用户名: 密码: 验证码:
陕西“二华”地区浅层地下水水化学特征及其微污染水处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陕西省华县、华阴(简称“二华”)地区,地处秦岭山前与渭河下游之间的夹槽低洼地带,其地下水既受秦岭山前水的影响又受渭河河水侧向补给的影响,地下水水化学成分复杂,水质较差,“二华”地区居民生活、生产用水主要使用10m~30m的浅层地下水,水源未经任何处理。本文以“渭河傍河水源地水质演化特征研究”课题为依托,综合应用水文地球化学、水文地质学、同位素水化学、物理化学的理论与方法,全面、系统地研究了“二华”地区浅层地下水水化学特征、水循环规律、演化机制、渭河河水对其水质的影响并对研究区水质进行了评价。此外,针对“二华”地区浅层地下水主要微污染物超标组分,提出采用臭氧―砂碳―锰砂工艺流程,完成了对各流程去除微污染物的室内试验研究,得到了该流程去除微污染超标物的最佳工艺。
     研究“二华”地区浅层地下水水循环规律,揭示其水化学特征,寻求适合该地区微污染浅层地下水处理工艺,对当地地下水水资源评价、合理开发利用以及居民生活、生产用水安全都具有重要的理论和生产实际意义。本文主要研究结论如下:
     (1)研究区浅层地下水水化学类型、矿化度及硬度分布特征为:
     由南向北,即从秦岭北麓到渭河沿岸,水化学类型由简单到复杂,主要从HCO_3·SO_4-Ca·Mg经SO_4·HCO_~(3-)Na·Ca过渡到SO_4·Cl-Na型;由西向东,即沿渭河流向,水化学类型变化不大,靠近秦岭山前,水化学类型以HCO_3·SO_4-Ca·Mg和HCO_3·SO_4-Ca·Mg·Na型为主,靠近渭河,水化学类型以SO_4·Cl-Na和SO_4·HCO_~(3-)Na·Ca型为主。
     研究区渭河沿岸下庙街、王宿、华阴农场一带总溶解固体(TDS)较大,水质矿化度较高,为微咸水分布区;靠近秦岭山前、研究区中部TDS较小,为淡水分布区。
     研究区地下水硬度普遍偏大,其中以下庙街、华阴农场、七连、夫水一带为极硬水分布区,整体上从南向北,水质从硬水过渡到极硬水。
     (2)离子摩尔浓度比值γCl-/γCa~(2+)、γNa~+/γMg~(2+)、γCl-/γSO_4~(2-)和γCl-/γHCO_~(3-)表明:研究区靠近秦岭山前由西向东水动力条件逐渐较弱,渭河沿岸,水动力条件逐渐较强;TDS与Na~+变化一致,即TDS高的地方,Na~+离子的含量占优势;研究区由南向北方向上呈易溶盐的累积过程,水质总体向咸化方向发展。(3)针对研究区水文地质参数较少的原因,应用同位素δ18O、δD值分析研究区浅
     层地下水水循环规律,研究表明:研究区在靠近秦岭山前的浅层地下水主要补给源为大气降水;研究区横向由西向东、纵向由南向北路径上浅层地下水的δ18O、δD分布规律反应了其径流规律:即径流由南向北,渭河沿岸地区王宿、下庙街、华阴农场一带存在地下水漏斗区,渭河河水侧向补给该区域;段村街一带,由于该区域地表水丰富,浅层地下水接受地表水的补给。
     (4)采用可变模糊集理论评价了研究区水质,根据《地下水质量标准》(GB/T14848-1993),IV类水质水占总评价水质的64.0%。研究区由南向北,浅层地下水水质类别由II类过渡到IV类,水质逐渐变差;由西向东,水质类别变化不大,基本为IV类;渭河水质与其沿岸浅层地下水水质属相同类别,但是,渭河河水水质要劣于沿岸浅层地下水水质。
     (5)针对研究区水质属微污染水,水质主要超标指标为浊度、色度、金属离子锰,提出将臭氧―砂碳―锰砂组合工艺作为对微污染试验用水的处理流程,结果表明:臭氧阶段的氧化作用,对微污染水中的色度、锰离子的去除率为80.0%和17.7%;砂碳层将浊度、色度进一步降低,达到了I类饮用水水源标准;经过高锰酸钾改性的锰砂层,对锰离子去除后,水质达到II类~III类饮用水水源标准,其对锰离子吸附动力学模型符合一级吸附式和Elovich方程,吸附热力学均符合Freundlich和Langmuir等温方程式。(6)取华阴农场水样作为试验用水,通过提出的臭氧―砂碳―锰砂组合工艺,获得
     了降低微污染水超标组份的最佳工艺:臭氧投加量2.0mg/L、时间20min,经臭氧化后的原水分别以0.6m/h和0.3m/h的速度,依次通过柱内径Ф100mm、高1000mm的分别装有20cm石英砂+25cm活性碳、20cm改性锰砂有机玻璃柱,最终滤液微污染成分浊度为0.2NTU、色度为1度,锰离子含量为0.060mg/L,处理的试验用水超标组分满足III类饮用水水源标准。
The Erhua district, including Hua county and Huayin city, is located in the low-lying area between the piedmont of Qinling Mountain and the downstream of Wei River. It's groundwater is recharged by water from the piedmont of Qinling Mountain and Wei River, so the groundwater quality is not good and the chemical composition is complex. The productsion and domestic water consumption in Erhua district was pumped from10m~30m shallow groundwater without any kind of treatment. Based on the project Water Quality Evolution Characteristic in Riverside Water Source Region Reach of Wei River, The theories and methods of hydrogeochemistry, hydrogeology, isotope chemistry and physical chemistry were applied to study the hydrochemical characteristics of shallow groundwater, water cycle rule, evolution mechanism and the effects of Wei River on groundwater quality. Furthermore, on account of the main exceeded micro-pollutants in shallow groundwater, the ozone-sand, carbon layer-manganese sand layer technological process were applied for the first time for the experiment researches, and the optimal technological condition of this process was gained based on theses experiments. The research results can provide the scientific base for the safe, clean water resource consumption and reasonable water resource exploitation.
