用户名: 密码: 验证码:
连铸过程铸坯动态轻压下压下模型的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连铸坯动态轻压下技术已成为改善连铸坯中心偏析和疏松最有效手段之一,是现代连铸机技术先进性的一个重要标志。本文以国家技术创新计划项目《板坯连铸机动态轻压下技术的研究、开发与应用》和《某厂大方坯连铸机动态轻压下工艺控制技术研究》为依托,进行了连铸板坯和方坯动态轻压下过程关键工艺控制模型——压下模型的研究开发,并在实际生产中进行应用研究。本文的主要研究内容和取得主要结果如下:
     1.连铸坯轻压下压下率理论模型的建立。通过对轻压下过程质量流量特征分析,理论推导获得了板坯/方坯压下率模型,该模型完整描述了任意矩形铸坯断面内凝固收缩、热收缩、铸坯变形对压下率的影响,即:式中:VRG为压下率,VSZ为拉速,Xsuf为铸坯宽度,Ysuf为铸坯厚度,x为沿宽度方向的坐标,y为沿厚度方向的坐标,z为沿拉坯方向的坐标,ρL、ρS分别为钢液相、固相密度,ρ为等效密度,由ρLfL+ρS(1-fL)表示,fL为液相率。
     2.连铸坯压下率理论模型的求解方法研究。结合实际轻压下过程,提出了压下率理论模型求解方法。即忽略变形对固液相断面形状的影响,单独求解由温度变化引起的固液相密度变化对压下率的影响,简化的压下率模型即:
     变形对压下率的影响通过压下效率模型来计算。
     3.连铸坯轻压下压下效率模型的建立。在理论分析轻压下过程铸坯的变形基础之上,经过理论推导,提出了压下效率模型的准确计算公式,该式可计算任意形状铸坯轻压下过程的压下效率,即:式中:η为压下效率,ΔAi为液芯减少面积,ΔAH为铸坯表面压下面积。
     4.连铸坯压下率的数值分析研究。结合板坯/方坯的铸机条件,采用有限元数值计算方法对铸坯传热过程进行求解,得到了不同拉速、钢种、断面尺寸下压下率的取值范围与变化规律。研究结果表明:板坯/方坯的压下率和压下速率均沿拉坯方向近似线性减少;板坯/方坯的平均压下率与拉速呈线性减少关系;板坯/方坯的压下速率取值范围不随拉速的变化而变化;钢种对板坯/方坯压下率和压下速率的影响小;宽度对板坯/方坯的压下率的影响均很小;厚度对压下率影响大,厚度越大,压下率在板坯/方坯轻压下入口、出口值就越小,在压下区间内减少越平缓;宽度越大,厚度增加时方坯的平均压下率减少越快,而板坯的平均压下率减少程度不变。
     5.连铸坯压下效率的数值分析研究。结合某厂板坯和方坯实际铸机条件,对铸坯轻压下过程进行三维有限元数值计算,获得了不同压下量、液芯厚度、钢种、断面尺寸下压下效率的取值范围与变化规律。结果表明:板坯的压下效率在压下量小于2.3mm时,压下效率随压下量的增加而增加,压下量大于2.3mm后,压下效率不再随压下量的增加而增加,保持某个定值;方坯的压下效率在压下量小于0.6mm时,压下效率随压下量的增加而增加,在压下量为0.6-4.7mm,压下效率随压下量的增加而减少,在压下量大于4.7mm时,压下效率不再随压下量的增加而增加,保持某个定值;板坯压下效率与液芯厚度的1次方成线性正比,方坯压下效率与液芯厚度的平方成线性正比;钢种对板坯/方坯压下效率影响小;板坯压下效率随宽度变化小,与厚度呈近似线性增加关系;方坯压下效率随宽度增加或厚度减少而线性增加。
     6.模型应用。将本文研究开发的模型应用于板坯连铸轻压下,应用效果良好:各钢种中心偏析C级0.5以内比率达到100%;各钢种中心疏松0.5级比率达到98%以上;各钢种角部裂纹0.5级比率达88.2%;各钢种中间裂纹和三角区裂纹0.5级比率均达96%。
Dynamic soft reduction technology has become one of the best methods to improve center segregation and porosity of continuous casting products, and is an important indication of modern conticaster. Based on national technology innovation projects "Research, development and application of dynamic soft reduction technology for slab conticaster" and "Process control technology research of dynamic soft reduction for bloom conticaster", research of a key process control model-soft reduction model was processed. The main contents and findings are as follows:
     (1) Reduction gradient model of soft reduction
     Based on the analysis of quality flow in soft reduction process, a theoretical model of reduction gradient, suitable for any rectangular continuous casting products, was derived. The impact of arbitrary rectangular section, solidification contraction, thermal shrinking, deformation on reduction gradient can well be described by the formula as follows: Where:VRG is for the reduction gradient,VSZ for the speed, Xsuf for width of casting product, Ysuf for thickness of casting product, x for the direction of coordinates along width, y for the direction of coordinates along thickness, z for the direction of coordinates along casting direction,ρL andρs for steel liquid and solid phase density respectively. The equivalent densityρ, is from theρLfL+ρs(1-fL), fL is for liquid fraction.
