用户名: 密码: 验证码:
记忆合金加工织构的演变规律及其对恢复性能的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ni47Ti44Nb9合金由于其优异宽滞后特性而被用于制备管接头、紧固件,用于管路、电缆紧固连接,具有抗振动性能高、装卸方便、减轻重量等优点。器件使用性能要求的提高,需要对材料性能进行优化控制。Ni47Ti44Nb9合金加工过程中会形成不同的变形织构,退火时形成再结晶织构,引起性能的各向异性。为了合理利用织构,提高合金性能,需要研究记忆合金加工过程织构的演变规律及其对性能的影响。本文利用电子背散射衍射(EBSD)、X射线衍射仪(XRD)、透射电镜(TEM),对Ni47Ti44Nb9合金铸锭、板材和丝材中基体相的织构及其形成机制进行了系统研究,主要的研究成果为:
     Ni47Ti44Nb9铸锭组织是由枝晶状的NiTi基体相及由NiTi相与β-Nb相形成的共晶相组成,NiTi基体中Ni/Ti比明显高于β-Nb。铸锭横断面有弱的织构,面取向接近{114}、{112}、{332}、{110}。
     不同变形量及轧制次数板材冷轧主织构为Y取向线(<111>∥ND)织构,演变趋势为{111}<112>→{111}<110>,{111}<110>是中等变形的稳定织构。二次冷轧可增强板材织构,α取向线(<110>∥RD)上主要织构由{111}<110>延伸到{110}<110>。
     对具有弱取向铸锭横截面样品,冷轧板材织构演变路径为{111}<112>→{111}<123>→{111}<110>。
     沿与轧向成0°、45°、90°二次冷轧时,织构为α取向线及最强位置不同的γ取向线织构,90°轧制的取向密度最高,并在γ取向线上整体增强,最强点在(554)[110]、(554)[225]、(556)[51710]。90°四次冷轧最强织构转向{111}<110>
     Ni47Ti44Nb9合金再结晶织构主要为{111}<110>、{111}<112>,根据再结晶择优形核、择优长大机制解释了Ni47Ti44Nb9合金中{111}<110>和{111}<112>退火织构的形成机理,{110}<110>变形织构对{111}<112>再结晶织构的形成有促进作用。合金板材退火后在厚度方向的织构表现为从板材中心层到表面层整体减弱的趋势,但织构类型基本不变,在0.85板厚位置的织构可代表板材的整体织构。
     Ni47Ti44Nb9合金板材织构可通过加大变形量、沿90°方向轧制、大变形后退火进行强化。板材优化的轧制工艺是450℃温轧35-45%,总变形量70-90%。
     Ni47Ti44Nb9合金热锻棒具有<111>丝织构,热拉丝、冷拉丝具有<113>丝织构,55%冷变形丝材NiTi基体相退火织构为<112>丝织构,β-Nb相具有强的<110>丝织构。
     应用晶格畸变建立的数学模型对Ni47Ti44Nb9合金的恢复应变进行了理论计算及初步验证,恢复应变的理论预测值要明显高于实测值,但变化趋势基本一致,可用于定性预测。具有{111<112>、{111}<110>织构板材的恢复应变随轧向夹角先升高后降低,具有<112>织构丝材的恢复应变高于同取向的板材。
wide hysteresis shape memory alloy is used to produce coupling and fasteners for pipe connection due to its excellent properties of high vibrancy performance, reducing weight and easy installation and removal. It requires to precisely control material properties for better industry device performance. The formation of the deformation texture and recrystallization texture during Ni47Ti44Nb9alloy processing causes the anisotropy. Therefore a comprehensive study of the evolution of Ni47Ti44Nb9alloy deformation texture and its effect on recovery properties is necessary. In this paper, a systematic study is carried on the matrix texture of Ni47Ti44Nb9alloy ingot, plate and wire by using X-ray diffraction (XRD), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM).