     Therefore, it has a significant theory and practice meaning for local groundwater evaluation, reasonable exploitation and drinking and production water safety to study the shallow groundwater cycle rules, analysis its hydrochemical characteristics and seek an appropriate treatment technological process. The main research conclusions are as follows:
     (1) The distribution characteristics of hydrochemical types, mineralization and hardness of shallow groundwater in research area are:
     From south to north, that is from the piedmont of Qinling Mountain to Wei River, the hydrochemical types are from simple to complex, namely, from HCO3·SO4-Ca-Mg to SO4·HCO3-Na-Ca, and then SO4·Cl-Na; from west to east, the changes of hydrochemical types are not significant, the hydrochemical types were HCO4·SO4-Ca-Mg and HCO3·SO4-Ca-Mg-Na near the piedmont of Qinling Mountain, SO4-Na and SO4-HCO3-Na-Ca near Wei River.
     The total dissolved solids (TDS) were high in Xiamiao Street, Wangsu and Huaying farm along the Wei Rive and the mineralization there were high, too, so there were brackish water distribution areas. On the contrary, the TDS were low near the piedmont of Qinling Mountain and in the central of the research area, where were freshwater distribution areas.
     The water hardness was generally high in research area, where Xiamiao Street, Huaying farm, Qilian and Fushui were extreme hard water distribution areas. In general, from south to north, water quality changes from hard water to extreme hard water.
     (2) The ions molar concentration ratio of shallow groundwater, such as γci-/γCa2+, γNa+/γ Mg2+, γCl-/γSO42-and γci-/γHCO3-,showed that the hydrodynamic conditions became weaker and weaker from west to east, but stronger along the Wei River. The variations of the TDS and Na+content are more or less the same, namely where the TDS was high, where the Na+was in dominant. Moreover, the cumulative process of the soluble salt happened from south to north; meanwhile, water salinization had the same trend.
     (3) The value of δ18O and δD in shallow groundwater and Wei River showed that the main recharge of Wei River and shallow groundwater near the piedmont of Qinling Mountain was precipitation. The distribution regularity of δ18O、δD in shallow groundwater crosswise (from west to east) and lengthwise (from south to north) reflected the runoff rules, namely the flow run from the piedmont of Qinling Mountain to bank of Wei River. There are groundwater depression cones in Wangsu Xiamiao Street and Huaying farm along the Wei River, to where Wei River recharge. Duancun Street is abundance with surface water, so surface water recharge groundwater.
     (4) The variable fuzzy set theory was applied to evaluate water quality in research area, according to Groundwater Quality Standards (GB/T14848-1993), class IV water account for64%. From south to north (i.e. from the piedmont of Qinling Mountain to bank of Wei River), the water quality class of shallow groundwater was from II to IV, the water quality became worse and worse. From west to east, the variation of water quality was not significant, the class of water was IV in general. The water quality in Wei River was the same with that of riverside, but worse than shallow groundwater in riverside.