     (2) Methods for solving reduction gradient model
     Based on the actual soft reduction process, a method to solve reduction gradient model was proposed. That overlooks the impact of deformation on the solid-liquid phase sectional shape, and calculates reduction gradient with the solid-liquid phase density variations. The simplified model of reduction model is described by the formula as follows:
     The impact of deformation on the reduction gradient is calculated by reduction efficiency model.
     (3) Model building of reduction efficiency model
     Based on the theoretical analysis of the deformation process, an accurate calculation formula of reduction efficiency model was derived. That formula can calculate the reduction efficiency with arbitrary shape, namely:
     Where:77 is for the reduction efficiency,ΔAi for the reduced area of liquid core,ΔAH for the reduced surface area of casting products.
     (4) Numerical analysis of reduction gradient
     A finite element numerical method of solving heat transfer was adapted to calculate reduction gradient, combined with different speeds, steel grades and section sizes. The results show that:
     ●Reduction rate and reduction gradient decrease linearly along the casting strand for continuous casting slab and bloom.
     ●The average reduction gradient decreases linearly as the casting speed increases linearly.
     ●The range of reduction rate does not change with the change of speed.
     ●Steel grade has little effect on reduction gradient and reduction rate for continuous casting slab and bloom. Reduction gradient has little change with different grades.
     ●Reduction gradient is influnced heavily by thickness. The greater thickness, the less reduction gradient at the inlet and outlet of soft reduction zone.
     ●Thickness has little effect on average reduction gradient of slab. And the average reduction gradient decreases as thickness increases.
     (5) Numerical analysis of reduction efficiency
     With actual casting conditions of a factory, the process of soft reduction was simulated by a 3D finite element numerical calculation. And reduction efficiency was calculated with different reduction amount, liquid core thickness, steel grade and section size. The results show that:
     ●As reduction amount is less than 2.3 mm, reduction efficiency of slab increases with the increase of reduction amount. When the reduction amount is bigger than 2.3 mm, reduction efficiency of slab keeps a certain value with the increase of reduction amount.
     ●Reduction efficiency of bloom with reduction amount of less than 0.6 mm, increases with increase of reduction amount. As reduction amount is between 0.6 mm and 4.7mm, reduction efficiency of bloom decreases with increase of reduction amount. When reduction amount is bigger than 4.7 mm, reduction efficiency is independent with the increase of reduction amount.
     ●Reduction efficiency of slab increases linearly as thickness increases linearly, and the reduction efficiency of bloom increases linearly with the linear increase of 2nd power of thickness.
     ●Steel grade has little effect on reduction efficiency.
     ●Reduction efficiency of slab is affected mainly by thickness, compared to width, and increases linearly as thickness increases linearly.
     ●Reduction efficiency of bloom increases linearly with the linear increase of width or linear decrease of thickness.
     (6) Application model of soft reduction model
     The soft reduction model was applied on a slab caster with good results. The ratios of class C of 0.5 for centre segregation, centre porosity, angle crack are 100%,98%,88.2% respectively for all testing steel grades. And the ratio of class C of 0.5 for middle crack and triangle crack is up to 96%.
引文
1.殷瑞珏,潘荫华,苏天森.中国加快连铸的途径[J],钢铁,1998,33(3):72-76.
    2..苏天森.近几年世界与中国钢铁技术的进步[A],河北钢铁工业发展循环经济高层论坛[C],2006,76-88.
