用户名: 密码: 验证码:
脉冲电晕放电等离子体OH自由基发射光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压脉冲电晕放电等离子体在有毒有害物质脱除、烟气净化等环境领域有着重要的应用前景。在有毒有害物质脱除、烟气净化等反应过程中,起主要作用的是各种自由基和活性物种,特别是OH自由基,由于其氧化性很强,因此在各种物理化学反应中起着极其重要的作用。
     本文利用发射光谱技术研究了在正脉冲、双向窄脉冲两种放电情况下各种物理参数对线-板式电晕放电产生的OH自由基的影响。
     一、OH(A~2∑→X~2Π 0-0)自由基的发射光谱
     利用发射光谱技术在大气压下测量了在氮气、水蒸气混合气体中线-板式正脉冲、双向窄脉冲电晕放电产生的OH(A~2∑→X~2Π 0-0)自由基的发射光谱及在潮湿空气中正脉冲电晕放电OH自由基的发射光谱。
     二、OH自由基相对布居的计算
     由N_2(C~3Π_u→B~3Π_g)的△v=-3和△v=-4振动带序的发射光谱强度计算得出N_2(C,v′)的相对振动布居及其振动温度,进而采用高斯分布拟合准确地求出了N_2(C~3Π_u→B~3Π_g)的△v=+1(1-0,2-1,3-2,4-3)振动带序的发射光谱强度,由N_2(C~3Π_u→B~3Π_g)的△v=+1振动带序与OH(A~2∑→X~2Π 0-0)相互重叠的发射光谱中减去N_2(C~3Π_u→B~3Π_g)的△v=+1振动带序的发射光谱强度,从而可准确求出OH(A~∑→X~Π 0-0)自由基的发射光谱强度。由OH(A~∑→X~Π 0-0)的发射光谱强度可得到激发态OH(A~2∑)自由基的相对布居。
     三、放电电压、频率及添加氧气对OH自由基的影响
     在氮气、水蒸气混合气体中分别研究了正脉冲、双向窄脉冲放电峰值电压、放电频率及添加氧气对激发态OH自由基的发射强度和相对布居的影响。并在潮湿空气中测量了正脉冲电晕放电的放电电压及放电频率对激发态OH自由基相对布居的影响。而且分析了放电过程中产生的活性粒子的重要的物理化学反应过程。
     实验结果表明:OH自由基发射强度随着放电电压及放电频率的增加而增强,随着添加O_2流量的增加而减弱;相对布居随着放电电压及放电频率的增加呈线性增加趋势,随着添加O_2流量的增加呈e指数递减趋势。
High-voltage pulsed corona discharge plasma has been widely studied in the removal of toxic pollutant, the removal of acid gases from flues gas, and other environment management. The radicals and active spices produced by the pulsed corona discharge play important role in the removal process. Especially, OH radicals with their stronger oxidation play the central role in many physicochemical processes.In this article, the OH radials produced by positive and bi-directional pulse corona discharge in a wire-plate reactor are studied by emission spectra technology I . The emission spectra of OH (A~2∑→X~2П , 0-0) radicalsThe emission spectrum of OH (A~2∑→X~2П , 0-0) emitted from the high-voltage positive and bi-directional pulse corona discharge of N_2 and H_2O mixture gas in a wire-plate reactor is successfully recorded. And in the humid air, the emission spectrum of OH (A~2∑→X~2П, 0-0) emitted from the high-voltage positive pulse corona discharge has also been obtained.II. The calculation of the relative population of the OH radicalsThe relative vibration population and the vibration temperature of N_2(C, v') are obtained by the emission intensity of the Av = -3 and Av = -4 vibration transition band of N_2 (C~3П_u→B~3П_g). The emission spectrum of the Av = +1 (1-0, 2-1, 3-2, 4-3) vibration transition band of N_2 (C~3П_u →B~3П_g) is simulated through gauss distribution. The emission intensity of OH (A~2∑→ X~2П, 0-0) has been exactly gotten by subtracting the emission intensity of the Av = +1 vibration transition band of N_2 (C~3П_u→ B~3П_g) from the overlapping spectra. The relative population of OH (A~2∑) can be obtained by the emission intensity of OH (A~2∑→X~2П, 0-0).III. The influences of the discharge voltage, discharge frequency and the added O_2 on the production of the OH radicalsThe influences of peak voltage, discharge frequency of the positive and the bi-directional pulse discharge and the added O_2 on the emission intensity and the relative population of the OH radicals produced in the N_2 and H_2O mixture gas have been studied. The effects of the positive pulse peak voltage and frequency on the relative population of the OH radicals produced in the humid air have also been investigated. Moreover, the important physicochemical reaction processes of active spices have also been discussed.