     (5) The turbidity, chrominance and manganese ion exceeded in research area, the ozone-sand, carbon layer-manganese sand layer technological process wree applied for light polluted water treatment. The result showed that the oxidation on Ozone stage remove 80.0%and17.7%of chrominance and manganese, respectively. The turbidity and chrominance were reduced by sand, carbon layer, resulting class I of drinking water standard. The manganese sand layer which is improved by potassium permanganate can remove manganese to the Class II-III of drinking water standard and its manganese absorption kinetics model matches primary adsorption and Elovich equation, as well as Freundlich and Langmuir isotherm equation.
     (6) The water from Huaying farm as test water was collected and gained the optimum technological conditions for reducing pollution indicators by means of the ozone-sand, carbon layer-manganese sand layer technological process. The ozone dosage is2.0mg/L for20min, then let the ozonized water go through the plexiglass columns at the speed of0.6m/h and0.3m/h, while the plexiglass columns was100mm in diameter,1000mm in tall and filled with20cm+25cm sand carbon and20cm improved manganese sand. The turbidity, chrominance and manganese content of final filtrate were0.2NTU, degree1and0.060mg/L, respectively. Treated water satisfied Class III of drinking water standards.
引文
[1]王德耀,张满社.陕西渭河流域水环境存在的主要问题及解决对策[J].生态经济,2004(9):41-45
    [2]司全印,冉新权,周孝德,等.区域水污染控制与生态环境保护研究[M].北京:中国环境科学出版社,2000:136-150
    [3]史鉴,陈兆丰,邢大伟,等.关中地区水资源合理开发利用与生态环境保护[M].郑州:郑州黄河水利出版社,2002:198-206
    [4]王晋芳,郑国璋.渭河流域水资源开发利用现状及可持续利用对策[J].山西师范大学学报(自然科学版),2005,19(2):103-107
    [5]张艳玲.陕西省渭河流域水文特性分析[J].西北水资源与工程,2002,13(2):62-64
    [6]钱会,马致远.水文地球化学[M].北京:地质出版社,2005:1-10
    [7](苏)比契叶娃.水文地球化学:地下水化学成分的形成[M].北京:北京地质出版社,1981
    [8]张宗祜.发展中的水文地质学[J].水文地质工程,1979,1:23-26
    [9]沈照理.水文地球化学基础[M].北京:地质出版社,1986年6月第一版
    [10]沈照理,朱宛华,钟佐案.水文地球化学基础[M].北京:地质出版社,1993年5月第1版
    [11]Afyin, M. Hydrochemical. Evolution and Water Quality Along the Groundwater Flow PATH in the SandLkil Plain, fyon, Turkey[J]. Environmental Geology,1997, V31(6):221-230
    [12]R.Favara. Hydrochemical Evolution and Environmental Features of Salso River Catchment, central Sicily(Italy)[J]. Environmental Geology,2000, V39(10):1205-1215