    3. Matsumiya T.连铸新技术[A],第三届发展中国家连铸会议论文集[C],2004:37-39.
    4.高爱民,卢玉英,王硕明.邯钢二炼钢厂板坯中心偏析的成因及对策[J],河北理工学院学报,2002,24(3):23-28.
    5.蔡开科.浇注与凝固[M],北京:冶金工业出版社,1987,125-159.
    6.张彩军译.板坯中心偏析形成机理及轻压下技术的改善效果[A],中国钢铁年会论文集[C],2001,624-630.
    7.朱立光,王硕明,张彩军,等.现代连铸工艺与实践[M],石家庄:河北科学技术出版社,1999,240-241.
    8.钱刚,阮小江,蔡燮鳌.连铸轴承钢大方坯中心偏析的成因及对策[J],钢铁,2002,27(5):16-18.
    9. 阮小江.连铸高碳钢大方坯中心偏析的成因及对策[J],连铸,1998,1:28-30.
    10. Flemings M C. Our understanding of macrosegregation:past and present [J], ISIJ International,2000,40(9):833-841.
    11. Lesoult G. Macrosegregation in steel strands and ingots:Characterisation, formation and consequences [J], Materials Science and Engineering A,2005(413-414):19-29.
    12. Scholes A. Segregation in continuous casting [J], Ironmaking and Steelmaking,2005, 32(2):101-108.
    13. Ghosh A. Segregation in cast products [J], Sadhana-Academy Proceedings in Engineering Sciences,2005,26(1-2):5-24.
    14. Ludlow V, Normanton C, Anderson A, et al. Strategy to minimise central segregation in high carbon steel grades during billet casting [J], Ironmaking and Steelmaking,2005, 32(1):68-74.
    15. Krauss G. Solidification, segregation, and banding in carbon and alloy steel [J], Metallurgical and Materials Transactions B,2003,34(12):781-792.
    16. Suzuki M, Kimura K. Improvement in center segregation high carbon steel continuous casting blooms [A], Steelmaking conference Proceedings [C],1989,75:115-123.
    17.阎朝红.凝固末端轻压下技术在连铸中的应用[J],宝钢技术,2001,5:51-55.
    18. Koichi E. Recent advances and future prospects of refining technology [J], Nippon Steel Technical Report,1994,61:1-8.
    19.王平,马廷温,张鉴.日本炉外精炼技术的现状[J],钢铁,1993,28(4):68-72.
    20.知水,马廷温,吴溪淳.我国炉外精炼技术现状及对发展炉外精炼技术的建议[J],钢铁,1990,25(1):67-72.
    21.欧阳守忠.炉外精炼技术在钢铁生产中的应用和发展[J],钢铁研究,1993,2:53-58.
    22. Normanton A, Millman S, Ridal K. Advances in secondary steelmaking and continuous casting [J], Ironmaking and Steelmaking,2004,31(5):347-355.
    23. Gornerup M, Sjoberg P. AOD/CLU process modelling:Optimum mixed reductants addition [J], Ironmaking and Steelmaking,1999,26(1):58-63.
    24. Takahashi D, Kamo M, Kurose Y, et al. Deep steel desulphurisation technology in ladle furnace at KSC [J], Ironmaking and Steelmaking,2003,30(2):116-119.
    25. Lachmund H, Xie Y High purity steels:A challenge to improved steelmaking processes [J], Ironmaking and Steelmaking,2003,30(2):125-129.
    26. Yoon B H, Heo K H, Kim J S, et al. Improvement of steel cleanliness by controlling slag composition [J], Ironmaking and Steelmaking,2002,29(3):215-218.
    27. Lilja J, Lindstedt A. Improvement of steel cleanliness by slag composition control [J], Scandinavian Journal of Metallurgy,1996,25(2):65-72.
    28. Jacobi H, Wunnenberg K. Improving oxide cleanness on basis of MIDAS method [J], Ironmaking and Steelmaking,2003,30(2):68-74.
    29. Garlick C, Griffiths M, Whitehouse P, et al. Inclusion engineering:A key tool in achieving steelmaking operations stability at OneSteel Whyalla[J], Ironmaking and Steelmaking,2002,29(2):140-146.
    30. Wei J H, Zhu S J, Yu N M. Kinetic model of desulphurisation by powder injection and blowing in RH refining of molten steel [J], Ironmaking and Steelmaking,2000,27(2): 129-137.
