用户名: 密码: 验证码:
渝东地区震旦系灯影组硅质岩特征及成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以渝东地区震旦系灯影组硅质岩为研究对象,详细研究了硅质岩石英的结构类型、结构组合、结构演化及扫描电镜特征;从岩相学特征明确了震旦系灯影组硅质岩是以交代为主;详细研究了震旦系灯影组硅质岩石英主量元素、微量元素、稀土元素及同位素地球化学特征;揭示了震旦系灯影组硅质岩成因为热水与海水、沉积与成岩共同作用的产物;探讨了硅质岩的形成机理及其形成时间,总结了硅质岩在油气地质中的作用。主要取得了以下研究成果:
     渝东地区震旦系硅质岩主要分布在灯影组三段,在剖面结构上常与白云岩呈互层状产出,且与相邻白云岩具明显的界线差异。在偏光显微镜下,灯影组硅质岩显示出明显的隐晶质石英、玉髓、微晶石英及巨晶石英的各种不同形态和不同颗粒大小的石英晶体的结构元素特征;具有明显的隐晶、微晶和镶嵌结构(纹层状镶嵌、窗状孔镶嵌及打断、绕曲纹层镶嵌结构)类型特征。在扫描电子显微镜下,石英晶体内可见有残存的白云石晶体,或部分石英仍保存着白云石晶体的形态、未完全被硅质交代的残余白云石晶体形态,以及代表热水沸腾作用的针状孔较发育。
     渝东地区震旦系灯影组硅质岩主量元素中除SiO_2、TFe_2O_3、CaO、MgO及LOI(烧失量)含量较高外,其它组分含量均较低。Fe/Ti、(Fe+Mn)/Ti、Al/(Al+Fe+Mn)比值,在Fe/Ti-Al/(Al+Fe+Mn)的图解上,均显示出具热水成因特征。
     灯影组硅质岩微量元素中Ba、As元素呈明显亏损、Cr元素呈明显富集特征,与典型的热水沉积硅质岩具有一定的差异。灯影组硅质岩的∑REE总量较低;具明显的LREE富集,HREE元素亏损;灯影组硅质岩大部分样品有δCe负异常或δCe异常不明显,少数为正δCe异常;δEu具有明显负异常,这一结果与传统热液成因的硅质岩具有δEu弱正异常的特征具有一定出入。这主要受控于原始的沉积环境,及与其所受热流体活动逐渐减弱相关。
     灯影组硅质岩的δ~(30)Si值变化范围在-0.6‰~0.8‰,属于热水来源的硅质岩中的δ~(30)Si值范围;晶洞中石英单矿物的硅同位素组成变化范围在-0.4‰~0.5‰之间,与硅质岩的硅同位素组成一致。这表明两者具有共同的来源,只是沉淀方式的不同,硅质岩以热水交代为主,而晶洞中则以充填为主。
     硅质岩的δ~(18)O值为15‰~23.5‰,利用氧同位素计算得出研究区硅质岩的形成温度为60~140℃。
     岩石学和地球化学特征总体揭示渝东地区震旦系灯影组硅质岩成因为热水与海水、沉积与成岩共同作用的产物。与灯影组同时异相的留茶坡组硅质岩相比较,灯影组硅质岩岩石学特征强烈表明在四川盆地周缘的震旦系硅质岩主要为交代成因,形成时间为晚震旦世-早寒武世(536.3±5.5Ma)。这与兴凯地裂运动早期的构造热流体活动有着紧密的相关性。流体来源主要为深部富含硅质的热流体,通过台地边缘斜坡带同沉积深大断裂和渗透性地层进行交代。
     硅质岩对震旦系灯影组油气勘探具有重要意义。大量的富硅热流体可致使局部呈缺氧环境从而有利于大量有机质的埋藏和保存。同时,富硅的热流体可以溶蚀碳酸盐岩、改善储层性质,适度的硅化作用和较强的硅质新生变形作用可形成有利的储层,可作为天然气的有效储层。但,石英充填于原生孔隙中产生破坏性作用,主要是导致储集岩岩石更加致密;另一方面致密的硅质岩层对其上覆的烃源流体向下运移具有明显的封堵作用。
In this thesis, we have aimed the Sinian Dengying formation chert in East Chongqing, and studied the texture types, group, evolution characteristics under polarizing microscopy and scanning electron microscopy. Petrological characteristics have showed that chert is an origin of replacement of dolomite. Geochemical characteristics of minor elements, and REE have been detailed studied, and revealed that formation of chert is related to hydrothermal fluids and seawater, controlling the sedimentary facies and diagenesis process. Formation mechanism and time of chert have also been discussed, so is the role of chert in petroleum geology. The following conclusions have been listed:
     Chert is mainly distributed in 3rd member of Dengying formation, and always interbeds with dolomite. The lithological boundary between dolomite and chert is very clear, and with significant differences. In thin section scale, aphanitic quartz, chalcedony, microcrystalline quartz and mega quarz, whose are characterized by varied crystal form and size, have been showed different texture element features. The texture elements features includes cryptocrystalline , microcrystalline, mosaic (include laminated,fenestrae, broken or curved laminated texture ) and so on. And in the scanning electron microscope scale, residual dolomite crystals have been found in quartz. Quartz have still hold the form of dolomite and some dolomite crystals are very whole because of partly silicification.