    [13]N. Janardhana Raju, V. S Singh. Improvement of Groundwater Quality Due to Fresh Water Ingress in Gunjanaeru Basin, Krishna Delta, India[J]. Environ Geol,2008,55:595-603
    [14]赵明华,姜爱霞,韩美,等.莱州湾南岸平原浅埋古河道带及冲洪积扇地下水水环境[J].环境科学,2000,1:58-61
    [15]杨小平.巴丹吉林沙漠腹地湖泊的水化学特征及其全新世以来的演变[J].第四纪研究,2002,22(2):97-101
    [16]张恒,李晓.四川西北部漳腊盆地地下水化学特征研究[J].地球与环境,2004,32(3-4):39-44
    [17]陈永金,陈亚宁,李卫红,等.塔里木河下游地下水化学特征对生态输水的响应[J].地理学报,2005,60(2):309-317
    [18]章光新,邓伟,何岩,等.中国东北松嫩平原地下水水化学特征与演变规律[J].水科学进展,2006,17(1):20-28
    [19]孙芳强,侯光才,窦妍,等.鄂尔多斯盆地白垩系地下水循环特征的水化学证据—以查布水源地为例[J].吉林大学学报(地球科学版),2009,39(2):269-275
    [20]陆徐荣,周爱国,王茂亭,等.Piper图解淮河流域江苏地区浅层地下水水质演化特征[J].工程勘察,2010,2:42-47
    [21]张人权编译.同位素方法在水文地质中的应用[M].北京:地质出版社,1983,4-80
    [22]Dansgaard W. The abundance of180in atmospheric water and water vapor[J]. Tellus,1953, V5(4):461-469
    [23]Dansgaard W. Stable isotopes in precipitation[J]. Tellus,1964, V16(4):436-468
    [24]IAEA. Global Network for Isotopes in Precipitation[M]. Vienna:IAEA,1996:1-47
    [25]章光新,何岩,邓伟.同位素D与18O在水环境中的应用研究进展[J].干旱区研究,2004,3(21):225-229
    [26]刘进达,赵迎昌,刘恩凯.中国大气降水稳定同位素-时空分布规律探讨[J].勘察科学技术, 1997(3):34-39
    [27]旺集.同位素水文学与水资源、水环境关系[J].地球科学,2002,27(5):532-533
    [28]于津生,虞福基,刘德平.中国东部大气降水氢氧同位素组成[J].地球化学,1987,1:22-26
    [29]刘东生.桂林地区大气降水的氢氧同位素研究[J].中国岩溶,1987,6(3):12-15
    [30]章新平,中巴正义,姚檀栋,等.青藏高原及其毗邻地区降水中稳定同位素成分的时空变化[J].中国科学(D辑),2001,31(5):353-361
    [31]苏小四,林学钰,廖资生,等.黄河水618O、δD和3H的沿程变化特征及其影响因素研究[J].地球化学,2003,4(32):349-35
    [32]程继雄,程胜高,张炜.地下水质量评价常用方法的对比分析[J].安全与环境工程,2008,15(2):23-25
    [33]唐立新,王文微.单因子水质标识指数法在布尔哈通河水质评价中的应用[J].2010,12:38-40
    [34]徐祖信.我国河流单因子水质标识指数评价方法研究[J].同济大学学报(自然科学版),2005,33(3):321-325
    [35]徐祖信.我国河流综合水质标识指数评价方法研究[J].同济大学学报(自然科学版),2005,33(4):482-488
    [36]张旋,王启山,于森,等.基于聚类分析和水质标识指数的水质评价方法[J].环境工程学报,2010,4(2):476-480
    [37]范志锋,王丽卿,陈林兴,等.水质标识指数法在淀山湖水质评价中的应用[J].上海海洋大学学报,2009,18(3):314-320
    [38]郭明明.标识指数法在河流水质评价中的应用[J].上海环境科学,2005,24(4):160-163
    [39]江敏,张岩,阎新书,等.伊犁地区部分河流的水质标识指数[J].干旱环境监测,2007,21(4):199-204
    [40]朱利霞,贺玉晓,宋小红.改进的灰色关联度分析法在饮用地下水水质评价中的应用[J].黑龙江水专学报,2009,36(2):79-81
    [41]刘志斌.基于灰色局势决策分析的地下水环境质量评价[J].辽宁工程技术大学学报,2005,24(1):129-131
    [42]赖坤容,周维博.灰色关联分析在延安市宝塔区延河段水质评价中的应用[J].成都理工大学学报(自然科学版),2010,37(5):570-573
    [43]周振民.基于模糊综合评判法水环境评价及其可靠性分析[J].中国农村水利水电,2009,(5):15-17
    [44]王毅萍,周金龙,郭晓静.模糊综合评价法在新疆焉耆县浅层地下水水质评价中的应用[J].新疆农业大学学报,2010,33(2):167-171
    [45]张震斌,苑宏刚,周立岱.模糊综合评价理论在地下水污染评价中的应用[J].资源环境与发展,2006(1):41-48.