    The experimental results indicate that: the emission intensity of the OH radicals increase with increasing the peak voltage and the frequency, and decrease with increasing the O2 flow rate; the relative population of the OH radicals increase linearly with increasing the peak voltage and the frequency, and decrease exponentially with increasing the flow rate of added oxygen.
引文
[1] 国家环境保护总局.酸雨控制区和二氧化硫污染控制区划分方案.2003年2月
    [2] 国家环境保护总局.“七省市二氧化硫排放总量控制及排污交易政策”项目.2003年2月
    [3] 万客在线.湿法烟气脱硫除尘一体化技术.2005年10月
    [4] 国家环境保护总局.“两控区”空气质量状况(2002年).2003年2月
    [5] 国家环境保护总局.“两控区”空气质量状况(2003年).2004年4月
    [6] 中国环境监测.2003年环境统计年报:“两控区”二氧化硫排放情况.2004年10月
    [7] 国家环境保护总局.国家及地方两控区污染防治规划.2003年2月
    [8] 陈亚非.烟气脱硫技术综述.制冷空调与电力机械,2001,22(1):17-20
    [9] 邱鸿恩,吴丹,王睿.烟气同时脱硫脱硝技术进展.化学工业与工程技术,2004,6:1-6
    [10] 韩慧,白敏冬,白希尧.脱硫脱硝技术展望.环境科学研究,2002,15(1):55-57
    [11] Masuda S, Wu Y, Urabe U, et al. Pulse induced plasma chemical process for DeNOx and mercury vapor control of combustion gases[C]. Proc'. 3rd Int. Conf. On Electrostatic precipitation, Abano Italy, October 1987, 667-676
    [12] Masuda S. Pulse induced plasma chemical process: a horizon of new chemical technologies [J]. Pure & Apple Chem, 1988, 60(5):727-731
    [13] 郝吉明.燃煤SO_2污染控制技术现状[J].电除尘及气体净化,1999,5(2):24-26
    [14] Wu Y, Wang N, Zhu Y, et al. SO2 removal from in2 dustrial flue gases using pulsed conora discharge[J]. J of Etectronstatics, 1998, 44(1-2):11-16
    [15] Song Y H, Shin W H, Choi Y S, et al. An industrial2 scale experiment of pulse corona process for removing SO2 and NOx from combustion flue gas[J]. J Adv Oxid Technol, 1997, 2(2):268-273
    [16] 赵君科,任先文,王保健,等。脉冲电晕等离子体法烟气脱硫脱硝技术进展[J].四川环境,2000,(4):6-8
    [17] Rasmussen J M. High power short duration pulse generator for SO_2 and NOx removal. Industry Applications Society Annual Meeting, 1989, Conference of the 1989 IEEE 1-5 Oct. 1989, 2:2180-2184
    [18] Masuda S, Hosokawa S. Pulse energizagtion system of electrostatic precipitator for retrofitting application. IEEE IAS Meeting, 1984, 24(4):1288-1296
    [19] Hall H J. History of pulse energization in electrostatic precipitation. J. Electrostatics, 1990, 25:1-22
    [20] Dinelli G, Rea M. Pulse power electrostatic technologies for the control of flue gas emissions. J. Electrostatics, 1990, 25:23-40
    [21] Gallimberti I. A computer model for streamer propagation. J. Phys. D: Appl. Phys., 1972, 5:2179-2189
    [22] Salam M A. Positive wire to plane corona as influenced by atmospheric humidity. IEEE Trans. Ind. Appl., 1985, IA-21(1):35-40
    [23] Gallimberti I. Impulse corona simulation for flue gas treatment. Pure & Appl. Chem., 1988, 60 (6):663-674
    [24] Vitetlo P A, et al. Multi-dimensional modeling of the dynamc morphology of streamer corona. Non-Thermal Plasma Techniques for Pollution Control, B. M. Penetrante and S. E. Schultheis (Ed.), 1993, G34 (A):249-271
