用户名: 密码: 验证码:
薄钢板的拉铸过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄钢板主要是指厚度小于4 mm的钢板,广泛应用于航空航天、车辆生产、机械制造等领域。现今薄钢板的生产工艺主要是铸轧成形,最终为获得良好的使用性能大多需要进行轧制处理,主要包括薄板坯连铸连轧技术、双棍连铸技术以及较新的热型连铸技术。这些技术都具有各自的优缺点,其中连铸连轧技术与双棍连铸技术都存在成本高、板坯表面质量不高的问题。
     薄钢板的拉铸技术是一项近终形连铸技术,原理是通过结晶器使钢液凝固,由拉拔辊将钢坯从铸型中以一定的速度拉出。通过控制铸坯的凝固冷却,减小铸坯表面与铸型内壁间的摩擦,其最终铸坯质量接近产品性能要求。本文主要对薄钢板的拉铸过程中的温度场进行模拟研究。通过调控浇注时的温度和拉坯的速度来控制铸坯出结晶器和离开二冷区的温度,最终提高铸坯的质量。以下是本论文的主要研究内容及研究成果:
     (1)使用有限元分析软件ANSYS对薄钢板的拉铸过程进行研究,主要模拟计算拉铸过程中过热度、拉坯速度、在结晶器中的热流密度以及在二冷区的对流换热系数对最终成形温度场的影响。将模拟结果与实验结果进行对比,对影响铸坯温度变化的参数进行优化,最终得到与实验结果相匹配的热流密度、对流换热系数和拉坯速度的适用范围。
     (2)将有限元模拟结果与实验结果进行了对比,确定了薄钢板拉铸在结晶器中的热流密度为0.89~0.912 MW/m2,在二冷区的对流换热系数为5.7-6.2KW/(m2·℃).
     (3)通过对有限元模拟求解所得结果的分析,确定了08A1薄钢板拉铸的浇注温度和拉坯速度的适用范围。最终得出当过热度为20℃时,拉坯速度应小于12m/min;而当过热增大到35℃时,拉坯速度最大不能超过11.1m/min。
Steel sheet mainly refers to the steel plate which is less than 4 mm thick, which widely used in aerospace, vehicle manufacturing, machinery manufacturing and other fields. Nowadays, the main production process of steel sheet is cast bar. Finally, in order to obtain a good performance, most products need to be rolled. Including Thin slab casting and rolling technology, Double-stick strip casting technology, and ohno continuous casting technology, etc. These technologies have their own advantages and disadvantages, among them, thin slab casting and rolling technology and double-stick strip casting technology have the same shortcomings, just as the high cost and the lower slab surface quality.
     Pull casting of steel sheet is one of Near-net shape casting technology, the principle is obtain the solidification of molten steel with crystal, then, pull the billet with roller in a certain speed. Final slab quality would be close to the requirements of product performance by the way that control the solidification and cooling of slab, and reduce the friction between slab surface and the inner wall of the mold. The research of the paper is to simulate the temperature of the pull casting process of steel sheet. Control the temperature of slab which be pull out of the mold and left the secondary cooling zone through regulate the pouring temperature and casting speed, ultimately improve the quality of the slab. The following are the main contents and the consequence of this paper:
     1. The paper has studied the temperature of Steel sheet continuous casting with the applications of the finite element analysis software—ANSYS. Mainly simulate the temperature of the casting process of steel sheet and the effect with different Super heat、withdrawal speed、heat flux and the convection on the temperature field. Compare of the experimental results and simulation results, optimization of parameters which influent the temperature. Finally, obtain the Super heat、withdrawal speed、heat flux and the convection match with the experimental results.
     2. By comparing the simulating results and the experimental results, identified the range of heat flux is 0.89~0.912 MW/m2, and the range of convection is 5.7~6.2 KW/(m2·℃).
     3. Through the analysis of simulation results, identified the scope of super heat and withdrawal speed. Finally obtained the results that the speed should less than 12 m/min when super heat is 20℃, and the withdrawal speed should not more than 11.1 m/min when super heat is 35℃.
引文
[1]康永林.现代汽车板的质量控制与成形性[M].北京:冶金工业出版社,1999.
    [2]秋末治.深冲用冷轧钢板的开发与展望[J].日本金属学会报,1994,33(1):55-59.
    [3]鲁茨·迈耶.带钢轧制过程中材料性能的优化[M].赵辉译.北京:冶金工业出版社,1996.
    [4]干勇.现代钢铁流程炼钢-连铸新技术800问[M].北京:冶金工业出版社,2003.
    [5]蔡开科.连续铸钢500问[M].北京:冶金工业出版社,1994.
    [6]奥村裕彦.连铸技术的动向和今后的展望[J].国外钢铁,1995,2:256-31.
    [7]孟繁德,施红家.带钢近终形连铸的开发与应用[J].钢铁,1999,34(10):348-351.
    [8]Richard L W, John J F. The castrip Process for twin-roll casting of steel strip[J]. AISE Steel Technology,2002,79 (9):69~74.
    [9]Manohar P A, Ferry M, Hunter A. Direct Strip Casting of Steel——Historical Perspective and Future Direction[J]. Materials Science Forum,2000,24:19~36.
    [10]王金录,邸洪双,刘相华,王国栋.双辊铸轧薄带钢温度场的有限元数值模拟[J].塑性工程学报,2002,3.
    [11]张小平,梁爱生.近终形连铸技术[M].北京:冶金工业出版社,2001.
    [12]Rohde W. Current State, Capabilities and Further Development of the CSP Technology[J]. MPT International,1995, (4):82~98.
    [13]张绍贤.薄板坯连铸连轧工艺技术发展的概况[J].炼钢,2000,6(1):51-55.