    [46]马玉杰,郑西来,李永霞,等.地下水质量模糊综合评判法的改进与应用[J].中国矿业学学报,2009,38(5):745-750
    [47]彭小金,张艳红,李辉辉.模糊综合评价在地下水质评价中的应用[J].水科学与工术,2008(6):46-48
    [48]高卫东.基于主成分分析的矿区地下水水质评价[J].安全与环境,2009,16(1):28-31
    [49]万金保,何华燕,曾海燕,等.主成分分析法在鄱阳湖水质评价中的应用[J].南昌大学学报(工科版),2010,32(2):113-117
    [50]万金保,曾海燕,朱邦辉,等.主成分分析法在乐安河水质评价中的应用[J].中国给水排水, 2009,25(16):104-108
    [51]方红卫,孙世群,朱雨龙,等.主成分分析法在水质评价中的应用及分析[J].环境科学与管理,2009,34(12):152-154
    [52]李峻,孙世.BP神经网络在青弋江水质评价上的应用[J].安徽建筑,2008,(3):167-171
    [53]甄祯,何士华,石崇喜,等.基于改进的BP神经网络的地下水水质评价研究[J].科学技术与工程,2010,10(29):7128-7131
    [54]倪深海,白玉慧.BP神经网络模型在地下水水质评价中的应用[J].系统工程理论与实践,2000,(5):124-127
    [55]梁珊珊,殷健.基于遗传算法的改进即神经网络模型在水质评价中的应用[J].上海环境科学,2007,26(4):175-179
    [56]秦传玉,赵勇胜,张伟红.基于BP神经网络的齐齐哈尔地区地下水水质评价[J].环境监测与管理,2007,19(2):15-18
    [57]黄志洪,武鹏林.基于BP神经网络模型的水质评价方法探讨[J].太原理工大学学报,2005,36(5):174-176
    [58]董艳慧,周维博,赖坤容.基于概率神经网络的西安地区地下水水质评价[J].自然资源学报,2009,24(2):737-742
    [59]何斐,李磊,徐炎华.微污染水源水处理技术研究进展[J].安徽农业科学,2008,36(11)4:72-4673
    [60]张丛生.水的深度处理及回用技术[M].北京:化学工业出版社,2004,6-7
    [61]O. A. Jones, J. N. Lester, N.Voulvoulis. Threat to Drinking Water [J]. Trends Biotechnol,2005, V23(4):163-167
    [62]F. S. Li, A.Yuasa, K. Ebie, Y. Azuma, T. Hagishita. Factors Affecting the Adsorption Capacity of Dissolved Organic Matter onto Activated Carbon:Modified Isotherm analysis[J]. Water Res,2002, V36(18):4592-4604
    [63]王琳,王宝贞.饮用水深度处理技术[M].北京:化学工业出版社,2002
    [64]王占生,刘文君.微污染水源饮用水处理[M].北京:中国建筑工业出版社,1999
    [65]周云,何义亮.微污染水源净化技术及工程实例[M].北京:化学工业出版社,2003
    [66]王琳,王宝贞.优质饮用水净化技术[M].北京:科学出版社,1999
    [67]张朝晖.饮用水深度处理工艺的优化研究[D].南京:东南大学,2005
    [68]刘文君.现代给水处理消毒技术的发展[J].给水排水动态,2010,01:20-22
    [69]Kranis Panagiotis, Schoenen Dirk, Seite H.M. Distrbution and Removal ofGiardia and Cryptospordium int Water Supplies in Germany[J]. Water Science&Technology,1998(2):9-18
    [70]Edrward, J. K, Relley, M. B. Control of Cryptospordium:From Reservoir to Clarifiers to Filters[J]. Water Science&Technology,1998(2):1-8
    [71]V. B. Camel. The Use of Ozone and Associated Oxidation Process in Drinking Water Treatment[J]. Water Re,1998, V32(11):3208-3222
    [72]C. E. Isabel, H. Seungkwan, A. R.Andrew. Removal of Assimilable Organic Carbon and Biodegradable Dissolvedorganic Carbon by Reverse Osmosis and Nanofiltration Membranes[J]. Membrane Sci,2000,17:1-7
    [73]C. K. Lin, T. Y.Tsai, J. C. Liu. Enhanced Biodegradation of Petrochemical Wastewater Using Ozonation and BAC Advanced Treatment System[J]. Water Res,2001, V35(3):699-704
    [74]刘宏远,张燕.饮用水强化处理技术及工程实例[M].北京:化学工业出版社,2005:3-4
    [75]宁海丽,朱琨.微污染水处理技术研究进展[J].环境科学与管理,2006,31(2):98-100.