    31. Sau R, Jha N N, Paul A. Laboratory investigation of denitrogenation of low carbon steel by gas generation in situ [J], Ironmaking and Steelmaking,2003,30(1):43-47.
    32. Millman M S. Secondary steelmaking developments in British Steel [J], Ironmaking and Steelmaking,1999,26(3):169-175.
    33. Mirko J, Philipp G, Roman R, et al. Simulation of nonmetallic inclusions in a continuous casting strand [J], Steel Research International,2005,76(1):64-70.
    34. Andersson M, Hallberg M, Jonsson L, et al. Slag-metal reactions during ladle treatment with focus on desulphurisation [J], Ironmaking and Steelmaking,2002,29(3):224-232.
    35. Simpson I D, Tritsiniotis Z, Moore L G. Steel cleanness requirements for X65 to X80 electric resistance welded linepipe steels [J], Ironmaking and Steelmaking,2003,30(2): 158-164.
    36.麻永林,王宝峰,李保卫,等.扇形段电磁搅拌对U71Mn重轨钢质量的影响[J],钢铁,2001,37(9):971-974.
    37.胡坤太,仇圣桃,张慧,等.重钢小方坯连铸机内置式结晶器电磁搅拌器的研制[J],钢铁,2003,38(5):22-24.
    38. Medina M, Terrail D Y, Durand F, et al. Channel segregation during solidification and the effects of an alternating traveling magnetic field [J], Metallurgical and Materials Transactions B,2004,35(4):743-754.
    39. Kunstreich S, Dauby P H. Effect of liquid steel flow pattern on slab quality and the need for dynamic electromagnetic control in the mould [J], Ironmaking and Steelmaking,2005,32(1):80-86.
    40. Beitelman L. Effect of mold EMS design on billet casting productivity and product quality [J], Canadian Metallurgical Quarterly,1999,38(5):301-309.
    41. Li J C, Wang B F, Ma Y L, et al. Effect of complex electromagnetic stirring on inner quality of high carbon steel bloom [J], Materials Science and Engineering A,2006, 425(1-2):201-204.
    42. Helmut H, Patrick J H. Use and results of electromagnetic stirring for the continuous casting of steel [J], Metallurgical Plant and Technology International,1993,16(2): 74-82.
    43. Hoshikawa I, Saito T, Kimura M, et al. Development of an in-mold electromagnetic stirring technique at Kobe steel [J], Iron and Steelmaker,1991,18(4):45-52.
    44.李开煜,朱兴元.3C船板钢连铸电磁搅拌参数的选择[J],钢铁,1990,25(1):19-22.
    45. Bridge M R, Rogers G D. Structural effects and band segregate formation during the electromagnetic stirring of strand-cast steel [J], Metallurgical Transactions B,1984, 15(3):581-589
    46.陈永,杨素波,朱苗勇.结晶器电磁搅拌改善重轨钢连铸坯内部质量的试验研究[J],钢铁,2007,42(2):24-27.
    47.张宏丽,贾光霖,王恩刚,等.电磁搅拌改善铸坯内部质量的实验研究[J],东北大学学报(自然科学版),2001,22(3):315-318.
    48. Yamanaka A, Ota K, Terunuma M, et al. Reduction of center porosity of round billet by electromagnetic stirring in horizontal continuous casting [J], Tetsu-To-Hagane,1998, 84(9):609-616.
    49. Hu H Q, Zheng R Q. Influence of electromagnetic stirring on dendritic structure and mechanical properties of low sulphur steel [J],Acta Metallurgica Sinica(English Letters),1991,4(1):75-78.
    50.刘洋,王新华.二冷区电磁搅拌对连铸板坯中心偏析的影响[J],北京科技大学学报,2007,29(6):582-590.
    51.Junji N, Akihito K, Yasuhiko 0, et al. Improvement of slab surface quality with in-mold electromagnetic stirring [J], Nippon Steel Technical Report,2002,86(7):61-67.
    52.陈建国,江国利,庞永刚.结晶器电磁搅拌在小方坯连铸上的应用[J],北京科技大学学报,2007,29(1):142-145.
    53.Shah N A, Moore J J. Review of the effects of electromagnetic stirring (EMS) in continuously cast steels [J],Iron and Steelmaker,1982,9(11):42-47.
    54.Chung S I, Yoon J K. Numerical analysis of effect of electromagnetic stirring on solidification phenomena in continuous casting [J],Ironmaking and Steelmaking,1996, 23(5):425-432.
