用户名: 密码: 验证码:
高磁性能冷轧无取向硅钢薄带的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过添加有利元素、热轧板常化、调整冷轧和退火工艺等方法成功研制出高磁性能的0.2mm厚冷轧无取向硅钢薄带产品,产品性能(B50≥1.66T、P1.0/400≤11W/kg)达到了新日铁同类牌号(20HTH1200)的标准,处于世界先进水平,满足了国内部分用户对该类产品的需求。论文分析和探讨了热轧板常化、冷轧和退火工艺、元素晶界偏聚等因素对无取向硅钢薄带磁性能、晶粒尺寸、织构、析出物等方面的影响。
     研究结果表明,常化使得热轧板组织更均匀,能够明显降低无取向硅钢薄带的铁损,但对磁感应强度无明显影响。随着常化温度的升高成品晶粒尺寸增大且更加均匀,但过高温度的常化会使成品晶粒尺寸偏大同时均匀性变差,常化温度选择在900~950℃比较适宜。随着常化温度的升高,成品钢带中{100}面织构和(110)[001]织构等有利织构比例逐渐增高,同时{111}面不利织构组分的比例在逐渐的降低。
     在对冷轧工艺的研究中发现,采用一次冷轧工艺由于压下率过大,成品钢带中{111}面不利织构组分的比例较高,铁损偏高,磁性能不理想。采用二次冷轧工艺时,较低和较高的第二次冷轧压下率生产出的成品钢带中{111}面不利织构组分的比例都比较高,第二次冷轧压下率控制在55-70%比较适宜,能够获得铁损较低同时磁感应强度较高的无取向硅钢薄带产品。
     Sn元素的添加对于降低无取向硅钢薄带的铁损有明显的效果,但也会在一定程度上降低磁感应强度,对二者的影响与Sn的添加量有关。添加0.05%Sn对铁损和磁感应强度无明显影响;当Sn的添加量为0.1%时,铁损明显下降,同时磁感应强度也有一定程度的降低;当Sn的添加量为0.15%时,磁感应强度与添加量为0.1%时相比变化不大,但铁损有所增高。随着Sn含量的增高,成品钢带中{111}面织构的比例逐渐降低,晶粒尺寸也明显减小。Sn沿晶界偏聚降低了晶界能,使得{111}面织构在原始晶界处的形核和晶粒长大过程受到了抑制,从而降低了成品钢带中{111}面织构的比例。在对Sn元素晶界偏聚的研究过程中发现,Sn在晶界上的偏聚量并不均匀,不同样品晶界处Sn的平均偏聚量也不同。经过统计,700℃保温后的常化板中Sn的平均偏聚量最高,成品板中平均偏聚量其次,常化板中的平均偏聚量最低。随着Sn添加量的增加,晶界处Sn的平均偏聚量逐渐增加。
     实验在常化板中观察到了在晶界处钉扎的TiN析出物,TiN等析出物很难在最终退火过程中去除,会对成品钢带的磁畴移动产生不利影响,在钢的冶炼过程中,应尽量降低Ti的含量。在热轧板和常化板中都观察到了MnS析出物,热轧板中的MnS尺寸较小、数量较多,常化板中的MnS析出物尺寸较大、数量较少。高温常化使得热轧板中原本细小弥散分布的MnS粗化,发生Ostwald长大。MnS析出物数量减少且尺寸增大,这对于最终退火时再结晶晶粒长大过程有利,同时也减小了成品钢带中畴壁移动时的阻碍,对提高成品钢带磁性能有利。
In this dissertation, through adding favourable element, hot band normalizing, changing manufacturing parameter of cold rolling and annealing, thin non-oriented electrical steel sheets (thickness of 0.2mm) with high magnetic properties have been manufactured successfully. The magnetic properties of these products have achieved the level of 20HTH1200, the same grade product of NSC, and satisfied requirements in China. The effects of hot band normalizing, cold rolling and annealing process, grain boundary segregation on magnetic properties, grain size, texture, precipitation have been analyzed and discussed.