     Microstructure of Ni47Ti44Nb9ingot is composed by the dendritic NiTi matrix phase and the eutectic phase of the NiTi and β-Nb, and the Ni/Ti ratio of NiTi matrix is significantly higher than that of β-Nb. Ingot transverse section orientation is close to{114},{112},{332} and{110}.
     Deformation texture of cold rolled plate with the different reduction and rolled time is the y fibre texture (<111>//ND). It proves that the texture evolution is from{111}<112> to{111}<110> and the stable texture at medium deformation is{111}<110>. The orientation density of secondary cold rolled plate is greatly enhanced and major texture spreads from{111}<110> to{110}<110> in the α fibre (<110>//RD).
     The evolution of cold rolled texture of ingot transverse section sample with weak texture is{111}<112>→{111}<123>→{111}<110>.
     Textures of secondary cold rolled plates along0°,45°,90°to the rolling direction, are mainly the α fibre and y fibre texture with different strong position. The major texture of90°secondary cold rolled is (554)[110],(554)[225] and (556)[51710] and the overall texture intensity of y fibre is simultaneously enhanced. The texture of90°cold rolled has higher orientation density than that of0°,45°. The major texture for the plate forth cold rolled along90°to RD is {111}<110>.
     The recrystallization texture of Ni47Ti44Nb9alloy cold rolled plate is mainly composed by {111}<110> and {111}<112>. The evolution mechanism of annealed texture is proposed following the recrystallization grain preferred nucleation and preferred growth mechanism and strong {lll}<110> texture can promote the formation of {111}<112> recrystallization texture.
     From the plate center to the surface. Ni47Ti44Nb9alloy reveals gradually weakening texture orientation density with close texture type, so the texture at the0.85plate thickness location can represent the entire plate.
     Texture intensity is enhanced by increasing reduction, rolling along90°to rolling direction and annealing of rolled plate. Optimization rolled procedure of Ni47Ti44Nb9alloy is warm rolled by35~45%reduction at450℃with total70~90%deformation.
     The hot forged bar has <111> fibre texture, and <113> fibre texture is major texture in hot and cold drawn wire. The annealing texture of NiTi matrix phase of55%cold drawn wire is <112> fibre texture, while that of P-Nb is <110> fibre texture.
     The paper applies a mathematical model prososed by lattice distortion theory to calculate the recovery strain of polycrystalline Ni47Ti44Nb9alloy, and conducts a preliminary verification. Recovery strains variation with the angle to the RI) of theoretical calculations has the same regularity with that of experimental data. It can qualitatively predict recovery strain variation of different direction. Recovery strain variation with the angle to the RD of {111]<112>,{111}<11()> texture first increases and then decreases, and the wire with <112> fibre texture has higher recovery strain than the same orientation plate.
引文
[1]杨大智,吴明雄NiTi形状记忆合金在生物医学领域的应用[M].北京:冶金工业出版社,2003:192-266
    [2]徐祖耀,江伯鸿,杨大智等.形状记忆材料[M].上海:上海交通大学出版社,2000:85-93