     Main elements in chert have showed that content of SiO_2、TFe_2O_3、CaO、MgO and LOI is high, but the others is low. According to the diagrams of Fe/Ti、(Fe+Mn)/Ti、Al/(Al+Fe+Mn, there is clear that chert originates from hydrothermal fluids.
     Elements of Ba and As show significant depletion in chert, but richment of Cr. This is very different from the chert deposited directly from hydrothermal fluid. The content of REE is low, with richment of LREE and depletion of HREE. Most chert sample have showed negative anomalies and not clear anomalies ofδCe, even positive anomalies ofδCe. The value ofδEu is obvious negative anomalies, which has different from traditional hydrothermal cherts (with weak positive anomaly). The above distribution characteristics of main, minor and REE have been argely controlled by the original depositional environment and the activity grade of hydrothermal fluid.
     The values ofδ~(30)Si have varied from -0.6‰~ 0.8‰, belong to the range of chert origin from hydrothermal fluid. The values ofδ~(30)Si of quartz in caves have ranged from -0.4‰~ 0.5‰. The similar composition between chert and quartz mineral have showed that their have the same fluid source, but precipitation in different ways: replacement of dolomite and filling /deposited in pores water. The value ofδ~(18)O in chert have ranged from 15‰to 23.5‰. Calculating formation temperature of chert have ranged from 60℃to 140℃according to the values ofδ~(18)O in chert. Petrographic and geochemical characteristics of chert have revealed that its origin has been controlled by the sedimentary -diagenesis process and seawater-hydrothermal fluids. Comparison to the traditional upper Sinian Liuchapo formation chert, the characteristics of chert around Sichuan basin show obvious origin of replacement of dolomite. And the formation time of chert has ranged from late Sinian to early Cambrian(536.3±5.5Ma). The hydrothermal fluid has been related to the early Xingkai taphrogenesis thermal activity. And the main source of fluids rich in silica is deep thermal fluid through the deep faults on platform margin slope belts and permeable sedimentary strata.
     Chert has very important effect on the oil&gas exploration of Sinian Dengying formation. Large amount of hydrothermal fluids have caused a local hypoxic environment, where is much helpful to the burial and preservation of organic matter.
     Meanwhile, the hydrothermal fluids rich in silica have improved the reservoir rocks by dissolution, Moderate silicification and strong neomorphism of silica. The reservoir rocks can be an effective for nature gas accumulation. However, quartz infilling the primary pores or cavies has destroyed the storage spaces, and caused the reservoir rocks more dense. On the other hand, dense cherts have a significant sealing effective on the downward movement of hydrocarbon fluids.
引文
[1] Blatt H , Middleton G V , Murray R . Origin of Sedimentary Rocks[M] . New Jersey:PRENTICEHALL,NC.Englewood Cliffs(2nd ed),1980:1-782.
    [2]赵澄林,朱筱敏.沉积岩石学(第三版)[M].北京:地质出版社,2001:1-407.
    [3]姜在兴,沉积学[M].北京:石油工业出版社,2003:242-245.
    [4] Rona P A. Hydrothermal processes at seafloors spreading centers[M] . New York : Plenum Press. 1983,539-555.