    55.Spitzer K H, Georg R, Klaus S. Multi-frequency electromagnetic stirring of liquid metals [J], ISIJ International,1996,36(5):487-492.
    56. Zhang H L, Wang E G, Jia G L, et al. Effects of linear electromagnetic stirring on the solidification structure of billet [J], Acta Metallurgica Sinica (English Letters),2001, 14(3):227-234.
    57. Kunstreich S. Electromagnetic stirring for continuous casting-Part I [J], Revue de Metallurgie,2003,100(4):395-408.
    58. Ayata K, Mori H, Taniguchi K, et al. Low superheat teeming with electromagnetic stirring [J], ISIJ International,1995,35(6):680-685.
    59. Nosochenko O V, Isaev O B, Lepikhov L S, et al. Reducing axial segregation in a continuous-cast semifinished product by micro-alloying [J], Metallurgist,2003,47(5-6): 244-247.
    60. Isaev O B. Effectiveness of using large cooling elements to alleviate axial segregation in continuous-cast ingots [J], Metallurgist,2005,49(7-8):324-331.
    61.周德光,傅杰,王平,等.工艺参数对连铸轴承钢坯碳偏析的影响[J],钢铁,1999,34(6):22-26.
    62.吴小林,王福明,黄晓星,等.结晶器电磁搅拌对中碳钢成分偏析的影响[J],炼钢,2005,21(5):21-36.
    63.纪振双,姚留枋,唐仲和,等.连铸过程采用电磁搅拌时的负偏析带的形成机理[J],钢铁研究学报,1993,5(2):9-16.
    64.王念春.连铸中间包等离子体加热装置控制系统[J],电子技术应用,2001,9:31-33.
    65. Farrell M V, Ma N. Macrosegregation during alloyed semiconductor crystal growth in strong axial and transverse magnetic fields [J], International Journal of Heat and Mass Transfer,2004,47(14-16):3047-3055.
    66. Oh K S, Chang Y W. Macrosegregation behavior in continuously cast high carbon steel blooms and billets at the final stage of solidification in combination stirring [J], ISIJ International,1995,35(7):866-875.
    67.王晓东,李廷举,金俊泽.电磁场对连铸末端凝固过程的影响[J],金属学报,2001,37(9):971-974.
    68. Oh K S, Shin Y K, Chang Y W. Role of combination stirring and final stirring pool thickness on center defects of continuously cast high carbon steel blooms [J], Iron and Steelmaker,1994,21(4):43-55.
    69. Nakada M, Mori K, Nishioka S, et al. Reduction of macrosegregation by applying a DC magnetic field at the final stage of solidification [J], ISIJ International,1997,37(4): 358-364.
    70. Ebisu Y. The E-process-a new technology to eliminate internal defects in continuous cast steel [J], Steel Times,2000,228(7):262-264.
    71. Sivesson P, Hallen G, Widell B. Improvement of inner quality of continuously cast billets using electromagnetic stirring and thermal soft reduction [J], Ironmaking and Steelmaking,1998,25(3):239-246.
    72. Sivesson P, Raihle C M, Konttinen J. Thermal soft reduction in continuously cast slabs [J], Materials Science and Engineering A,1993,173(1-2):299-304.
    73. Sivesson P, Ortlund T, Widell B. Improvement of inner quality in continuously cast billets through thermal soft reduction and use of multivariate analysis of saved process variables [J], Ironmaking and Steelmaking,1996,23(6):504-511.
    74. Birat J P. Innovation in steel continuous casting:past, present and future [J], Revue de Metallurgie,1999,96(11):1390-1399.
    75. Ludlow V, Normanton C, Anderson A, et al. Strategy to minimise central segregation in high carbon steel grades during billet casting [J], Ironmaking and Steelmaking,2005, 32(1):68-74.
    76. Peter G, Rosemarie S V. Modern casters and future trends in casting technology [J], Metallurgical Plant and Technology International,2000,23(4):94-96.
    77. Reynolds T, Harvey A. Innovation in slab casting [A], Steelmaking Conference Proceedings[C],2002,85:51-61.
    78. Bruno L, Heinz H, Karl M. Technological packages for high performance slab casting [J], Metallurgical Plant and Technology International,1998,22(1):66-68.