    [76]郝晓地,魏丽,仇付国.未来饮用水处理技术及其工程应用展望[J].中国给水排水,2007,23(24):1-5
    [77]西安地质矿产研究院.关中盆地地下水资源评价报告[R].西安,西安地质调查中心2004
    [78]中国环境检测总站.环境水质检测质量保证手册[M].北京:化学工业出版社,1998
    [79]JGJ89-92原状土取样技术标准[S].北京:建设部标准定额研究所,1983
    [80]中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法[M].北京:科学出版社,1983
    [81]CRAIGH. Isotopic variations in meteoric waters[J]. Science,1961,133:1702-1703
    [82]GAT J R. Atmospheric water[M]. MOOK W G. Environmental isotopes in the hydrological cycle, principles and applications,2001, V(2):7-7
    [83]Yurtsever Y. Worldwide survey of stable isotopes in precipitation[R]. Vienna:IAEA,1975:1-40
    [84]Friedman I, Smithg I. Deuterium content of snow cores from Sierra Nevada area[J]. Science,1970,169:467-470iemistry of Natural Waters [M]. New York:Prentice Hall, Englewood Cliffs,1988,1-437
    [85]Sklash M G. Environmental isotope studies of storm and snowmelt runoff generation [A]. Anderson M G, Burt T P.Process Studies in Hillslope Hydrology [C]. Chichestr:John Wily and Sons,1990.401-435
    [86]苏小四,万玉玉,董维红,等.马莲河河水与地下水的相互关系:水化学和同位素证据[J].吉林大学学报(地球科学版),2009,39(6):1087-1094
    [87]Ogunkoya O O, Jenkins A. Analysis of runoff pathways and flow distributions using deuterium and stream chemistry [J]. Hydrol. Proc,1991,5:271-282
    [88]Katz B G, Coplen T B, Bullen T D, etal. Use of chemical and isotopic tracers to characterize in the interactions between groundwater and surface water in mantled karst [J]. Ground-water,1997, V35(6):1014-1028
    [89]MaLoszi using oxygen-18data[M]. Groundwater monitoring and management. Dresden:IASH,1987:153-161
    [90]张应华,仵彦卿,丁建强,等.运用氧稳定同位素研究黑河中游盆地地下水与河水转化[J].冰川冻土,2005,27(1):106-110
    [91]钱会,窦妍,李西建,等.都思兔河氢氧稳定同位素沿流程的变化及其对河水蒸发的指示[J].水文地质工程地质,2007,l:107-112
    [92]张洪平等.中国大气降水稳定同位素组成及影响因素[J].中国地质科学院水文地质工程地质研究所所刊,1991,7:101-110
    [93]田华.关中盆地环境同位素分布特征及水文地质意义[D].陕西:长安大学,2003
    [94]中华人民共和国国家标准(GB/T14848-93)地下水质量标准[S].北京:中国标准出版社,1994
    [95]陈守煜.《复杂水资源系统优化模糊识别理论与应用》[M].长春:吉林大学出版社,2002:159-171
    [96]Sheng Zhou, XIE Shi-qian, PAN Cheng-yi. Probability and Mathematical Statistics [M] Peking:HEP,1979:118-122
    [97]陈守煜,李亚伟.基于模糊人工神经网络识别的水质评价模型[J].水科学进展,2005,16(1):88-91
    [98]李法云.环境工程学—原理与实践[M].沈阳:辽宁大学出版社,2003,34
    [99]K.F.Janeck. Granular Activated Carban for Potable Water Trace Organics Removal for EPA Technology Treatment Systems, New Orleans, Louisana,997
    [100]Milter R J, R H M, Summer R S. Disinfection By-product Formation and Control by Ozonation and Biological Treatment[J]J. AWWA,1992, V84(11):53
    [101]舒诗湖,严敏,苏定江.臭氧一生物活性炭工艺对有机物致突变性的影响[J].哈尔滨商业大学 学报(自然科学版),2007,23(5):526-529
    [102]徐越群,赵巧丽.臭氧/生物活性炭联用工艺在水处理中的应用[J].石家庄铁路职业技术学院学报,2010,9(4):34-37
    [103]梁萍.净水臭氧处理系统的设计要点与分析[J].工业用水与水,2007,38(4):74-76
    [104]宋文涛,潘晓丽.臭氧生物活性炭工艺处理饮用水时各阶段的特点[J].工业用水与废水,2005,36(4):7-9
    [105]杜敬,陆少鸣.臭氧在生物活性炭工艺中的作用[J].工业水理,2005,25(6):64-65
    [106]张莉萍,习晋.特殊水质处理技术[M].北京:化学工业出版社,2005,24-26
    [107]J. Swietlik, U. Raczyk-Stanisawiak, S. Biozor. Adsorption of Natural Organic Matter Oxidized with ClO2on GranularActivated[J]. Carbon Water Res,2002, V36(9):2328-2336
    [108]张丛生.水的深度处理及回用技术[M].北京:化学工业出版社,2004,10-13
    [109]陆在宏.臭氧—生物活性炭净水工艺研究[J].上海环境科学,1990,9(1):14-18
    [110]沈顺雨.生物活性炭作用机理及其在废水处理中的应用[J].城市环境与城市生态,1992,5(4):18-20
    [111]胡妙生.厌氧生物活性炭流化床处理制药废水[J].中国给水排水,1996,12(4):39-41
    [112]张金松.臭氧—生物活性炭除微污染工艺过程研究[J].给水排水,1996,22(4):56-58
    [113]王琳,王宝贞,马放,等.臭氧化-生物活性炭净化水厂的运行效能[J].中国环境科学,1998,18(6):552-556.