    [5]唐世荣,王东安.硅岩研究的进展[J].地球科学进展,1994,(6):71-74.
    [6]冯彩霞,刘家军.硅质岩的研究现状及其成矿意义[J].世界地质, 2001,(2):119-123.
    [7] Calver T S E.Sedimentary geochemistry of silicon[A].In:Aston S R,ed.Silicon Geochemistry and Biogeochemistry[C],1983.143-170.
    [8]涂光炽.本世纪80年代地球科学若干问题进展[J].地质评论,1991,11(4):251-254.
    [9] Krauskof K B . Factors controlling the concentration of thirteen rare metals in sea-waters[J].Geochemistry and Cosmochemistry Acta,1956,9(1):32.
    [10] Holland H D.Gangue minerals in hydrothermal system[A].In:Barners H L,ed.Geochemistry of Hydrothermal Ore Deposits[C].1967.382-436.
    [11] Rona P A.Criteria for recognition of hydrothermal mineral deposits in ocean crust[J].Econ Geol,1978,73:135-160.
    [12] Rona P A , Bostrom K , Epstein S . Hydrothermal quartz vug from the Mid-Atlantic Ridge[J].Geology,1980,8:569-572.
    [13]康季捷诺夫B H.硅质岩发育区的地质测量[M] .鲍永章译.北京:地质出版社,1978.
    [14] Edmond J M,Damm K V.大洋底的温泉[J].自然,1983,(8):37-50.
    [15] Adachi M,Yamamoto K,Suigiske R,Hydrothermal chert and associated sillicons rocks from the Northern Pacific:Their geological significance as indication of ocean ridge activiev[J].Sediment Geol,1986,47:125-148.
    [16] Yamamoto K,Geochemical characteristics and depositional environment of cherts and associated rocks in the Franciscan and Shiment terranes[J].Sediment Geol,1987,52:65-108.
    [17]陈洪德,曾允孚.广西丹池地上泥盆统留江组硅质岩沉积特征及成因讨论[J].矿物岩石,1989,9(4):22-28.
    [18]周永章.丹池盆地热水成因硅质岩地球化学特征[J].沉积学报,1990,8(3):75-83.
    [19]伊海生,曾允孚,夏文杰.湘黔贵地区上震旦统沉积相及硅质岩成因研究[J].矿物岩石,1989,9(4):54-58.
    [20]陈先沛,高计元.广西中部泥盆系的多金属-重晶石矿床和热水沉积作用[J].沉积学报,1987(03):149-158.
    [21]王京彬,李朝阳.金顶超大型铅锌矿床REE地球化学研究[J].地球化学,1991(4):359-365.
    [22]肖荣阁,杨忠芳,杨卫东,李朝阳.热水成矿作用[J].地学前缘,1994,1(3~4):140-147.
    [23]侯增谦,T Urabe.现代与古代海底黑矿型块状硫化物矿床矿石地球化学比较研究[J ] .地球化学, 1996 ,25 (3) :228 - 240.
    [24]刘家军,郑明华.热水沉积硅岩的地球化学[J].四川地质学报,1993(2):110-118.
    [25]周永章,CHOWN E H ,G UHA J ,等.粤西古水震旦系顶部层状硅质岩的热水成因属性[J ] .沉积学报, 1994 ,12(3) :1 - 10.
    [26]周永章,何俊国,杨志军,付伟,杨小强,张澄博,杨海生.华南热水沉积硅质岩建造及其成矿效应[J].地学前缘,2004(2):373-377.
    [27]杨海生,周永章,杨志军,等.热水沉积硅质岩地球化学特征及意义-以华南地区为例[J].中山大学学报(自然科学版),2003,42(6):111-115.
    [28]李毅,苏夏征,陈大经,戴塔根.广西热水沉积矿床中硅质岩岩石学及岩石化学特征[J].矿产与地质,2007(4):445-451.
    [29]郑翔,钱汉东,吴雪枚.湖北恩施双河硒矿床地球化学特征及成因探讨[J].高校地质学报.2006(1):83-92.
    [30]彭军,夏文杰,伊海生.湘西晚前寒武纪层状硅质岩的热水沉积地球化学标志及其环境意义[J].岩相古地理.1999b,19(2):29~37.
    [31]彭军,田景春,伊海生,等.扬子板块东南大陆边缘晚前寒武纪热水沉积作用[J].沉积学报,2000a,18(1):107-113.