    79. Heinz H, Manfred T, Michael S, et al. Advanced equipment for high performance casters [J], Metallurgical Plant and Technology International,2003,26(3):74-80.
    80. Byrne C, Tercelli C. Mechanical soft reduction in billet casting [J], Steel Times International,2002,26(9):33-35.
    81. Jean-Pierre B, Christian M. Continuous casting:Past, present and future [J], Revue de Metallurgie,2005,102(11):732-737.
    82.干勇.连续铸钢前沿技术的工程化[J],中国工程科学,2002,4(9):12-17.
    83.倪满森.我国连铸技术的进步及连铸技术发展动向[J],钢铁,2002,1:1-14,29.
    84. Patrick B. Continuous casting-Past, present and future [J], Ironmaking and Steelmaking,2006,33(3):199-202.
    85. Raja B V R, Pal N, Jayaswal N P. Recent trends in continuous casting technology [J], Steel Times International,2005,29(4):41-44.
    86. Hirohiko O. Recent trends and future prospects of continuous casting technology [J], Nippon Steel Technical Report,1994,61(8):9-14.
    87.孙蓟泉,周华勤.高效连铸及轻压下技术[J],机械工程与自动化,2004,2:4-8.
    88.王捷,杨拉道.连铸轻压下技术的最新发展[J],重型机械,2001,1:1-3.
    89.王朝盈,刘彩玲,刘光辉.厚板坯连铸轻压下技术和轻压下扇形段[J],重型机械,1999,5:9-11.
    90.罗秉臣,刘彩玲,王庆新.厚板坯连铸新技术[J],重型机械,1999,5:9-11.
    91.林立恒译.利用轻压下法防止大方坯中心疏松技术的开发[J],冶金众译,1996,1:34-37,60.
    92.钱静秋,智建国.连铸轻压下技术发展现状[J],钢铁,2002,10:S 185-S 188.
    93. Jauhola M. The latest result of dynamic soft reduction in slab cc machine [A], Steelmaking conference Proceedings [C],2000,33(3):201-206.
    94. Jungbauer A, Flick A, Willeit H.奥钢联(VAI)连铸机在不断发展的中国钢铁市场中的表现[J],连铸,2005,6:312-317.
    95. Fash R, Vielkind P, Bederka D, et al.美国ISG雀点厂1号连铸机的动态辊缝控制—技术创新和操作成果[A],2004年6月奥钢联连铸热轧会议论文集[C],第2.5篇.
    96.程乃良,陈志平.应用动态轻压下改善板坯内部质量的实践[J],炼钢,2005,5:29-32.
    97. Reynolds T, Harvey A. Innovation in slab casting [A], Steelmaking Conference Proceedings[C], ISS-AIME,2002:41-61.
    98.余志祥,郑万,杨运超.武钢三炼钢新宽板坯连铸机的投产及近半年的试生产情况[A],2004年6月奥钢联连铸热轧会议论文集[C],第8.7篇.
    99. Oh K S, Park J K, Change S H. Development of soft reduction technology for the bloom caster at Pohang Works of POSCO [A], Steelmaking Conference Proceedings [C],1995,178:301-308.
    100.董珍译.关于高碳大方坯中心偏析的改善[J],冶金译丛,1998,1:44-48.
    101.岑永权.连铸坯液芯压下工艺[J],上海金属,1997,19(5):42-48.
    102.陈永.重轨钢连铸的质量控制[J],钢铁,2004,39(3):23-26.
    103.Kropf A. Economic benefits of automatic strand taper control [J], Metallurgical Plant and Technology International,2004,5:60-62.
    104.Okuda Y. Reduction of center cavity by forging with liquid core in round billet [J], Ironmaking and Steelmaking,1999,26(1):64-68.
    105.Morwald K, Thalhammer M, Federspiel C, et al. SMART(?)/ASTC技术在连铸冶金操作和经济诸方面的效益[J],连铸,2004,3:7-10,16.
    106.Yamada M, Ogibayashi S, Tezuka M, et al. Production of hydrogen induced cracking (HIC) resistant steel by CC soft reduction [A],71st steelmaking conference processdings[C],1998:71-85.
    107.朱苗勇,程乃良.连铸坯的动态轻压下技术[A],2005中国钢铁年会第三卷[C],北京,2005:332-336.
    108.Hodl H, Thalhammer M, Stiftinger M, et al. Advanced equipment for high-performance casters [J], Metallurgical Plant and Technology International,2003,3:74-8.