    [25] Bouziane A, Hidaka K, Taplamacioglu M C and Waters R T. Assessment of corona models based on the Deutsch approximation. J. Phys. D: Appl. Phys., 1994, 27:320-329
    [26] Laan M and Paris P. The multi-avalanche nature of streamer for mation in inhomogeneous fields, J. Phys. D: Appl. Phys., 1994, 27:970-978
    [27] Vitello P A, Penetrante B M, and Bardsley J N. Simulation of negative streamer dynamics. in nitrogen. Phys. Review E, 1994, 49(6):5574-5598
    [28] Massimo Rea et al. Energization of pulse corona induced chemical process. Non-Thermal Plasma Techniques for Pollution Controt, 1993, G34 (A):191-204
    [29] Massimo Rea et al. Application of low temperature plasmas produced by pulse corona to flue gas cleaning processes, 10th Particulate Control Symp. & 5th Int. Conf. Electrostatic Precipitation, Washington D. C, 1993
    [30] Massimo Rea. Evaluation of pulse voltage generators. IEEE Trans. Ind. AppI., 1995, 31(3):507-512
    [31] 姜雨泽.脉冲放电烟气脱硫脱硝技术的发展与探讨.电力设备,2005,6(5):10-12
    [32] 朱爱民,宫为民,刘书海,等.脉冲电晕放电等离子体烟气脱硫脱硝中试装置[J].环境工程,2001,6:43-45
    [33] Lee Y H, Jung W S, Choi Y R, et al. Application of pulsed corona inducedplasma chemical process to an industrial incinerator. Environ. Sci. Technol.,2003, 37(11):2563-2567
    [34] Yan K, et al. Electron energy for primary and secondary streamers of pulsed corona in relation with flue gas cleaning [C]. Proc. 11th Int. Symp. Plasma Chem., 1993, 609-614
    [35] Yan Keping, et al. Matching between voltage pulse generator and reactor for producing low temperature plasma by positive pulse corona[C]. 2nd Int Confon Applied Electrostatics, Beijing, 1993, 83-95
    [36] 白希尧,等.低温常压等离子体分解有害气体SO_2和NO_x[J].环境科学,1993,14(1):37-40
    [37] 李谦,宁成,周文俊,李劲.脉冲供能集烟气除尘和脱硫脱硝为一体的机理[J].环境保护科学,1995,21(1):11-16
    [38] 张彦彬,王宁会,吴彦.3000m~3/h烟气脱硫试验系统的设计与运行.大连理工大学学报,1997,37(5):551-554
    [39] Lowke J J, Member, IEEE, and Morrow R. Theoretical Analysis of Removal of Oxides of Sulphur and Nitrogen in Pulsed Operation of Electrostatic Precipitators. IEEE Trans. Plasma Sci, 1995, 23: 661-671
    [40] Mok Y S, Ham S W, Nam In-Sik. Mathematical analysis of positive pulsed corona discharge process employed for removal of nitrogen oxides. IEEE Trans. Plasma Sci., 1998, 26(5): 1566-1574
    [41] Gentile A C and Kushner M J. Reaction chemistry and optimization of plasma remediation of N_xO_y, from gas streams. Journal of Applied Physics, 1995, 78:2074-2087
    [42] Sun B, Sato M, Clements J S. Optical study of active species produced by a pulsed streamer corona discharge in water. Journal of electrostatics, 1997, 39: 189-202
    [43] Civitano L. , Dinelli G. et al. Flue gas simultaneous DeN0x/DeS02 by impulse corona energization. Electron Beam Processing of Combustion Gases, 1987, IAEA-TECDOC-428:55-84.