    [3]舟久保,熙康.形状记忆合金[M].千东范译.北京:机械工业出版社,1992:143-212
    [4]Humbeeck J. V. Non-medical applications of shape memory alloys[J]. Materials Science and Engineering A,1999.273-275:134-148
    [5]赵连城,蔡伟,郑玉峰.合金的形状记忆效应与超弹性[M].北京:国防工业出版社.2002:243-383
    [6]郑玉峰,赵连城.生物医用钛镍合金[M].北京:科学出版社,2004
    [7]刘江.新型形状记忆合金及其应用[J].金属功能材料,1994,4:6-9
    [8]Harrison, John D, Jervis, et al. Heat recoverable metallic coupling[P]. US Patent: 4035007,1977-7-12
    [9]Simpson, John A, Melton, et al. Method of processing a nickel/titanium-based shape memory alloy and article produced there from[P]. US Patent:4631094,1986-12-23
    [10]Simpson, John A. Melton; et al. Nickel/titanium/niobium shape memory alloy & article[P]. US Patent:4770725,1988-9-13
    [11]Jee K. K., Shin M. C., Kim Y. G. Preferred orientation and reversible shape memory effect in Ti-Ni alloy[J]. Scripta Metallurgica et Materialia,1990,24:921-926
    [12]Liu Yiong, McCormick P.G. Factors influencing the development of two-way shape memory alloy in NiTi[J]. Acta Metallurgica et Materialia,1990,38(7):1321-1326
    [13]Honma T., Nishida M. Effect of heat treatment on the all-round SME in Ti-51at%Ni[J]. Scripta Metallurgica,1984,18:1299-1302
    [14]Nishida M., Wayman C.M. Electron microscopy studies of the all-round shape memory effect in a Ti-51.0at%Ni alloy[J]. Scripta Metallurgica,1984,18:1389-1394
    [15]Philip T. V., Beck P. A. CsCl-type ordered structures in binary alloys of transition elements. Trans AIME J Metals,1957,209:1269-1271
    [16]Otsuka K., Sawamura T., Shimizu K. Crystal structure and internal defects of equiatomic TiNi martensite[J]. Physica Status Solidi,1971,5:457-470
    [17]Kudoh Y., Tokonami M., Miyazaki S., et al. Crystal structure of martensite in Ti-49.2at.%Ni alloy analyzed by the single crystal X-ray diffraction method[J]. Acta Metallurgica,1985,33:2049-2056
    [18]Sato A., Chishima K., Yamaji Y.. et al. Orienation and composition dependence of shape memory effect in Fe-Mn-Si alloys[J]. Acta Metallurgica. 1984. 32: 539-547
    [19]Otsuka K. Recent Developments of TiNi and TiNi based ternary shape memory alloys|C]. Proe. Int. SMM Symposium. 1994. Beijing
    [20]Shimizu K., Otsuka K. Pseudoelasticty and shape memory effects in alloys[J]. International Metals Reviews. 1986. 31(3): 93-114
    [21]Chumlykov Y.I. Superelasticity during elastic twinning, slip, and martensitic transformations [C]. Proceedings of the Second International Conference on SMST. Menlo Park CA:SMST Society Inc. 1997: 29-34
    [22]Zadon G., Duerig T. Linear superelasticity in cold-worked TiNi[G]. Engineering aspects of shape memory alloy. London: Butterworth-Heinemann Ltd, 1990:414-419
    [23]Tadaki T.. Wayman C. Crystal structure and microstructure of a cold worked TiNi alloy with unusual elastic behavior[J]. Seripta Metall, 1980, 14: 911-914
    [24]Zheng Y. F., Huang B. M.. Zhang J. X., et al. The microstructure and linear superelasticity of cold draw TiNi alloy[J]. Materials Science and Engineering A. 2000. 279: 25-35
    [25]Zhao L.C.. Duerig T.W.. Justi S. The study of niobium-rich precipitates in a Ni-Ti-Nb shape memory alloy[J]. Scr. Metall. Mater. 1990, 24(2): 221-225