    109.郑群.板坯连铸机新技术的发展与研究[J],河北冶金,2003,1:15-10.
    110.Morwald K, Thalhammer M, Federspiel C, et al. Benefits of SMART segment technology and ASTC strand taper control in continuous casting [J], Steel Times International,2003, Dec/Jan:17-19.
    111.冯科.板坯连铸机轻压下扇形段的设计特点[J],炼钢,2006,22(2):50-56.
    112.Morwald K, Dittenberger K, Ives K D. Dynacs cooling system-features and operational results [J],1998,25(4):323-327.
    113.Morwald K, Dittenberger K, Hohenbichler G. Improvement of secondary cooling control by online temperature calculation [A], Steelmaking Conference Proceedings [C], 1997:647-653.
    114.Hardin R A, Liu K, Kapoor A, et al. A transient simulation and dynamic spray cooling control model for continuous steel casting [J], Metallurgical and Materials Transactions B,2003,34:297-306.
    115.Louhenkilpi S, Laitinen E, Nieminen R. Real-time simulation of heat transfer in continuous casting [J], Metallurgical and Materials Transactions B,1993,24:685-693.
    116.Spitzer K H, Harste K, Weber B, et al. Mathematical model for thermal tracking and online control in continuous casting [J], ISIJ International,1992,32(7):848-856.
    117.Okuno K, Naruwa H, Kuribayashi T, et al. Dynamic spray cooling control system for continuous casting [J], Iron and Steel Engineer,1987,8:34-38.
    118.郭薇,祭程,赵琦,等.板坯连铸动态轻压下系统中在线实时温度场的计算模型[J], 材料与冶金学报,2006,9:186-189.
    119.赵树斌,岳尔斌,王志道.板坯连铸机凝固层厚度的研究[J],宽厚板,2001,3:10-15.
    120.樊俊飞,吕朝阳.连铸坯凝固终点测定[J],宝钢技术,1997,3:18-22.
    121,赖朝彬.新钢板坯动态轻压下铸机二冷模型校验[J],江西冶金,2007,27(4):8-11.
    122.赵志毅,康永林,刘德明,等.连铸板坯凝固末端在线监测系统[J],北京科技大学学报,2003,25(5):458-461.
    123.YIM C H, PARK J K, YOU B D, et al. The Effect of Soft Reduction on Center Segregation in C.C. Slab [J], ISIJ International,1996,36:S231-S234.
    124.Danilo G, Gustavo M, Rubens F, et al. Design features and start-up of the high productivity 2 strand slab caster at Cosipa [J], Metallurgical Plant and Technology International,2004,4:46-48.
    125.Luigi Morsut. Technological packages for the effective control of slab casting [J], Metallurgical Plant and Technology International,2003,2:44-51.
    126.宋东飞.LPC模型在动态轻压下控制中的应用[J],冶金自动化,2005,3:57-59.
    127.Morwald K, Watzinger J, O'Malley R J. Roll load measurements on thin slab caster for liquid core detection [J], Ironmaking and Steelmaking,1998,25(23):159-162.
    128.苏平旺.连铸轻压下技术[J],钢铁研究,1991,5:60-61.
    129.Jauhola M, Haapala M. The latest result of dynamic soft reduction in slab CC machinen [A], Steelmaking Conference Proceedings [C],2000:201-206.
    130.Shigeaki O, Masayuki K, Mamoru Y, et al. Influence of soft reduction with one-piece rolls on center segregation in continuously cast slabs [J], ISIJ International,1991, 31(12):1400-1407.
    131.Shigeaki O, Mamoru Y, Yuzuru Y, et al. Influence of roll bending on center segregation in continuously cast slabs [J], ISIJ International,1991,31(12):1408-1415.
    132.陈超,阎朝红,康复.减少方坯中心偏析的冶金手段[J],宝钢技术,2001,4:53-57.
    133.廖永松.轻压下技术在高碳钢方坯连铸中的应用[J],炼钢,2002,18(5):35-39.
    134.Yamanaka A, Okuda M. Reduction of centre cavity by forging with liquid core in round billet [J], Ironmaking and Steelmaking,1999,26(1):64-68.
    135.Wolf M. Center segregation versus casting speed [J], CAMP ISIJ,1996,9:844.