     The experimental results showed that normalizing could make the structure of hot band more uniform and reduce the core loss obviously, but it had little effect on the magnetic induction. As the normalizing temperature increased the grain size of final product was larger and became more even, but the grain became overlarge and uneven if normalized at overhigh temperature. The best normalizing temperature was between 900℃and 950℃. The proportion of{100}texture and (110)[001] texture increased and the proportion of{111} texture decreased when increasing the normalizing temperature.
     The research on cold rolling process showed that because of the overhigh reduction the proportion of{111} texture in final product was very high and the magnetic properties were bad when using single-stage cold rolling process. When using two-stage cold rolling process, the proportion of{111} texture was also high with the overhigh or overlow second cold rolling reduction. The best magnetic properties were obtained when the second cold rolling reduction was between 55% and 70%.
     The addition of Tin could reduce the core loss and it also make the magnetic induction reduce, the effects were related to the content of Tin. There was little effect on the core loss and magnetic induction when the content of Tin was 0.05%. When the content was increased to 0.1% the core loss and magnetic induction reduced obviously. When the content reached 0.15% the magnetic induction had little change compared with adding 0.1% Tin, but the core loss increased a little. As the content of Tin increase the proportion of{111} texture in final product decrease obviously as well as the grain size. Because the grain boundary segregation of Tin could reduce the grain boundary energy the nucleation and grain growth of{111} nucleus at the original grain boundary were restrained. We found that the distribution of Tin at the grain boundary was no equal and was proportional to the content of Tin. Different specimens had different average contents of Tin at at the grain boundary, the normalized band after annealing at 700℃for 5 hours was the highest, the final product was the medial and the normalized band was the lowest.
     TiN precipitate pin at the grain boundary in the final product was observed. The TiN precipitate could block the movement of magnetic domain, which was bad to the magnetic properties. So it's better for the magnetic properties to reduce the content of Ti in electrical steels as much as possible. There were MnS precipitates with different quantity and size in hot band and normalized band. The quantity of MnS precipitates in hot band was higher than normalized band, the size of MnS precipitate in normalized band was larger. Normalizing can make small MnS precipitates in hot band congregate and enlarge, it is benefit for the grain growth in final annealing process and the movement of domain-wall in final product.
引文
[1]何忠治.电工钢[M],北京:冶金工业出版社,1996,1-16.
    [2]Goss N P. New development in electrical strip steels characterized by fine grain structure approaching the properties of a single crystal[J],Tran. Am. Soc. Metals,1935,23(1):511-544.
    [3]Wohlfarth E P.Ferromagnetic materials[M],Amsterdam:North-Holland Publishing Co.,1980,2:57-111.
    [4]冶金部钢铁研究总院.矽钢片[M],北京:冶金工业出版社,1959,1-22.
    [5]田口悟.電磁鋼板[M],八幡:新日本製铁株式会社,1979,13-25.
    [6]田口悟.高磁束密度方向性硅素钢板の開発とGoss方位二次再结晶机制[J],日本金属学会会报,1974,13:49-53.
    [9]Taguchi S,Yamamoto T,Sakakura A.New grain-oriented silicon steel with high permeability orientcore Hi-B[J],IEEE Trans.On Mag.,1974,10:577-581.
    [10]Yamamoto T,Taguchi S,Sakakura A.Magnetic properties of grain-oriented silicon steel with high permeability orientcore Hi-B[J],IEEE Trans. On Mag.,1972,3:677-681.
    [11]Iuchi T,Yamaguchi S,Ichiyama T,Nakamura M,Ishimoto T and Kuroki K,Laser processing for reducing core loss of grain oriented silicon steel[J],J. of Appl. Phy.,1982,53:2410-2415.
    [12]Rauch G C,Krause R F.Effect of beam dwell time on surface changes during laser scribing[J],J.of Appl. Phy.,1985,57:4209-4211.