    [32]刘淑文,薛春纪,李强,朱经祥,王涛,赵国斌.秦岭旬阳盆地下古生界钠长石岩岩石学和地球化学特征[J].中国地质,2005(3):424-433.
    [33]夏邦栋,钟立荣.下扬子区早二叠世孤峰组层状硅质岩成因[J].地质学报,1995,69 (2) :125 - 137.
    [34]丁悌平等.硅同位素地球化学[M ].北京:地质出版社, 1994.
    [35] Song Tianrui, Ding Tiping, A New Probe of Application of Silicon Isotopic Delta (30) Siin Siliceous Rocks to Sedimentary Faces analysis[J].Kexue Tongbao(Foreign- language-Edition),1990, 9 (35).
    [36] Hiroshi Tianrui, et al. A new probe of application of silicon isotopic delta (30) Siin siliceous pocks to sedimentary faces analysis [J].Kexue-Tongbao(Foreign- language-edition) , 1990, 9 (35).
    [37]丁林,钟大赉.滇西昌宁—孟连带古特提斯洋硅质岩的稀土元素和铈异常特征[J].中国科学(B) , 1995, 25 (1) , 93~101 .
    [38]王东安.杨子地台晚古生代以来硅岩地球化学特征及成因[J].地质科学,1994,28(1):41~52 .
    [39] Yongzhang Zhou et al.Hydrothermal origin of lateproterozoic bedded chert at Gusui, Guangdong, China: petro logical and geochemical evidence[J].Sedmentalogy, 1994,(41) :605~619.
    [40]吴浩若等.桂南晚古生代放射虫硅质岩及广西古特提斯的初步探讨[J].科学通报,1994,39 (9) : 809~812 .
    [41]吴浩若,李红生.滇西昌宁孟连地区的石炭和二叠纪放射虫化石[J ].微体古生物学报, 1989, 6 (4) : 337~342 .
    [42]王东安,陈瑞君.硅岩的Rb-Sr同位素组成特点及其地质意义[J].地质科学,1997,18:108~110 .
    [43]崔春龙.硅质岩研究中的若干问题[J],矿物岩石,2001,(3):100-104.
    [44]孔庆玉,龚与觐.硅质岩的发现及基地质意义[J].地质论评,1986(5):505-511.
    [45]朱洪发,秦德余,刘翠章.论华南孤峰组和大隆组硅质岩成因、分布规律及其构造机制[J].石油实验地质,1989(4):341-348.
    [46]伊海生,曾允孚,夏文杰.扬子地台东南大陆边缘上震旦统硅质岩的超微组构及其成因[J].地质学报.1994,68(2):132~143.
    [47]唐世荣,王东安,李任伟.湘川地区震旦-寒武系硅岩的有机岩石学研究[J].沉积学报.1997,1:54~59.
    [48]唐朝晖,曾允孚.西秦岭中志留统含铀岩系中硅质岩的岩石学、地球化学及其成因[J].岩石学报,1990(2):62-72.
    [49]夏文杰,彭军,伊海生.湘黔地区震旦纪菌藻硅质岩特征[J].矿物岩石,1993,13(3):21-28.
    [50]吴朝东,杨承运,陈其英.湘西黑色岩系地球化学特征和成因意义[J].岩石矿物学杂志,1999,18(1):26-39.
    [51]彭军,夏文杰,伊海生,湘西晚前寒武纪层状硅质岩硅氧同位素组成及成因分析[J].地质论评.1995,41(1):34~41.
    [52]彭军,伊海生,夏文杰.湘黔桂地区晚前寒武纪层状硅质岩地球化学特征及成因[J].地质地球化学.1999a,27(4):33~39.
    [53]彭军,伊海生,夏文杰.扬子板块东南陆边缘上震旦统热水成因硅质岩的地球化学标志[J].成都理工学院学报.2000b,27(1):08~14
    [54]彭军,徐望国.湘西上震旦统层状硅质岩沉积分环境的地球化学标志[J].地球化学.2001,30(3):293~298.
    [55]冯彩霞,刘家军.鄂西南双河渔塘坝硒矿区硅质岩地球化学特征[J].吉林大学学报(地球科学版).2002,32(1):021~025.