    [26]杨亚卓,赵新青,孟令杰等.低Nb含量Ni-Ti-Nb形状记忆合金的组织及相变特征[J].金属学报,2005.41(6):627-632
    [27]Min Piao. S. M.. Otsuka K., et al. Effect of Nb addition on the microstructure of Ti-Ni alloys[J]. Materials Transactions J[M. 1992. 33(4): 337-347
    [28]张春生FiNiNb宽滞后记忆合多的组织结构和形状马氏体的稳定性[D]. 哈尔滨:哈尔滨工业大学,1991
    [29]蔡伟Ni-Ti-Nb记忆合金恢复特性与形变马氏体的逆转变[D].哈尔滨:哈尔滨工业大学,1994
    [30]颜莹,金伟,邱绍宇.热处理对Fi44Ni47Nb9合金的组织和Ms点的影响[J].材料研究学报,2004,18(2):199-204
    [31]Zheng Y. F., Cai W.. Wang Y. Q., et al. Effects of heat treatment on the transformation temperature and the microstructure of Ni-Ti-Nb shape memory alloy[J]. Journal of Materials Science and Technology, 1998. 14: 37-40
    [32]栗华矗,高宝东,王江波等.热处理对Ni47Ti44Nb9记忆合金相变温度的影响[J].稀有金属.2004,28(4):794-796
    [33]He X. M., Rong L. J., Yan D. S., et al. TiNiNb wide hysteresis shape memory alloy with low niobium content [J]. Materials Science and Engineering A,2004,371:193-197
    [34]Popov N. N., Prokoshkin S. D., Sidorkin M.Y., et al. Effect of thermomechanical treatment on the structure and functional properties of a 45Ti-45Ni-10Nb alloy [J]. Russian Metallurgy (Metally),2007,1:59-64
    [35]Uchida K., Shigenaka N., Sakuma T., et al. Effect of Nb content on martensitic transformation temperatures and mechanical properties of Ti-Ni-Nb shape memory alloys for pipe joint applications[J]. Materials Transactions,2007,48(3):445-450
    [361 He X. M., Rong L. J., Yan D. S., et al. Study of the Ni41.3Ti38.7Nb20 wide transformation hysteresis shape-memory alloy[J]. Metallurgical and Materials Transactions A,2004,35:2783-2788
    [37]He X. M., Rong L. J. Effect of deformation on the stress-induced martensitic transformation in (Ni47Ti44)100-xNbx shape memory alloys with wide hysteresis[J]. Metals and Materials International,2006,12(4):279-288
    [38]Piao M., Otsuka K., Miyazaki S., et al. Mechanism of the As temperature increase by pre-deformation in thermoelastic alloys[J]. Materials Transactions JIM,1993,34: 919-929
    [39]赵连城,蔡伟Ni-Ti-Nb宽滞后形状记忆合金的形变诱发马氏体相变及其可逆性[J].金属学报,1997,33(1):90-98
    [40]何向明,戎利建,闫德胜等.形变对Ti44Ni47Nb9宽滞后形状记忆合金应力诱发马氏体相变行为的影响[J].金属学报,2004,40(7):721-725
    [41]Roe R. J. Description of crystallite orientation in polycrystalline materials. Ⅲ. General solution to pole figure inversion[J]. Journal of Applied Physics,1965,36: 2024-2031
    [42]Bunge H. J. Mathematische methoden der texture analyse[M]. Berlin: Akademie-Verlag,1962
    [43]Baro R. Introduction to discrete methods of quantitative texture analysis[J]. Quantitative Texture Analysis,1982:73-83
    [44]Ruer D., Vadon A. The vector method of quantitative texture analysis[J]. Quantitative Texture Analysis,1982:343-381
    [45]Caleyo F., Baudin T., Mathon M. H., et al. Comparison of several methods for the reproduction of the orientation distribution function from pole figures in medium to strong textured materials[J]. EPJ Applied Physics,2001,15(2):85-96
    [46]Matthics S.. Vinel G. W. On some methodical developments concerning calculations performed directly in the orientation space[J]. Materials Science Forum. 1994. 157(2): 1641-1646