    [13]Krause R F,Rauch G C,Kasner W H and Miller R A.Effect of laser scribing on te magnetic properties and domain structure of high-permeability 3%Si-Fe[J],J.of Appl.Phy.,1984,55:2121-2124.
    [14]Fukuda B,Sato K,Sugiyama T,Honda A and Ito Y.Loss reduction in grain oriented Si-Steel sheets by new domain refining technique[J],ASM Hard and Soft Magnetic Material Symposium,1987,8: 8710-8715.
    [15]Sato K,Honda A,Nakano K,Ishida M,Fukuda B.Development of domain refined grain-oriented silicon steel by grooving[J],J. of Appl. Phy.,1993,73:6609-6614.
    [16]王良芳.我国电工钢生产现状及发展建议[J],中国冶金,2004,(7):16-22.
    [17]王立涛,张莉霞,刘念华,王全礼,王新华.在我国申请的无取向电工钢专利技术的分析[J],特殊钢,2007,28(1):41-43.
    [18]Saxena A,Chaudhuri S K.Correlating the aluminum content with ferrite grain size and core loss in non-oriented electrical steel[J],ISIJ Int.,2004,44(7):1273-1275.
    [19]Tanaka I,Yashiki H.Magnetic properties and recrystallization texture of phosphorous-added non-oriented electrical steel sheets[J],J.of MMM,2006,304(2):611-613.
    [20]Nakayama T,Honjou N,Minaga T,Yashiki H.Effects of manganese and sulfure contents and slab reheating temperatures on the magnetic properties of non-oriented semi-processed electrical steel sheet[J],J. of MMM,2001,234(1):55-61.
    [21]Oda Y,Tanaka Y,Chino A,Yamada K.The effects of sulfur on magnetic properties of non-oriented electrical steel sheets[J],J.of MMM,2003,254-255:361-363.
    [22]Oda Y,Tanaka Y,Yamagami N,Chino A,Yamada K.Development of non-oriented electrical steel sheets for energy efficient motor based on ultra low sulfur technology[J],Transaction of the Institute of Electrical Engineers of Japan,Part A,2003,123-A(1):83-88.
    [23]Oda Y,Tanaka Y,Yamagami N,Chino A,Yamada K.Ultra-low sulfur non-oriented electrical steel sheets for highly efficient motors:NKB-CORE[J],NKK Technical Review,2002,87:12-18.
    [24]Lee J,Morita K.Interfacical phenomena between gas,liquid iron and solid lime during desulfurization[J],CAMP-ISIJ,2002,15:816-820.
    [25]Yang J,kumura K,Kuwabara M,ano M. Improvement on desulfurization efficiency of molten iron with magnesium vapor produced in-situ by aluminothermic reduction of magnesium oxide[J], CAMP-ISIJ, 2002,15:812-815.
    [26]史震兴,余志祥,叶枫.实用连铸冶金技术[M],北京:冶金工业出版社,1998:123-129.
    [27]Tani M, Toh T, Harada H, Fujisaki K, Anzai E, Matsumiya T. Electromagnetic casting for high quality of continuously cast steel[J], CAMP-ISIJ,2002,15:833-836.
    [28]Nakada M, Kubota J, Kubo N and Suzuki M. The steel flow control system in caster mold by traveling magnetic field[J], CAMP-ISIJ,2002,15:829-832.
    [29]Zhang J M, Yu H X and Wang X H. Flow control in continuous slab casting mold by F index obtained through mathematical simulation[J], CAMP-ISIJ,2002,15:837-839.
    [30]Nakayama T, Honjou N. Effect of aluminum and nitrogen on the magnetic properties of non-oriented semi-processed electrical steel sheet[J], J. of MMM,2000,213(1-2):87-94.
    [31]Nakayama T, Tanaka T. Effects of titanium on magnetic properties of semi-processed non-oriented electrical steel sheets[J], J. of Materials Science,1997,32:1055-1059.