    [56]雷卞军,阙洪培,胡宁,牛志军,汪华.鄂西古生代硅质岩的地球化学特征及沉积环境[J].沉积与特提斯地质.2002,22(2):70~79.
    [57]江永宏,李胜荣.湘、黔地区前寒武-寒武纪过渡时期硅质岩生成环境研究[J].地学前缘(中国地质大学(北京);北京大学).2005,12(4):622~629.
    [58]胡杰.桂东北较深水相前寒武纪-寒武纪之交的硅质微生物岩[J].微体古生物学报,2008,25(3)291~305.
    [59] Liu B J, Xu X S. Atlas of the lithofacies and paleography of south china[M]. Beijng:Science press,1994.
    [60]牟传龙,许效松.原特提斯构造演化与中下扬子油气下组合研究[R].成都环境地质与资源开发研究所,成都,2009.
    [61]朱杰,杜远生.北祁连造山带老虎山奥陶系硅质岩地球化学特征及古地理意义[ J ].古地理学报. 2007, 9 (1) : 69 - 76 .
    [62]吴浩若.放射虫硅质岩对华南古地理的启示[J].古地理学报,1999(2):28-35.
    [63]张凡,冯庆来,张志斌,段向东.滇西南耿马地区弄巴剖面早石炭世硅质岩的地球化学特征及古地理意义[J].地质通报,2003(5):335-340.
    [64]杨文强,冯庆来,刘桂春.滇西北甘孜-理塘构造带放射虫地层、硅质岩地球化学及其构造古地理意义[J].地质学报,2010(1):78-89.
    [65]刘家军,郑明华.硅岩的新成因――热水沉积作用[J].四川地质学报,1991(4):251-255.
    [66]杨建民,王登红,毛景文,张作衡,张招崇,王志良.硅质岩岩石学研究方法及其在"镜铁山式"铁矿床中的应用[J].岩石矿物学杂志,1999(2):108-120.
    [67]陈多褔,陈光谦,陈先沛,高计元,潘晶铭,华南晚古生代礁硅岩套的组成和分类及地质涵义[J].地质学报,1998(2):97-102.
    [68]孙省利,陈践发,刘文汇,张水昌,王大锐.海底热水活动与海相富有机质层形成的关系[J].地质论评,2003(6):587-595.
    [69]王清晨.浅议华南陆块群的沉积大地构造学问题[J].沉积学报,2009(5):811-817.
    [70]鄢菲,胡望水,吕炳全,肖传桃,唐友军,胡书奎.下扬子中二叠统上升流相与烃源岩的关系研究[J].海洋石油,2008(2):62-67.
    [71]马金萍,张婷婷,薛林福.黑龙江东部晚三叠世-早侏罗世放射虫硅质岩特征及油气远景[J].地质与资源,2008(4):312-317.
    [72]李毅,李赋屏,何国朝.东川蓑衣坡硅质岩型铜矿床的地质地球化学特征及成因[J].矿床地质,2005(1):71-80.
    [73]李红中,杨志军,周永章,古志宏,马占武,吕文超,何俊国,安燕飞,李文,王强.秦岭造山带西段八方山-二里河Pb-Zn矿区硅质岩的微组构分析及其意义.地球科学-中国地质大学学报,2009(2):299-306.
    [74]应汉龙.浅成低温热液金矿床的全球背景[J].贵金属地质,1999(4):241-239.
    [75]毛晓冬,黄思静,刘云华.广东长坑-富湾金、银矿床流体地球化学特征及其意义[J].成都理工大学学报(自然科学版),2003(2):111-120.
    [76]徐政语,林舸,刘池阳,王岳军,郭锋.从江汉叠合盆地构造形变特征看华南与华北陆块的拼贴过程[J].地质科学,2004(2):284-295.
    [77]刘宝珺,余光明,徐强.雅鲁藏布中新生代深水沉积盆地形成和演化(I)-喜马拉雅造山带沉积特征及演化[J].岩相古地理,1993(1):32-49.
    [78]刘少峰,张国伟,程顺有,姚安平.东秦岭-大别山及邻区绕曲类盆地演化与碰撞造山过程[J].地质科学,1999(3):336-346.
    [79]马文辛,刘树根,陈翠华,黄文明,张长俊,宋光允.渝东地区震旦系灯影组硅质岩地球化学特征[J].矿物岩石地球化学通报,2011,30(2):160-171.
