagawan I I,Ravikumar R L.Strong undesirable linkages between seed yield and oil componentsa problem in safflower improvement.5th International Safflower Conference 23-27 2001,Williston,North Dokota,Sidney,Montona USA.
    [178]郭志军,权伍荣,于寒松,等.乌克兰引种荞麦与当地荞麦种子清蛋白和球蛋白SDS-PAGE 比较分析[J].食品科技,2007(7):86-88.
    [179]Marija L,Ivan K.Buckwheat(Fagopyrum esculentum Moench) low molecular weight seed proteins are restricted to the embryo and are not detectable in the endosperm[J].Plant Physiology and Biochemistry,2005,43(9):862-865.
    [180]舒守贵,冯波,任燕,等.岷江上游河谷甜荞和苦荞种子贮藏蛋白的初步研究[J].荞麦动态,2006(2):19-23.
    [181]赵钢,唐宇.荞麦过氧化物同工酶研究[J].荞麦动态,1990,(2):10-15.
    [182]许谨,周小梅,范玲娟,等.荞麦RAPD指纹图谱的建立及在品种鉴定中的应用[J].山西大学学报(自然科学版),2006,29(2):194-197.
    [183]Wang Z H,Zhang Z,Lin R.et al.Seed protein diversity of buckwheat in China.Current advances in buckwheat research[M].Japan:Shinshu University Press,1995:411-417.
    [184]侯永翠,郑有良,魏育明.青藏高原近缘野生大麦醇溶蛋白遗传多样性分析[J].西南农业学报,2004,17.545-551
    [185]唐宇,赵钢.苦荞主要经济性状遗传力和遗传进度的初步研究[J].荞麦动态,1990(1):3-6.
    [186]杨克理,陆大彪,赵兴泉.普通荞麦品种若干数量性状的相关和通径分析[J].内蒙古农业科技,1990,(1):11-14.
    [187]Alekseava E C.Buckwheat——a kind of multi-purpose crop[C].Proceedings of 5th international symposium on buckwheat,1992,41-43.
    [188]Taylor D P,Obendorf R L.The limit of fruiting habit on buckwheat[C].Proceedings of 5th international symposium on buckwheat,1992,20-26.
    [189]任树华.甜荞单株产量构成因素通径分析[C].第五届国际荞麦会议论文集,1992,218-220.
    [190]于万利,王思远,李殿中,等.甜荞产量性状相关分析[J].吉林农业大学学报,1992,14(3):21-24.
    [191]唐国顺,毛建昌.大巴山区荞麦种质资源主要农艺性状与单株产量的通径分析[J].陕西农业科 学,1996(4):10-11.
    [192]Sherchand K,Ujihara A.A studies on some morphological and agronomical traits of buckwheat in Nepal[M].Current Advances in Buckwheat Research,1995,pp:285-293.
    [193]李秀莲,林汝法,乔爱花.苦荞主要性状遗传力和遗传相关研究[J].山西农业科学,1997,25(4):20-22.
    [194]唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学出版社,2002.
    [195]明道绪.高级生物统计与试验设计[M].四川:四川农业大学研究生处,2000.
    [196]张尧庭,方开泰.多元统计分析引论[M].北京:科学出版社,1993.
    [197]王晓通,朱攀高,霍金龙等.7种梅花鹿产品中水解氨基酸含量的聚类分析[J].中国畜牧杂志.2004,40:51-52
    [198]韩志萍,曹艳萍.甜荞麦不同部位总黄酮含量测定[J].食品研究与开发,2005,26(3):147-149.
    [199]韩淑英,王树华,刘江,高辉.HPLC测定荞麦中芦丁的含量[J].华西药学杂志,2007,22(3):335-336.
    [200]刘仁杰,卢垂文,郭志军,王玉华,胡难辉.不同生长期荞麦苗中总黄酮含量的变化研究[J].吉林农业科学,2007,32(6):58-60.
    [201]唐宁,赵刚.荞麦中黄酮含量的研究[J].四川农业大学学报,2001,19(4):352-354.
    [202]张宏志,管正学,田晓娅.分光光度法测定荞麦中芦丁的含量[J].光谱实验室,1996,13(3):24-27.
    [203]张琪,刘慧灵,朱瑞,等.苦荞麦中总黄酮和芦丁的含量测定方法的研究[J].食品科学,2003,24(7):113-116.
    [204]冯晓英,陈庆富.大野荞不同器官中总黄酮含量的测定[J].贵州农业科学,2007,35(4):15-16.
    [205]彭德川,唐宇,孙俊秀,等.苦荞和几种野生荞麦中黄酮含量的测定和比较[J].苦荞产业经济国际论坛论文集,2006,(2):91-94.
    [206]赵玉平,肖春玲.苦荞麦不同器官总黄酮含量测定及分析[J].食品科学,2004,25(10):264-266.
    [207]李红宁,王玉珠,张萍,等.六种栽培甜养麦黄酮类化合物含量的比较[J].湖北农业科学,2007,46(5):831-832.
    [208]张怀珠,郭玉蓉,牛黎莉,等.荞麦不同生长期黄酮含量的动态研究[J].食品工业科技,2006,27(8):71-73.
    [209]王玉珠,张萍,李红宁,谭萍.十种栽培苦荞麦生物类黄酮含量的比较研究[J].食品研究与开发,2007,28(9):121-123.
    [210]刘清,王敏群,孙丽枫,等.荞麦不同组成部分中金属元素含量及分析[J].中国卫生检验杂志,2007,17(7):1218-1219.