    [32]Nakayama T,Honjou N.Effect of Zirconium on the magnetic properties of non-oriented semi-processing electrical steel sheet[J], J.of Materials Engineering and Performance,2000,9(5): 552-556.
    [33]Kubota T.Recent progress on non-oriented silicon steel[J],Steel Research Int.,2005,76(6):464-472.
    [34]Kubota T.Texture improvement in high-permeability nonoriented electrical steel by antimony addition [J],JMEPEG,1993,2(2):249-254.
    [35]Marco A C,Sebastiao C P.Effect of initial grain size prior to cold rolling on annealing texture in non-oriented electrical steel[J],Steel Research Int.,2005,76(6):421-424.
    [38]Hilinski E J.Recent developments in semiprocessed cold rolled magnetic lamination steel[J], J.of MMM,2006,304:172-177.
    [39]Schneider J,Fischer O. Influnce of deformation process on the improvement of non-oriented electrical steel[J], J. of MMM,2003,254-255:302-306.
    [40]Park J T, Szpunar J A, Han K. Effect of initial grain size prior to cold rolling on annealing texture in non-oriented electrical steel[J], Materials Science Forum,2002,408-412 Ⅱ:1257-1262.
    [41]Marc A C,Sebastiao C P. Effect of hot rolling temperature on the structure and magnetic properties of high permeability non-oriented silicon steel[J], Steel Research International,2005,76(6):421-424.
    [42]Park J T, Szpunar J A. Evolution of recrystallization texture in nonoriented electrical steels [J], Acta Materialia,2003,51:3037-3051.
    [43]Boer B, Wieting J. Formation of a near{100}<110> recrystallization texture in electrical steels[J], 1997,37(6):753-760.
    [44]Takashima M, Komatsubara M, Morito N.{001}<210>texture development by two-stage cold rolling method in non-oriented electrical steels[J], ISIJ Int.,1997,37(12):1263-1268.
    [45]Bae B K, Woo J S, Kim J K. Effect of heating rate on properties of non-oriented electrical steel containing 0.4%Si[J], J. of MMM,2003,254-25:373-375.
    [46]Park J T, Szpunar J A, Cha S Y. Effect of heating rate on the development of annealing texture in non-oriented electrical steel[J], ISIJ Int.,2003,43(10):1611-1614.
    [47]Park J T, Szpunar J A. Texture development during grain growth in nonoriented electrical steel[J], ISIJ Int.,2005,45(5):743-749.
    [48]Chatterjee S,Bhattacharjee D,Gope N.Variation in structure and magnetic properties during decarb-annealing of electrical steel[J], Scripta Materialia,2003,49:355-360.
    [49]小松肇等.磁束密度の高ぃ一方向性硅素钢板の制造方法[P],日本专利:1987-62240315.
    [50]Fortunati S,Cicale S,Abbruzzese G.Process for the Production of Grain Oriented Electrical Steel Strip Starting from Thin Slab[P],US patent:2001-6273964B1.
    [51]Fortunati S,Cicale S,Abbruzzese G.Process for the Production of Grain Oriented Electrical Steel Strip Having High Magnetic Characteristics, Starting from Thin Slabs[P], US patent:2001-6296719B1.
    [52]黎世德.俄罗斯的电工钢.电工钢[J],2000,1:10-16.
    [53]Klaus G,Giuseppe A,Stefano F.Recent Technology Developments in the Production of Grain-Oriented Electrical Steel[J],Steel Rearch int.2005,76(6):413~415.
    [56]Yashiki H,Kaneko T.Secondary Recrystallization Behavior and Magnetic Properties of Grain Oriented 2.2% Si-1.5% Mn Steel[J],J. of Appl. Phys.,1993,73:6606.
    [57]屋铺裕羲,金子辉雄.方向性電磁鋼板の製造方法[P],日本专利:1991-3111516.
    [60]高橘延幸,菅洋三.磁束密度の高い一方向性硅素鋼板の裂造方法[P],日本专利:1989-1230721.