    [80]文可东.鄂西渝东区下古生界油气成藏条件分析[J].江汉石油科技,2010(2):1-8
    [81] Hesse.Silica diagenesis;origin of inorganic and replacement cherts[J].Earth-Science Reviews,1989,26(4):253-284.
    [82] Lowe D R.Sediment gravity flows;their classification and some problems of application to natural flows and deposits[J] . Special Publication - Society of Economic Paleontologists and Mineralogists,1979 (27):75-82.
    [83] Kolodny Y.Are marine phosphorites forming today?[J].Nature,1969(224):1017-1019.
    [84] Boswell .The case against a lower Palaeozoic geosyncline in Wales[J].Liverpool and Manchester Geological ,1961, 2: 612-625.
    [85] Lowe D R.Water escape structures in coarse-grained sediments[J]. Sedimentology, 1975, 22(2):157-204.
    [86] Siever R and Garrels R M.Silica solubility O degrees-200 degrees C and the diagenesis of siliceous sediments [J]. Journal of Geology,1962,70(2):127-150.
    [87] Folk R L,Some aspects of recrystallization in ancient limestones(in Dolomitization and limestone diagenesis—A symposium) Special Publication - Society of Economic Paleontologists and Mineralogists,1965: 14-48 .
    [88] Bathurst,Carbonate sediments and theie diagenesis(in developments in sedimentology,12)[J].Elsevier Sci.Publ.co.,Armsterdam,Netherlands, 1975,pp.658.
    [89] Kastner ,Keene,Gieskes.Diagenesis of siliceous oozes I chemical controls on the rate of opal-A to opal-CT transformation an experimental study[J].Geochimicaet Cosmochimica Acta,1977,41(8):1041-1059.
    [90] Hein and Koski. Bacterially mediated diagenetic origin for chert-hosted manganese deposits in the franciscan complex,California coast ranges[J].Geology,1987,15:722-726.
    [91] Weaver and Wise,Chertification phenomena in Antarctic and pacific deep sea sediments-a scanning electron microscope/X-ray diffraction study[J].Transactions-Gulf Coast Association of Geological Societies,1972,22: 222.
    [92] Land.Isotopic and trace-element geochemistry of dolomite state of the art[J].AAPG Bulletin,1979,63(3):485.
    [93] Herzig P M ,Becker K P,Stoffers P,Backer H and Blum N.Hydrothermal silica chimney fields in the Galapagos spreading center at 810W[J].Earth Planet.Sci.Lett.,1988,89(3-4):261-272.
    [94] Adachi M,Yamamoto K,Sulglsk R. Hydrothermal chert and assoclated sillceous rocks from the Northern Paclfic:Their Geological significance as indication of ocean ridge activity[J]. Sedimentary Geology,1986,47(1-2):125-148.
    [95] Fleet A J. Hydrothermal and hydrogeneous ferromanganes deposits[A] . In :Rona P A , et al.,Hydrothermal processes at seafloor spreading centers [ C] . New York: Rlenum Press,1983,537-570.
    [96] Bostrom K.The origin and fate of ferrom anganoan active ridge sediments[J]. Acta-Univ.Stockholmiensis,Stock.Contrib.Geology,1973(2):149-243
    [97] Yamamoto K.Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shiman to terranes[J].Sedimentary Geology,1987(1/2):65-108.
    [98] Bostrom K,Rydell H and Joensuu O.Langbank an exhalative sedimentary deposit[J].Econ.Geol.,1979,74:10002-10011.
    [99] Bostrom K.Genests of ferromanganese depostts-diagnostic crlterrla for recent and old deposits[A].Rona P A.Hydrothermal processes at seafloors spreading centers[C].New York:Plenum Press,1983,473-483.
    [100] Turekian,K and K H Wedepohl.Distribution of the elements in some major units of the earth’s crust[J].Geol.Soc.Amer.Bull,1961,72:175-192.
    [101] Sugisake R,Yamamoto K and Adachi M.Triassic bedded cherts in central Jalen are not pelagic[J].Nature,1982,298:644-647.
    [102] Yamamoto K.Geochemical study of Triassic bedded cherts from kamiaso,Gifu Prefecture[J]. Ged.Soc.Jap.,1983,89:143-162.