    [114]吴红伟,刘文君,王占生.臭氧组合工艺去除饮用水源水中有机物的效果[J].环境科学,2000,21(4):29-33.
    [115]张东,许建华,刘辉.经生物预处理的臭氧化生物活性炭和生物活性炭除污染效果对比[J].净水技术,2001,20(1):33-35
    [116]张金松,赫俊国.臭氧化—生物活性炭技术试验研究[J].给水排水,2002,28(3):29-31
    [117]宋文涛,潘晓丽.臭氧—生物活性炭工艺处理饮用水时各阶段的特点[J].工业用水与废水,2005,36(4):7-9
    [118]胡志光,昌晶,常爱玲,等.臭氧生物活性炭法在饮用水深度处理中的试验研究[J].华北电力大学学报,2006,33(1):98-102
    [119]贾华,李凤娥.臭氧化-生物活性炭深度处理工艺分析[J].包钢科技,2010,36(1):78-80
    [120]周云,罗启达.臭氧活性炭处理工艺在周家渡水厂的应用[J].给水排水,2003,29(9):5-9
    [121]王如华.杭州南星桥水厂技术改造及扩建一期工程设计介绍[J].给水排水2003,29(9):9-12
    [122]孙哲,刘淑彦,田禹,等.臭氧-生物活性炭技术的在生产性试验研究[J].哈尔滨建筑大学报,1996,29(5):88-91
    [123]王建平,何元春.广州市南洲水厂臭氧—生物活性炭深度处理工程.中国土木工程学会水工业分会给水深度处理研究会2004年年会论文集,2004年9月.
    [124]王正林,邹浩春,戎文磊,等.充山水厂臭氧生物活性炭深度处理示范工程[J].给水排水,2009,35(4):7-11
    [125]郑洪领,王龙,宗逸君.我国微污染水源饮用水处理技术应用进展[J].
    [126]乔铁军,安娜,尤作亮,等.梅林水厂臭氧—生物活性炭工艺的运行效果[J].给水排水,2006,27(13):10-17.
    [127]陈士才.钱塘江水源水厂03/BAC深度处理工艺组合优化及其水质研究[D].上海:同济大学,2005
    [128]李发站,陆建红,吕平光.跌水曝气生物氧化预处理微污染水源水[J].水处理技术,2008, 34(11):50-53.
    [129]刘金香,娄金生,陈春宁.沸石-陶粒曝气生物滤池处理微污染水源水试验[J].工业用水与废水,2005,36(4):10-12.
    [130]葛旭,陆坤明.组合工艺流程处理微污染源水研究[J].中国给水排水,2000,16(9):1-4
    [131]宋亚丽,董秉直,高乃云等PVDF微滤膜处理黄浦江微污染水的研究[J].给水排水,2007,33(6):24-27
    [132]王磊,李靖平,张岩.臭氧-生物活性炭-纳滤膜深度处理饮用水试验研究[J].给水排水,2009,9(2):17-20
    [133]蔡邦肖,唐名威,许阳.自来水深度处理超滤膜的选择[J].工业用水与废水,2007,38(6):71-75
    [134]孔繁钰,胡海修,梁恒国,等.膜分离技术处理微污染原水的研究进展[J].重庆工业高等专科学校学报,2004,19(1):7-9
    [135]Koyuncu I, Yalcin F. Color removal of high strength pa-per and fermentation industry effluents with membranetechnology[J]. Water Science and Technology,1999, V40(11-12):351-358.