    [47]Jura J. Evaluation of the parameters of texture components on the basis of a discrete form of orientation distribution. Textures and Microstructures[J]. 1981. 14(18): 193-197
    [48]Lucke K.. Pospiech J. On the presentation of orientation distribution functions (ODFs) by model functions[J]. Zeit. Metallkde, 1986. 77: 312-321
    [49]Jiang X., Wang F., Liu S., et al. ODF determination from one incomplete pole figure by the maximum entropy method[C]. Liang Z., Zuo L., Chu Y eds. Proceedings of the eleventh International Conference on Textures of Materials (ICOTOM-11). Beijing: International Academic Publishers. 1996. 112-115
    [50]Wang F., Xu J.. Liang Z. Determination of the ODF of hexagonal symmetry materials according to the maximum entropy method[J]. Textures mierostructures, 1989. 10:217-226
    [51]梁志德,现代织构分析的进展[J].金属学报,1997.33(2):133-141
    [52]Sachs G. Zur ableitung einer lliebedingung[J]. Zeitschrift des Vereines Deutscher Ingenieure, 1928. 72: 734-736
    [53]Taylor G. I. Plastic strain in metals[J]. Journal of the Institute of Metals. 1938. 72: 307-324
    [54]Kocks U. F.. Chandra H. Slip geometry in partially constrained deformation[J]. Acta Metallurgica, 1982, 30: 695-709
    [55]Fortunier R., Driver J. H. Grain reorientation in rolled aluminum sheet: comparison with predictions of continuous constraints model[J]. Acta Metallurgica, 1987, 35: 1355-1386
    [56]Mao Weimin. Modeling of rolling texture in aluminum[J]. Materials Science and Engineering A, 1998,257: 171-177
    [57]陈志永.立方金属单品屈服面和纯铝轧制强构演变的研究[D].长沙:中南大学2002
    [58]陈志永,才淦年,常亚拮等.多晶铝轧制变形的织构演变Ⅱ.理论模拟[J].金属学报,2008,44(11):1322-1331
    [59]花福安,邸洪双,李建平等.晶体学织构对金属材宏观各向异性影响的模拟[J].金属学报,2008,45(6):657-662
    [60]Engler O., Tome C. N., Huh M. Y. A study of through-thickness texture gradients in rolled sheets[J]. Metallurgical and Materials Transactions A, 2000; 31: 2299-2315
    [61]刘楚明.高纯铝箔形变和再结晶行为及织构的研究[D].长沙:中南大学,2007
    [62]陈志永,才鸿年,常亚拮等.多晶铝轧制变形的织构演变Ⅰ.实验研究[J].金属学报,2008,44(11):1316-1321
    [63]姚宗勇,刘庆,Godfrey A.,等.大应变量冷轧AA1050铝合金微观组织与织构的演变[J].金属学报,2009,45(6):647-651
    [64]Inagaki H., Suda T. The development of rolling texture in low carbon steel[J]. Texture,1972,1:129-140
    [65]Inagaki H. Fundamental aspect of texture formation in low carbon steel[J]. ISIJ International,1994,34(4):313-321
    [66]杨平,李志超,毛卫民等.钢中{111}<112>再结晶织构的形成[J].材料热处理学报,2009,30(3):46-52
    [67]Holscher M., Raabe D., Liicke K. Rolling and recrystallization textures of bcc steels[J]. Steel Research,1991,62(12):567-575
    [68]颜孟奇,杨平,蒋奇武等.轧制方向对Fe-3%Si合金织构演变规律的影响[J].金属学报,2011,47(1):25-33
    [69]Liicke K., Rixen R., Senna M. Formation of recrystallization textures in rolled al single crystals[J]. Acta Metallurgica,1976,24:103-110
    [70]Saburi T, Yoshida M, Nenno S, Deformation behavior of shape memory Ti-Ni alloy crystals[J]. Scr. Metall.,1984,18:363-366
    [71]Miyazaki S., Kimura S., Otsuka K., et al. The habit plane and transformation strains associated with the martensitic transformation in Ti-Ni single crystals[J]. Scr. Metall., 1984,18:883-888
    [72]Inoue N., Miwa N., Inakazu N. Texture and shape memory strain in TiNi alloy sheets[J]. Acta Materials,1996,44(12):4825-4834