    [61]高橘延幸,黑木克郎.磁束密度の高い一方向性電磁钢板の裂造方法[P],日本专利:1989-1283324.
    [62]高橘延幸,菅洋三.磁束密度の高い一方向性硅素鋼板の裂造方法[P],日本专利:1989-1301820.
    [63]菅洋三等.冷却速度制御铸造材を用いた一方向性電磁鋼板の製造法[P],日本专利:1991-361326.
    [64]吉富康成等.磁気特性の優れた一方向性電磁铜板の裂造方法[P],日本专利:1993-5295438.
    [65]高邦秀等.超高磁束密度一方向性電磁钢板の製造方法[P],日本专利:1994-688172.
    [66]Takahashi N. Recent Developments in Grain-oriented Silicon-steel [J], J. of MMM.1996,160:98.
    [67]杨垂玲.激光局部氮化改善取向硅钢磁畴结构的分布[J],东北学报,2002,23(2):189-191.
    [68]Kobayashi H, Kuroki K. Heatproof domain refining method using combination of local strain and heat treatment for grain oriented 3 Si-Fe[J], Physical Scripta,1998,(24):36-41.
    [69]Nakamura M,Kobayashi H.Properties of grain oriented electrical steel with heatproof domain refinement[J], IEEE Trans.,1987, (23):3062-3066.
    [70]Nozawa T. Domain refining techniques in Grain-Oriented Silicon Steel[J], IEEE Trans.,1979, (2): 972-976.
    [71]Nozawa T. Magnetic properties and domain structures in domain refined grain oriented silicon steel [J], IEEE Trans.,1979,(15):1972-1975.
    [72]平世和雄,持永季志雄.低铁损一方向性電磁鋼板の製造方法[P],日本专利:1993-247538.
    [73]中野恒,佐藤圭司,福田文二郎.磁気特性の優れた方向性電磁鋼板の製造方法[P],日本专利:1993-186827.
    [75]Choi G S, et al. Method for Manufacturing Oriented Electrical Steel Sheet by Heating Slab at Low Temperature[P], US Patent:1997-5653821.
    [76]Espenhahn M. Process for producing a grain-orientated electrical steel sheet[P], US Patent: 2000-6153019.
    [77]小松肇等.磁束密度の高い一方向性硅素钢板の制造方法[P],日本公开特许公报:1987-6240315.
    [78]Klaus G, Giuseppe A, Stefano F. Recent Technology Developments in the Production of Grain-Oriented Electrical Steel[J], Steel Research Int.,2005,76(6):413-415.
    [79]黎世德,牛琳霞.俄罗斯电工钢降低成本工艺措施分析[J],电工钢,2000,2:23-25.
    [80]金延.电工钢板的开发[J],金属功能材料,2003,10(4):40-42.
    [81]阴道力.無方向性電磁钢板における究極铁损の追求[J], Journal of the Magnetics Society of Japan, 2007,31(4):316-321.
    [82]新井聪,牛神羲行.磁気特性の優れた二方向性珪素钢板の裂造方法[P],日本专利:1993-222457.
    [83]新井聪,同崎靖雄.磁気特性の優れた二方向性珪素钢板の裂造方法[P],日本专利:1993-271774.
    [84]新井聪,牛神羲行.磁気特性の優れた二方向性珪素钢板の裂造方法[P],日本专利:1993-287384.
    [87]屋铺裕羲,金子辉雄.低铁损無方向性電磁钢板の裂造方法[P],日本专利:1993-186825.
    [88]西本昭彦,细谷佳弘,占部俊明.无方向性电磁钢板的制造方法[P],日本专利:1992-260017.
    [89]屋铺裕义,冈本笃树.无方向性电磁钢板的制造方法[P],日本专利:1988-60227.
    [90]王小燕,刘学华,姚静.薄板坯连铸连轧生产电工钢现状及其优势[J],钢铁研究,2006,34(3);39-43.
    [91]久保田猛,立野一郎.磁性优异的无方向性电磁钢板的制造方法[P],日本专利:1991-194123.