    [14]于世果.薄板坯连铸连轧生产线在我国的发展及应用[J].钢铁技术,2007,(2):18-23.
    [15]干勇.薄板坯连铸连轧生产技术若干问题[J].钢铁,2004,39(8):24-33.
    [16]A Ohno. Continuous Casting of Single Crystal Ingots by OCC Process[J]. Journals of Metals.1986,38:14~16.
    [17]大野笃美.金属的凝固理论、实践及应用[M].机械工业出版社,1983.
    [18]黎沃光.热型连续铸造法的原理及应用[J].铸造,1996,12:39-44.
    [19]苏彦庆,郭景杰,刘畅.定向凝固技术与理论研究的进展[J].特种铸造及有色合金,2006,26(1):25-30.
    [20]马幼平,许云华.金属凝固原理及技术[M].北京:冶金工业出版社,2008.
    [21]Michael Korchysky, Stanislaw Zajac薄板坯工艺生产板材产品的技术和经济优势.CSP品种与钒氮微合金化,钢铁研究总院,钒氮钢发展中心:11.
    [22]H.Suzuki, S. Nishimura and S. Yamaguchi. Tetsu-to-Hagane,1979,65:2038.
    [23]Wang Changqing, He Quande, et al. Analysis on Formation of Transverse Cracks and Segregated Band of Concasting Billets[J]. SPECIAL STEEL,1994,15(4):45~47.
    [24]吴振刚,孟秀梅.薄板坯连铸纵裂纹的控制[J].冶金标准化与质量.39(3):15-17.
    [25]王彦峰,许中波,陈贵江等.CSP工艺生产的薄板坯连铸表面纵裂纹缺陷研究[J].钢铁.2002,37(12):21-24.
    [26]唐荻,蔡庆伍.薄板坯连铸连轧的产品质量控制[J].钢铁,1998,33(7):67.
    [27]张晓明.实用连铸连轧技术[M].北京:化学工业出版社,2008.
    [28]Cobo S J,Sellars C M. Microstructural evolution of austenite under conditions simulating thin slab casting and hot direct rolling[J]. Ironmaking and Steelmaking,2001,29(3):230~236.
    [29]郑沛然.连续铸钢工艺及设备[M].北京:冶金工业出版社,1990.
    [30]陈雷,等.连续铸钢[M].北京:冶金工业出版社,1994.
    [31]蔡开科,程士富,等.连续铸钢原理与工艺[M].北京:冶金工业出版社,1999.
    [32]Wunnenberg K, Schwerdtfeger K. Principles in thin slab casting[J]. Iron & Steel Maker,1995:22-28.
    [33]Seppo Louhenkilpi. Study of Heat Transfer in a Continuous Billet Casting Machine. Scand J. Metafurgy23,1994:9~17.
    [34]蔡开科.连铸二冷区凝固传热及冷却控制[J].河南冶金.2003,11(1).
    [35]S. K. Choudhary, Dlpak Mazumdar. Mathematical modeling of fluid flow, heat transfer and solidification phenomenon continuous casting of steel[J]. steel research.1995,66(5):199~ 204.
    [36]钱壬章.传热分析与计算[M].北京:高等教育出版社,1987.
    [37]崔立新,陈素琼,张家泉.水流密度分布对连铸板坯质量影响的研究[J].第十二届全国炼钢学术会议论文,2002:454-459.
    [38]李纯忠.连铸设备[M].沈阳:东北大学出版社,1993.
    [39]卿家胜,刘青,王欣,等.板坯连铸二冷喷嘴对冷却效果影响的研究[J].炼钢,2001,1:48-52.
    [40]任吉堂,朱立光,王书桓.连铸连轧理论与实践[M].北京:冶金工业出版社,2002.
    [41]曹广畴.现代板坯连铸[M].北京:冶金工业出版社,1994.
    [42]史寰兴.实用连铸冶金技术[M].北京:冶金工业出版社,1998.
    [43]王新华.采用薄板坯连铸生产高表面质量冷轧钢板的可行性分析[J].钢铁,2004,39(12):18-25.
    [44]朱立光,王颐明,张彩军,王书桓.现代连铸工艺与实践[M].石家庄:河北科学技术出版社,1999.
    [45]蔡开科.连续铸钢[M].北京:科学出版社,1990.
    [46]陈家祥.连续铸钢手册[M].北京:冶金工业出版社,1991.
    [47]蔡开科.连续铸造[M].北京:冶金工业出版社,1986.
    [48]陈家祥.连续铸钢手册[M].北京:冶金工业出版社,1991.
    [49]王勖成,邵敏.有限单元法基本原理及数值方法[M].北京:清华大学出版社,1997.
    [50]周建兴,刘瑞祥,陈立亮,林汉同.凝固过程数值模拟中的潜热处理方法[J].铸造,2001,50(7):404-407.
    [51]闫小林.连铸过程原理及数值模拟[M].石家庄:河北科学技术出版社,2001.
    [52]李东辉,高云宝,辛启斌,等.铸件凝固潜热的处理方法与应用研究[J].铸造,2004,53(12):1005-1007.
    [53]胡汉起.金属凝固原理[M].北京:机械工业出版社,2000.
    [54]B. Lally:L. Biegler, H. Henein. Finite Difference Heat. Transfer Modeling for Continuous Casting[J]. MEl'ALLURGICAL TRANSACTIONS B.1990. Vol.21B:761~770.
    [55]姚连增.品体生长基础[M].合肥:中国科学技术出版社,1995.
    [56]姚利丽,张炯明,等.连铸板坯二冷模型及配水制度的优化[J].连铸,2003,3:10-13.
    [57]朱衍勇,等.用SEM分析中厚钢板表而裂纹的成因[J].电子显微学报,2000,4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700