    [103] Bostrom and Peterson.The origin of aluminum-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise[J].Marine Geology,1969,7(5):427-447.
    [104] Herzig P M.Hydrothermal silica obimney fielding the Galapagos Spreeding Center at 86 W[J].Earth and Planet.Science Letters,1988(1):281-320.
    [105] Spry,P. G:Geochemistry and origin of coticules(spessartine-quartz rocks)associated with metamorphosed massive sulfide deposits[J].In Regional Metamorphism of Ore Deposits (P.G.Spry&L.L.Bryndzia,eds.).VSP,Utrecht,The Netherlands,1990:49-75.
    [106]王东安,陈瑞君.雅鲁藏布缝合带硅岩的地球化学成因标志及其地质意义[J].沉积学报,1995(1):27-31.
    [107] Rona P A. Crit eria f or recognit ion of h yd roth ermal mineral deposits in oceanic crust . Econ. Geol. , 1978.73( 2) : 135~160
    [108] Rona P A . Hydrother mal min eralliz at ion of oceanic ridges.Canadian Mineral ogy, 1988. 26( 3) : 447~465
    [109]吕国芳,关保德,王耀霞.豫西高山河组云梦山组火山岩特点及其构造背景[J].河南地质.1993(1):37-43.
    [110] Murray R W, Buchholtz ten BrinkM R, JonesD L, Gerlach D C and RussⅢG P. Rare earth elements as indicators of differentmarine depositional environments in chert and shale. Geology, 1990, 18: 268—271.
    [111] Murray, L., Fiori-Cowley, A., Hooper, R., et al,The impact of postnatal depression and associated adversity on early mother-infant interactions and later infant outcome. Child Development, 1996(67) :2512 -2626.
    [112] Murray R W,Marilyn R B, David C G, et al., Interoceanic variation in the rare earth,major,and trace element depositional chemistry of chert:Perspectives gained form the DSDP and ODP record[J].Geochimica et Cosmochimica Acta,1992,56:1897~1913.
    [113] Michard A. The REE content of some hydrothermal fluids[J ].Chemical Geology , 1986 ,55 :51~60.
    [114] Steinberg M ,Bonnot-Courtois C,Tlig S.Geochemical contribution to the understanding of bedded chert[J]. In Siliceous Deposits in the Pacific Region (ed.A,Iijima et al.), Elsevier, Developments in Sedimentology,1983,36(12):193~210.
    [115]雷卞军,阙洪培,胡宁,等.鄂西古生代硅质岩的地球化学特征及沉积环境[J].沉积与特提斯地质,2002,22(2):70~79.
    [116] Taylor S R,Mclennan S M.The Continental Crust:Its Composition and Evolution. Oxiford:Blackwell Scientific Publications.1985,312.
    [117] Haskin L A,Wildeman T R.,Frey F A,et al.Rare earths in sediments[J].Geophys. Res,1966,71:6091~6105.
    [118] Murray R W.Chemical criteria to identify the depositional environment of chert:genrtal principles and applications[J].Sedimentary Geology,1994 ,90(3-4):213~232.
    [119] Murray RW, Buchholtz Ten BrinkM R, Gerlach D C, et al. Rare earth, major, and trace elements in chert from the Franciscan Comp lex and Monterey Group,California: Assessing REE sources to fine - grained marine sediments [ J ]. Geochimica et Cosmochimica Acta. 1991, 55: 1875– 1895.
    [120] Clayton RN.High temperature isotope effects in the early solar system.In:Valley et al.,(eds.).Review in Mineralogy,1986,16:129-139.
    [121] Savin S M and Epstein S.The oxygen isotopic compositions of coarse grained sedimentary rock sand minerals[J].Geochimca et Cosmochimca Acta,1970,34(3):323-329.
    [122] Douthitt C B.The geochemistry of the stable isotopes of silicon[J].Geochimca et Cosmochimca Acta,1982,46(8):1449-1458.
    [123]丁悌平,蒋少涌,万德芳.硅同位素地球化学[M].北京:地质出版社,1994,17-88.
    [124] Alt J C.The chemistry and sulfur isotope composition of massive sulfide and associated deposits on the Green Seamount,eastern Pacific.Econ.Geol.,1988,83:1026-1033.