    [92]Klaus Gunther,Girseppe Abbruzzese,Stefano Fortunati,Guy Ligi.Recent technology developments in the production of grain-oriented electrical steel[J], Steel Research Int.,2005,76(6):413-421.
    [93]早川康之等.方向性電磁鋼板の製造方法[P],日本专利:2000-129356.
    [95]Stefano F,Stefano C,Giuseppe A.Process for the Production of Grain Oriented Electrical Steel Strip Having High Magnetic Characteristics, Starting Form Thin Slabs[P], US patent:2001-6296719B1.
    [96]Stefano F.Process for the Production of Grain Oriented Electrical Steel Strip Starting From Thin Slabs[P],US patent:2001-6273964B1.
    [97]何忠治,李军.近年来国外电工钢技术发展动态[J],电工钢,2004,55(1):2-9
    [1]Bunge H J. Zur darstellung allgemeiner texturen[J],Z. Metallkde,1965,65:872-877.
    [2]Roe R J.Description of crystallite orientation in polycrystalline materials.Ⅲ.General solution of pole figure inversion[J],J.Appl.Phys.,1965,36:2024-2028.
    [3]Imhof J.An appreciative determination of the orientation distribution function[C],In:Proc ICOTOM5, 1978,1:149-153.
    [4]Ruer D, Baro R. A new method for the determination of the texture of materials of cubic structure from incomplete reflection pole figures[J], Adv X-Ray Anal,1977,20:187-193.
    [5]杨平.电子背散射衍射技术及其应用[M],北京:冶金工业出版社,2007:1-4.
    [6]Dingley D J and Randle V. Microtexture determination by electron back-scattered diffraction[J] Journal of Materials Science,1992,27:4545-4566.
    [7]Humphreys F J. Quantitative metallography by electron backscattered diffraction [J], Journal of Microscopy,1999,195(9):170-195.
    [8]Garmestani H, Harris K. Orientation determination by EBDP in an environmental scanning electron microscope[J], Scripta Materialia,1999,41(1):47-53.
    [9]Wright S I, Adams B L, Automatic analysis of electron backscatter diffraction patterns [J],Metallurgical Transactions A,1992,23A(3):759-767.
    [10]杨平,孙祖庆,毛卫民.取向成像:一种有效研究晶体材料组织、结构及取向的技术[J],中国体视学与图像分析,2001,6(3):50-54.
    [11]陈家光,李忠.电子背散射衍射在材料科学研究中的应用[J],理化检验-物理分册,200036(2):71-74.
    [12]Wright S I, Heidelbach F. Microtextual characterization of annealed and deformed copper [J],Materials Science Forum,1994,157:1313-1318.
    [13]Hjelen J, Orsund R, Nes E. On the origin of recrystallization textures in aluminum[J],Acta Met.Mat.,1991,39(7):1377-1404.
    [14]Liu W, Bayerlein M, Mughrabi H, Day A, Quested P N. Crystallographic features of intergranular crack initiation in fatigued copper polycrystals[J],Acta Met. Mat.,1991,40(7):1763-1771.
    [15]Slavik D C, Wert J A, Gangloff R P. Determining fracture facet crystallography using electron backscatter patterns and quantitative tilt fractography[J], Journal of Materials Research,1993,8(10): 2482-2491.
    [16]Field D P, Adams B L. Interface cavitation damage in polycrystalline copper [J], Acta Met. Mat., 1992,40(6):1145-1157.
    [17]Ortner S R, Randle V. Study of the relation between grain boundary type and sensitization in a partially-sensitised AISI304 stainless steel using electron back-scattering patterns[J],Scripta Metallurgica,1989,23(11):1903-1908.
    [18]Claus J, Borchardt G, Weber S, Scherrer S. EBSP and SIMS studies of oxygen tracer diffusion in the high temperature superconductor La2-xSrxCuO4[J],Materials Science Forum,1994,157:1161-1166.