    [136]沈海风,胡孟春.反渗透膜装置在饮用水中的应用[J].环境科技,2008,21(2):24-26
    [137]张莉萍,习晋.特殊水质处理技术[M].北京:化学工业出版社,2005,41-42
    [138]栾岚.某小区高含锰的地下水除锰技术研究[D].江西:南昌大学,2007
    [139]李圭白,刘超.地下水除铁除锰[M].北京:中国建筑工业出版社,1989
    [140]Zheng Teng, Yuan Huang, Kenji Fu. Manganese removal by hollow filter mier of membrane Poeation for drinking water[J]. Desalination2001,139:411-418
    [141]M. N.Wiswanathan, B. Boeteher. Biologieal removal of Iron from Groundwater[J]. Waterse&Technol,1991,(23):1437
    [142]Vandenabeele, D. Debeeretal. Manganese Oxidationby Mierobial Consortia From Sand Filter[J]. Miero Eeol,1992, V(24):91-108
    [143]V. A. Pacini, A.M. Ingallinella, G. Sanquinetti. Removal of Iron and Manganese Using Biological Roughing up Flow Filtration Technology[J]. Water Research.2005, v39(18):4463-4475
    [144]朱秀芹,李灿波.地下水除铁除锰技术发展历程及展望[J].黑龙江水利科技,2008,6(36):121-122
    [145]陈丽芳,李敏.我国地下水除铁除锰技术研究概况[J].福建师范大学学报(自然科学版),2009,25(5):112-117
    [146]张吉库,傅金祥,周华斌.地下水除铁除锰技术与发展趋势[J].沈阳建筑工程学院学报(自然科学版),2003,19(3):212-214
    [147]陈宇辉,陶涛,余健.pH值对地下水除铁除锰影响机理的研究[J].工业用水与废水,2005,36(5):17-20.
    [148]Paillard, H. Iron and manganese removal with ozonation in presenee of humic substance[J]. Ozone Sci&Engng,1989,11:93-99
    [149]范憋功.利用砂滤池中的微生物除铁除锰[J].公用科技,10(1):28-29
    [150]陈国锋.浙东水库水除铁除锰试验研究[D].上海:同济大学,2008
    [151]中国市政工程东北设计研究院.生物固锰除锰成套技术研究报告,2001:6-8
    [152]张杰,杨宏.生物固锰除锰技术的确立[J].给水排水,1996,22(11):5-10
    [153]高井雄著.自然水除铁除锰概论[M].戴镇生译.哈尔滨:哈尔滨建筑大学出版社,1998:47-49
    [154]杨宏.生物固锰除锰技术微生物学研究[M].哈尔滨:哈尔滨工业大学出版社,2001:50-53
    [155]鲍志成,孙书菊,王国彦,等.自来水厂除锰滤砂的催化活性分析[J].环境科学,1997,18(1):38-41
    [156]朴真三,鲍志戎,李惟,等.自来水厂除锰滤池的成熟与微生物群落的研究[J].环境科学,1998,19(1):50-53
    [157]范功.澳大利亚微生物法除铁除锰技术[J].公用科技,1994,10(3):20-26
    [158]张晓光.臭氧氧化技术在水处理中的应用[J].净水技术,1996,58(4):22-25
    [159]张水平,董呈杰,袁非亮.臭氧在水处理中的应用[J].工业安全与环,2005,31(8):19-20
    [160]Andrzej Wilza, Willia R.Knocke E-Hubel and E.MarcoAicta. Manganese Control during ozonation of water containing or ganie compounds[J]. AWWA,1993, V85(10):95-104
    [161]Van Benschoten J E, Lin w, Knocke, W R,Kinetic. Modeling of manganese(II) oxidation by chlorine and potassium permangantae [J]. EnvirSci and Teehnol,1991, V26(7):1327-1333
    [162]孙士权,汪彩文,马军,等.预氧化剂强化去除太湖区地表水中铁锰的对比试验研究[J].工业水处理,2007,27(11):42-44
    [163]袁德玉,杨开,杨小俊,等.高锰酸钾去除地表水中锰的生产试验[J].工业用水与废水,2005,36(3):13-15
    [164]Knocke,William R.,Van Benschoten,John E.,Kearney. Kinetics of Manganeseand Iron Oxidation by Potassium Permanganate and Chlorine Dioxide[J]. Journal AWWA,1991, V83(6):80-87
    [165]许友芹,李金成,王娟,等.二氧化氯预氧化处理含锰地下水的试验研究[J].西南给排水,2006,28(6):24-27
    [166]武利,唐玉兰,傅金祥,等.二氧化氯对水中锰离子去除的试验研究[J].辽宁化工,2010,39(1):4-7
    [167]徐新华,赵伟荣.水与废水的臭氧处理[M].北京:化学工业出版社,2003,198-199
    [168]何绪文,周波,邵立南,等.改性滤料处理高浊高铁锰矿井水效能和机制研究[J].中国矿业大学学报,2009,38(5):724-728

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700