    [125] Pisutha-Arnond V.Ohmoto H.Thermal history,and chemical and isotopic compositions of the ore-forming fluids responsible for the Kuroko massive sulfide deposits in the Hokruoko District of Japan.Econ.Geol.Mon.,1983,5:523-558.
    [126] Hoy I D.Regional evolution of hydrothermal fluids in the Noranda district,Quebec:evidence fromδ18O values from volcanogenic massive sulfide deposits.Econ.Geol.,1993,88:1526-1541.
    [127] Knauth L P,Epstein S.Hydrogen and oxygen isotope ratios in silica from the JOIDES deep sea drilling progect.Earth Planet.Sci.Lett.,1976,25:1-10.
    [128] Clayton R. N., O’Neil J. R., and Mayeda T. K. Oxygen isotope exchange between quartz and water. J. Geophys. Res. 1972,77, 3057–3067.
    [129]王爱华.不同形态锶钡比的沉积环境判别效果比较[ J].沉积学报, 1996, 14 ( 4 ): 168-173.
    [130]王东安,陈瑞君.扬子地台震旦纪-二叠纪硅岩形成的地质背景及其与成矿的关系[A].叶连俊.生物成矿作用研究[M].北京:海洋出版社,1993:52-64.
    [131]高常林,何将启.北大巴山硅质岩的地球化学特征及其成因[J].地球科学-中国地质大学学报,1999,24(3):246-249.
    [132]陈明,许效松,万方,尹福光.上扬子台地晚震旦世灯影组中葡萄状-雪花状白云岩的成因意义[J].矿物岩石,2002(4):33-37.
    [133] Knauth L P. A model for the origin of chert in limestone[J].Gelological Society of America ,1979,7:274-277.
    [134] Hinman N W and Walter M R,Textural preservation in siliceous hot spring deposits during early diagenesis:examples from yellowstone national park and nevada.U.S.A[J].Journal of Sedimentary Research,2005,75:200-215.
    [135] Liu B J, Xu X S. Atlas of the lithofacies and paleography of south china[M]. Beijng:Science press,1994.
    [136]牟传龙,许效松.原特提斯构造演化与中下扬子油气下组合研究[R].成都环境地质与资源开发研究所,成都,2009.
    [137] Daizhao Chen,Jianguo Wang,Hairuo Qing,Detian Yan,Renwei Li.Hydrothermal venting activities in the early cambrian,South China:Petrological,geocheonological and stable isotopic constraints[J],Chemical Geology,2008,(258):168-181.
    [138]王清晨,蔡立国.中国海相碳酸盐岩层系形成与后期演化(2005CB422101)[R].中国科学院地质与地球物理研究所,中国石油化工股份有限公司石油勘探开发研究院,2009.
    [139]汪建国,陈代钊,王清晨,严德天,王卓卓.中扬子地区晚震旦世-早寒武世转折期台-盆演化及烃源岩形成机理[J].地质学报,2007(8):1102-1110.
    [140]黄文明,四川盆地震旦系灯影组储层特征及其形成机制研究[D],成都理工大学,2008.
    [141]陈永权,蒋少涌,周新源,杨文静,韩利军.塔里木盆地寒武系层状硅质岩与硅化岩的元素、δ30Si、δ18O地球化学研究[J].地球化学,2010(2):159-170.
    [142]刘树根,马永生,黄文明,蔡勋育,张长俊,王国芝,徐国盛,雍自权,盘昌林.四川盆地上震旦统灯影组储集层致密化过程研究[J].天然气地球科学,2007(4):485-496.
    [143]宋光允,刘树根,黄文明,王国芝,陈翠华,马文辛,张长俊.川东南丁山-林滩场构造灯影组热液白云岩特征[J].成都理工大学学报(自然科学版),2009(6):706-715.
    [144] Watney, W.L., Franseen, E.K., and Byrnes, A.P., 2002, Comparison of Middle Mississippian Osagian Shelf and Shelf Margin Chert Deposits in Central Kansas: 2002 Annual GSA Meeting.
    [145] Packard J J et al, Ihsan Al-Aasm, Iain Samson,et al., A Devonian Hydrothermal Chert Reservoir: The 225 bcf Parkland Field, British Columbia, Canada[J]. AAPG Bulletin,2001,85(1):51-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700