    [19]Dorner B,Wilbrand P J,Haasen P. Prefer grain boundary orientations formed during secondary recrystallization of a Cu-0.5at%-Mn alloy[J],Materials Science Forum,1994,157:927-932.
    [20]Michael J R, Goehner R P. Electron backscatter diffraction:A powerful tool for phase identification in the SEM[C],Materials Research Society Symposium-Proceedings,1992:151-156.
    [21]王建祺,吴文辉,冯大明.电子能谱学引论[M],北京:国防工业出版社,1992,14-28.
    [22]陆家和,陈常彦.表面分析技术[M],北京:电子工业出版社,1987,33-41.
    [23]黄惠忠.论表面分析及其在材料研究中的应用[M],北京:科学技术文献出版社,2002,278-288.
    [24]染野檀,安盛岩雄.表面分析[M],北京:科学出版社,1980,45-58.
    [1]Hong B D, Han K S, Kim J K, and Cho K M. Effect of hot band annealing on magnetic properties in 3%Si grain-oriented electrical steels[J],Steel Research Int.,2005,76(6):448-450.
    [2]何忠治.电工钢[M],北京:冶金工业出版社,1996,82-101.
    [3]Campos M, Yonamine T, Fukuhara M. Effect of frequency on the iron losses of 0.5% and 1.5% Si nonoriented electrical steels[J],IEEE Tran. On Magnetics,2006,42(10):2812-2814.
    [4]菅瑞雄,张文康,杜振民,毛卫民,王一德.热轧板常化温度对冷轧无取向电工钢退火组织和磁性能的影响[J],特殊钢,2006,27(4):31-33.
    [5]张文康,毛卫民,王一德,李慧峰,白志浩.热轧板常化后的晶粒尺寸对无取向硅钢织构和磁性能的影响[J],钢铁,2007,42(2):64-67.
    [6]Premkumar R, Samajdar I, Viswanathan N N. Relative of texture and grain size on magnetic properties in a low silicon non-oriented electrical steel[J],J of MMM,2003,264:75-85.
    [7]Chang S K.Influence of hot band normalizing on recrystallization behaviour in grain oriented silicon steels[J],Steel research Int.,2005,9(76):660-665.
    [8]崔正强,曹燕屏,毛卫民.热轧及常化退火工艺对硅钢冷轧织构的影响[J],电工材料,2006,(4):40-42.
    [9]Kim J K, Woo J S and Chang S K.Influence of annealing before cold rolling on the evolution of sharp Goss texture in Fe-3%Si alloy[J],J. of MMM,2000,215-216(6):162-164.
    [10]葛列里克.金属和合金的再结晶[M],北京:机械工业出版社,1985,193-217.
    [11]张正贵,祝晓波,刘沿东,李炳南,王福.无取向硅钢热轧板织构[J],钢铁,2007,42(6):74-77.
    [12]Nakayama T,Tanaka T.Effects of titanium on magnetic properties of semi-processed non-oriented electrical steel sheets[J], Journal of Materials Science,1997,32(4):1055-1059.
    [13]Nakayama T,Tanaka T.Effect of titanium on magnetic properties of semiprocessed non-oriented electrical steel sheets[J],CAMP-ISIJ,1996,9(3):451-455
    [14]王波,赵宇,何忠治.钛对低硅冷轧无取向电工钢磁性能的影响[J],电工钢,2000,(1):23-26.
    [16]何忠治.电工钢[M],北京:冶金工业出版社,1996,57-605
    [1]毛卫民.晶体材料的结构[M],北京:冶金工业出版社,1998,168-202
    [2]毛卫民,张新民.晶体材料织构定量分析[M],北京:冶金工业出版社,1993,95-145.
    [3]葛列里克.金属和合金的再结晶[M],北京:机械工业出版社,1985,10-60.
    [4]何忠治.电工钢[M],北京:冶金工业出版社,1996,110-150
    [5]Inokuti Y, Doherty R D.Transmission kossel study of the structure of compressed iron and its recrystallization behaviour[J], Acta Metallurgica,1978,26(1):61-80.