    [211]刘三才,朱志华,张晓芳,等.火焰原子吸收光谱法测定荞麦中铁锌钙的含量[J].现代科学仪器,2007,(1):72-73.
    [212]陶明,冯静,刘洪.火焰原子吸收法测定苦荞麦制品中的微量元素[J].西南民族大学学报.自然科学版,2006,32(6):1163-1165.
    [213]陶明,马长英.火焰原子吸收光谱法测定苦荞麦制品中钙、镁的含量[J].光谱实验室,2006,23,(5):941-943.
    [214]刘立行,齐娜.非完全消化——火焰原子吸收法测定荞麦中的铜铁锰[J].天津师范大学学报(自然科学版),2006,26(4):17-19.
    [215]张宏志.荞麦中的微量元素与健康[J].微量元素与健康研究,1995,12(4):42-43.
    [216]马威,管竞环.植物类中药辛、甘、苦味的定量判别研究[J].微量元素与健康研究,2004,21(1):22-24.
    [217]中国标准出版社总编室.中国国家标准汇编[M].北京:中国标准出版社,2002,12.
    [218]董顺福,朱志国.速效救心丸中Ca,Mg,Fe,Cu,Zn的测定及Ca/Mg,Cu/Zn比值分析[J].光谱学与光谱分析,2002,22(3):478-479.
    [219]董顺福,朱志国.天保宁片方剂中无机元素含量测定[J].光谱学与光谱分析,2003,23(1):201-202.
    [220]龙文韬,李婷婷,劳远司,等.分光光度法测定瓜果类蔬菜中铁的含量[J].微量元素与健康研究,2004,21(5):34-35.
    [221]吕文英,吕品.中药丹参中6种无机元素含量的测定与研究[J].微量元素与健康研究,2001,18(4):38-39.
    [222]董顺福,韩丽琴,朱志国,等.治疗心血管疾病中成药物中无机元素模糊聚类分析[J].中成药,2003,25(4):316-319.
    [223]程南征,胡晓林,姜桂荣.糖尿病病人和健康人的血铬尿铬含量[J].营养学报,1987(9):265-266
    [224]Li S Q,Zhang Q H.Advances in the development of functional foods from buckwheat[J].Crit.Rev.Food Sci.Nutr,2001,41(6):451-464.
    [225]Suzuki,Tateo.Content and distribution of rutin in buckwheat[J].New Food Ind.,1987,29(6):29-32
    [226]Bernadetta K,Zuzana M.Prophylactic components of buckwheat.Food Research International,2005,38(5):561-568.
    [227]刘淑梅,韩淑英,张宝忠,等.荞麦种子总黄酮对糖尿病高脂血症大鼠血脂、血糖及脂质过氧化的影响[J].中成药,2003,(8):662-663.
    [228]李洁,梁月琴,郝一彬.苦荞麦黄酮降血脂作用的实验研究[J].山西医科大学学报,2004,(6):570-570.
    [229]汪德清,沈文梅,田亚平,等.黄芪总黄酮对羟自由基所致哺乳动物细胞损伤的防护作用,中国中药杂志[J].1995,20(4):240-242.
    [230]张美莉,胡小松.荞麦生物活性物质及其功能研究展[J].杂粮作物,2004,24(1):26-29.
    [231]Watanabe M,Sato A,Osawa R,et al.Antioxidant activity of buckwheat seed extracts and its rapid estimate for evaluation of breeding materials[J].Jan Soc Food Sci Technol,1995,42(3): 649-655.
    [232]Przbylski R,Lee Y C,Eskin N A M Antioxidant and radical-scavenging activities of buckwheat seed components[J].Journal of the American Oil Chemists' Society,1998,75(11):1595-1601.
    [233]Hvsam S R,Cillard D.Hydroxy radical scavenging activity of flavonoids[J].Phytochemistry,1987,18(9):2489-2491.
    [234]李丹,肖刚,丁霄霖.苦荞黄酮清除自由基作用般研究[J].食品科技,2000,(6):62-64.
    [235]李丹,肖刚,丁霄霖.苦荞抗氧化作用的研究[J].无锡轻工大学学报,2001,(1):44-47.
    [236]万紫英,赵亚军,李琳,等.天然食品抗氧化剂——黄酮类化合物[J].河北农业大学学报,1998,18(3):317-322.
    [237]欧阳光察,薛应龙.植物苯丙烷类代谢的生理意义及其调控[J]植物生理学通讯,1988,24(3):9-16.
    [238]Subranmaniam R,Reinold S,Molitor EK,et al.Structure,inheritance,and expression of hybrid poplar(Populus trichocarpa×Populus deltoides) phenylalanine ammonia-lyase genes[J].Plant Physiology,1993,(102):71-83.
    [239]唐宇,赵钢,任建川.荞麦中总黄酮和芦丁含量的变化[J].植物生理学通报,1989,(1):33-35.
    [240]薛应龙,欧阳光察,澳绍根.水稻幼苗中PAL活力的动态变化[J].植物生理学报,1983,9(3):301-306.
    [241]刘鸿年,刘发敏.茶鲜叶苯丙氨酸解氨酶的提取及其活性测定[J].中国茶叶,1989(1):4-5.
    [242]李元,岳明.紫外辐射生态学[M].北京:环境科学出版社,2000,99-107.
    [243]刘金福,李晓雁,孟蕊.苦荞发芽过程中促进黄酮合成的因素初探[J].食品工业科技,2006,(10):106-108.
    [244]王爱国,陈庆富.荞麦属植物叶片及其愈伤组织中的总黄酮含量[J].贵州农业科学,2006,34(2).14-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700