    [73]Miyazaki S., No V.H., Kitamura K., et al. Texture of Ti-Ni rolled thin plates and sputter-deposited thin films[J]. International Journal of Plasticity,2000,16:1135-1154
    [74]Eucken S., Hirsch J. The effect of textures on shape memory behavior [J]. Materials Science Forum,1990; 56-58:487-492
    [75]Mulder J. H., Thoma P. E., Beyer J. Anisotropy of the shape memory effect in tension of cold-rolled 50.8Ti49.2Ni (at.%) sheet[J]. Z Metallkd,1993; 84:501-508
    [76]Li D. Y., Wu X. F., Ko T. The texture of Ti-51.5 at% Ni rolling plate and its effect on the all-around shape memory effect [J]. Acta Metall Mater,1990,38(1):19-24
    [77]Thamburaja P., Anand L. Polycrystalline shape-memory materials:effect of crystallographic texture[J]. J Mech Physics Solid[J],2001,49:709-737
    [78]Yamauchi K., Nishida M., Itai I., et al. Specimen preparation tor transmission electron microscopy of twins in B19' martensite of Ti-Ni Shape memory alloys[J]. Materials Transactions JIM. 1996. 37: 210-217
    [79]Cheng G. P., Xie Z. L.. Liu Y. Texture and shape memory property of annealed Ti50Ni25Cu25 ribbons[J]. Materials Science and Engineering A. 2006. 425: 268-271
    [80]王飞龙,NiTi合金板材与管材的显微组织结构及相关力学性能研究[D].北京北京工业大学,2005
    [81]袁文庆,沈甫法.多晶TiNi和CuZnAl形状记忆合金中的织构转变[J].上海交通大学学报,2001,35(3):470-472
    [82]郑斌,周伟,王轶农等Landau理论研究TiNi顺磁合金热/强冭场耦合下的马氏体相变[J].金属学报,2009,45(1):37-42
    [83]颜莹,金伟,周亭俊.热轧Ni47Ti44Nb9形状记忆合金板材的织构及其对拉伸和恢复性能的影响[J].中国有色金属学报,2010.20(11):2148-2153
    [84]颜莹,金伟,王健等Ni47Ti44Nb9形状记忆合金轧制板材的织构、相变和性能[J].中国有色金属学报,2010.20(S1):483-S486
    [85]杨冠军,谢丽英,胡文英等.再结晶退火对Ni47Ti44Nb9合金冷轧板相组成及板材织构的影响[J].稀有金属材料与工程,1994.23(3):13-16
    [86]Yang Guanjun. Xie Liying. Hu Wcnying, et al. Effect of annealing temperature on texture of cold-rolled Ni47Ti44Nb9 sheet[J]. Transactions of Nonferrous Metals Society of China. 1995. 5(1): 88-93
    [87]颜莹,金伟,曹名洲Ni47Ti44Nb9形状记忆合金冷轧管材的组织、织构和相变[J].金属学报,2008,44(2):139-144
    [88]颜莹,金伟,再结晶对Ni47Ti44Nb9形状记忆合金棒相变和织构的影响[J].稀有金属,2008,32(4):404-408
    [89]Piao M.. Miyazaki H., Otsuka K., et al. Effects of Nb addition on the microstructure of Ti-Ni alloys[J]. Materials Transactions JIM, 1992, 33: 337-345
    [90]高义民.金属凝固原理[M].西安:西安交通大学出版社,2010:81-82
    [91]谢建新,王宇,黄海友.连续柱状晶组织铜及铜合金的超延展变形行为与塑性提高机制[J].中国有色金属学报,2011.21(10):2324-2336
    [92]李顺朴.陈熙深Al-Si合金凝固过程中的生核与分枝[J].物理学报,1995,44(2):233-237
    [93]杨王玥,毛卫民,孙祖庆Fe-16A1基合金与Fe-28A1基合金的形变与再结晶织构[J].中国有色金属学报,1998;8(3):390-394
    [94]颜孟奇,钱浩,杨平等.电工钢中黄铜织构行为及其对Goss织构的影响[J].金属学报,2012,48(1):16-22
    [95]余永宁,毛卫民.材料的结构[M].北京:冶金工业出版社,2001:267-268
    [96]Stojakavic D., Doherty R. D., Kalidindi S.R. et al. Thermomechanical processing for recovery of desired<001> fiber texture in electric motor steels[J]. Metallurgical and Materials Transactions A.2008,39:1738-1746
    [97]Dillamore I. L., Morris P. L., Smith C. J. E. et al., Transition bands and recrystallization in metals[J]. Proc. Roy. Soc. Lond. A.,1972,329 (1579):405-420
    [98]余永宁.金属学原理[M].北京:冶金工业出版社,2000:463
    [99]Ray R. K., Jonas J. J., Hook R. E. Cold rolling and annealing textures in low carbon and extra low carbon steels[J]. International Materials Reviews,1994; 39:129-172