    [6]Hirsch J,Lucke K.The application of quantitative texture analysis for investigating continuous and discontinuous recrystallization processes of Al-0.01 Fe[J],Acta Metallurgica,1985,33(10):1927-1938.
    [7]Beck PA. Notes on the theory of annealing textures[J],Acta Metallurgica 1953,1(2):230-234
    [8]Jonas J J,Urabe T.Oriented nucleation and selective growth during the annealing of IF steel[J],Tokyo: Pro. Int. forum on physical metallurgy of IF steel,1994:77-94.
    [9]Hayakawa Y and Szpunar J A.Modeling of texture development during recrystallization of interstitial free steel[J], Acta Materialia,1997,45(6):2425-2434.
    [10]Hayakawa Y and Szpunar J A.A comprehensive model of recrystallization for interstitial free steel [J], Acta Materialia,1997,45(6):3721-3730.
    [11]Rajmohan N,Hayakawa Y,Szpunar J A and Root J. H.Neutron diffraction method for stored energy measurement in interstitial free steel[J], Acta Materialia,1997,45(6):2485-2494.
    [12]Park J T, Szpunar J A. Evolution of recrystallization texture in nonoriented electrical steels[J], Acta Materialia,2003,51:3037-3051.
    [13]Park J T,Szpunar J A.Texture development during grain growth in nonoriented electrical steel[J],ISIJ Int.,2005,45(5):743-749.
    [1]徐庭栋.非平衡晶界偏聚动力学和晶间脆性断裂[M],北京:科学出版社,2006,13-14.
    [2]何忠治.电工钢[M],北京:冶金工业出版社,1996,226-251
    [3]Watanabe T, Kitamura S and Karashima S.Grain boundary hardening and segregation in alpha Fe-Sn alloy[J],Acta Metallurgica,1980,28(4):455-463.
    [4]Watanabe T,Murakami T and Karashima S. Misorientation dependence of grain boundary segregation[J], Scripta Metallurgica,1987,12(4):361-365.
    [5]Watanabe T, Obata M and Karashima S. Intergranular fracture at migrating and sliding grain boundaries in an a-Fe-Sn alloy[J], Scripta Metallurgica,1981,15(9):965-970.
    [6]Suzuki S, Abiko K and Kimura H.Phosphorus segregation related to the grain boundary structure in an Fe-P alloy[J], Scripta Metallurgica,1981,15(10):1139-1143.
    [7]McLean D. Grain boundaries in metals[M]. London:Clarendon Press,1957,118-131
    [8]Suzuki S,Kuroki K,Kobayashi H and Takahashi N.Sn segregation at grain boundary and interface between MnS and matrix in Fe-3 mass%Si alloys doped with Tin[J],Materials Trans.,JIM,1992,33(11): 1068-1076.
    [9]Lyudkovsky G,Rastogi P K.Effect of antimony on recrystallization behavior and magnetic properties of a nonoriented silicon steel[J]. Metall. Trans.,1984,15A:257-260
    [10]赵宇,何忠治,翁宇庆,吴宝榕.电工钢中的晶界偏聚[J].钢铁研究学报,1995,(7):66-73
    [11]Chang S K.Magnetic anisotropies and texture in high-alloyed non-oriented electrical steels [J]. ISIJ Int.,2007,47(3):466-471
    [12]Chang S K,Huang W Y.Texture effect on magnetic properties by alloying specific elements in non-grain oriented silicon steels[J]. ISIJ Int.,2005,45(6):918-922
    [13]Jenko M,Godec M,Viefhaus H,Grabke H J.Antimony, Tin and Selenium segregation in FeSiC alloys [J]. Materials Science Forum,1999,294-296:747-750
    [14]Vodopivec F,Marinsek F,Gresovnik F,Gnidovec D. Effect of antimony on energy losses in non-oriented 1.8Si,0.3A1 electrical sheets[J]. J of MMM.,1991,97:281-285.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700