    136.Wolf M. Definition and control of strand soft reduction [J], CAMP ISIJ,1998,11:787.
    137.姚山,王廷利,侯忠霖,等.轻压下对连铸坯中心缺陷作用的量化模型研究[J],钢铁,2007,42(5):29-32.
    138.Wang W J, Hu X G, Ning L X, et al. Improvement of center segregation in high-carbon steel billets using soft reduction [J], Journal of University of Science and Technology Beijing,2006,13(6):490-496.
    139.赵红阳,胡林.连铸方坯带液芯轧制的模拟实验研究[J],钢铁,1995,34(5):30-33.
    140.陈其安,刘立文,王建伟,等.连铸坯带液芯轻压下时压塌现象的数值模拟研究[J],钢铁,2001,36(5):44-46.
    141.Zhu G S, Shi Z Y, Wang X H, et al. Two dimensional deformation characteristics of bloom CC with liquid core reduction [J], Journal of University of Science and Technology Beijing,2002,9(5):334-337.
    142.马长文,沈厚发,黄天佑,等.板坯凝固末端轻压下流动与溶质分布的研究[J],铸造,2004,53(12):1023-1027.
    143.陈素琼,张家泉,崔立新,等.板坯凝固末端轻压下实时控制的热力学分析[J],钢铁研究学报,2003,15(2):9-13.
    144.崔立新.板坯连铸动态轻压下工艺的三维热—力学模型研究[D],北京:北京科技大学,2006.
    145.方文勇,吴迪平,秦勤.方坯连铸动态轻压下的研究[J],冶金设备,2005,12(6):18-21.
    146.Uehara M, Samarasekera I V, Brimacombe J K. Mathematics modelling of unbending of continuously cast steel slabs [J], lronmaking&Steelmaking,1986,13(3):138-153.
    147.Mizikar E A. Mathematical heat transfer model for solidification of continuously cast steel slabs [J], Transactions of the Metallurgical Society of AIME,1967,239: 1747-1753.
    148.Savage J, Prichard H. The problem of rupture of the billet in the continuous casting of steel [J], Journal of the Iron and Steel Institute,1954,178:269-277.
    149.祭程.板坯连铸动态二冷与动态轻压下过程控制系统的开发与应用研究[D],沈阳:东北大学,2007.
    150. Won Y M, Yeo T J, Oh K H, et al. Analysis of mold wear during continuous casting of slab [J], ISIJ International,1998,38(1):53-63.
    151.Takeuchi E, Brimacombe J K. Formation of oscillation marks in the continuous casting of steel slabs [J], Metallurgical Transactions B,1984,15(3):493-509.
    152.Jimbo I, Cramb A W. The density of liquid iron carbon alloys [J], Metallurgical Transactions B,1993,24(1):5-10.
    153.Ito Y, Yamanaka A, Watanabe T. Internal reduction efficiency of continuously cast strand with liquid core [J], La Revue de Metallurgie,2000,10:1171-1177.
    154.Won Y M, Kim K H, Yeo T J, et al. Effect of cooling rate on ZST, LIT, and ZDT of carbon steels near melting point [J], ISIJ International,1998,38(10):1093-1099.
    155.张家泉,崔立新,陈志平,等.板坯连铸结晶器内温度/应力场耦合模型[J],北京科 技大学学报,2004,26(4):373-376.
    156.Wray P J. Effect of carbon content on the plastic flow of plain carbon steels at elevated temperatures [J], Metallurgical Transactions A,1982,13(1):125-134.
    157.Suzuki T. Creep properties of steel at continuous casting temperatures [J], Ironmaking and Steelmaking,1988,15(2):90-100.
    158.Kozlowski P F, Thomas B G, Azzi J A, et al. Simple constitutive equations for steel at high temperature [J], Metallurgical Transactions A,1992,23:903-918.
    159.Mizukami H, Murakami K, Miyashita Y. Mechanical properties of continuously cast steel at high temperatures [J], Tetsu-to-Hagane,1977,63(146):S652.
    160.Uehara M, Samarasekera I V, Brimacombe J K. Mathematical modeling of unbending of continuously cast steel slabs [J], Ironmaking and Steelmaking,1986,13:138-153.
    161.Friedman E. Thermomechannical analysis of the welding process using the finite element method [J], Transaction of the ASME, Journal of Pressure Vessel Technology, 1975,8:206-213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700