    [100]Nagataki Y., Hosoya Y. Origin of the recrystallization texture formation in an interstitial free steel[J]. ISIJ International,1996,36(4):451-460
    [101]魏立群.金属压力加工原理[M].北京:冶金工业出版社,2008:175-180
    [102]Huang X. Grain orientation effect on microstructure in tensile strained copper[J]. Scripta Materialia,1998,38(11):1697-1703
    [103]Hansen N., Huang X. Microstructure and flow stress of polycrystals and single crystals[J]. Acta Materialia,1998,46(5):1827-1836
    [104]谢建新,王宇,黄海友.连续柱状晶组织铜及铜合金的超延展变形行为与塑性提高机制[J],中国有色金属学报,2011,21(10):2324-2336
    [105]杨觉先.金属塑性变形物理基础[M].北京:冶金工业出版社,1988:228
    [106]贺佳,刘嘉斌,孟亮.应变对Cu-12%Ag合金织构强度及分布的影响[J],金属学报,2007,43(6):643-647
    [107]Chen J., Yan W., Ding R. G., et al. Dislocation boundaries in drawn single crystal copper wires produced by Ohno continuous casting[J]. Journal of Materials Science,2009, 44(8):1909-1917
    [108]Jian Chen. Wen Yan. Jian Miao, et al. Microstructure and texture evolution of cold-drawn<111> single-crystal copper[J]. Metallurgical and Materials Transactions A. 2011,42(8):2373-2383
    [109]Chen Jian, Yan Wen, Li Bing, et al. Microstructure and texture evolution of cold drawing<110> single crystal copper[J]. Science China Technological Sciences.2011, 54(1):1551-1559
    [110]Chen Jian. Yan Wen. Wang XueYan, et al. Microstruclure evolution of single crystal copper wires in cold drawing[J]. Science in China Series E: Technological Sciences 2007. 50(6): 736-748
    [111]Chen Jian. Yan Wen. Li Wei. et al. Texture evolution and its simulation of cold drawing copper wires produced by continuous casting[J]. Transactions of Nonferrous Metals Society of China. 2011. 21: 152-158
    [112]Gall K., Sehitoglu H., Chumlyakov Y., et al. Tension-compression asymmetry of the stress-strain response in aged single crystal and polycrystalline NiTi[J]. Acta Materialia. 1999,47:1203-1217
    [113]Sehitoglu H., Karaman I., Anderson R., et al. Compressive response of NiTi single crystals[J]. Acta Materialia. 2000. 48: 3311-3326
    [114]Buchheit T. K., Wert J. A. Predicting the orientation-dependent stress-induced transformation and detwinning response of shape memory alloy single crystals[J]. Metallurgical And Materials Transactions A. 1996. 27: 269-279
    [115]Saburi I.. Nenno S. The shape memory effect and related phenomena. Proc.Int. Conf. Solid-Solid Phase Transformation. Pittsburgh, (Edited by Aaronson H.I., I.aughlin D.K., Sekerka R.E., Wayman C.M.).1981. 1455-1479
    [116]Ono N.. Satoh A.. Ohta H. A discussion on the mechanical properties of shape memory alloys based on a polycrystal model[J]. Materials Transactions JIM. 1989. 30: 756-764
    [117]Miyazaki S.. Otsuka K.,. Wayman C.M. The shape memory mechanism associated with the martensitic transformation in Ti-Ni alloys-I. Self-accommodation[J]. Acta Metallurgica, 1989.37: 1873-1884
    [118]Ruer D., Baro R. A new method for the determination of the texture of materials of cubic structure from incomplete reflection pole figures[J]. Advance in X-Ray Analysis. 1977,20: 187-200

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700