    [44] Amirov R. H. et al. Experimental studies on NO removal from methane combustion products using nanosecond corona discharge. Non-thermal Plasma Techniques for Pollution Control:part B, Springer, Berlin. 1993 , 149-164.
    [45] Dahiya R P, Mishra S K, Veefkind A. Plasma chemical investigations for NO_x and SO_2 removal from flue gas. IEEE Trans. Plasma Sci., 1993, 21(3):346-348
    [46] Penetrante B M, Bardsley J N and Hsiao M C. Kinetic analysis of non-thermal plasma used for pollution control. Japan. J. Appl. Phys. , 1997, 36: 5007
    [47] Veldhuizen E M, Rutgers W R and Bityurin V A . Energy efficiency of NO removal by pulsed corona discharges. Plasma Chem. Plasma Process., 1996, 16: 227
    [48] Sugiarto A T, Ito S, Ohshima T, Sato M and Skalny J D. Oxidative decoloration of dyes by pulsed discharge plasma in water. J. Electrostatics, 2003,58:135-145
    [49] Abou-Ghazala A, Katsuki S, Schoenbach K H, Dobbs F C and Moreira KR. Bacterial decontamination of water by means of pulsed-corona discharges. IEEE Trans. Plasma Sci., 2002,30:1449-1453
    [50] Yamamoto M, Nishioka M and Sadakata M. Sterilization by H_2O_2 droplets under corona discharge. J. Electrostatics, 2002, 56:173-187
    [51] Oda T. Non-thermal plasma processing for environmental protection: decomposition of dilute VOCs in air. J. Electrostatics, 2003, 57: 293-311
    [52] Roland U, Holzer F and Kopinke FD. Improved oxidation of air pollutants in a non-thermal plasma. Catalysis Today 2002, 73: 315-323
    [53] Sobacchi M G, Saveliev A V, Fridman A A, et al. Experimental assessment of pulsed corona discharge for treatment of VOC emissions. Plasma Chemistry and Plasma Processing, 2003, 23: 347-370
    [54] Shao G W, Li J, Wang W L, et al. Desulfurization and simultaneous treatment of coke-oven wastewater by pulsed corona discharge. J. Electrostatics, 2004, 62(1): 1-13
    [55] Yan K P, van Heesch E J M, Pemen A J if, et al. Elements of pulsed corona induced
     non-thermal plasmas for pollution control and sustainable development. J. Electrostatics, 2001, 51-52:218-224
    [56] Liu F, Wang W C, W S, et al. The study of active atoms in high-voltage pulsed corona discharge by optical diagnostics. Plasma Science & Technology, 2005, 7:2851-2855
    [57] Lozovsky V A, Derzy I and Cheskis S. Nonequilibrium concentrations of the vibrationally excited OH radical in a methane flame measured by cavity ring-down spectroscopy. Chem. Phys. Lett., 1998, 284:407-411
    [58] Joshi A A, Locke B R, Arce P and Finney W C. Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution. Journal of Hazardous Materials 1995, 41:3-30
    [59] Ryo Ono and Tetsuji Oda. OH Radical Measurement in a Pulsed Arc Discharge Plasma Observed by a LIF Method. IEEE transactions on industry applications, 2001, 37:709-714
    [60] Ono R and Oda T. OH radical generation in a discharge plasma observed by a LIF method. Thirty-Fourth IAS Annual Meeting, Industry Applications Conference, Conference Record of the 1999 IEEE, 1999, 3:1461-1466
    [61] Ono R and Oda T. Dynamics and density estimation of hydroxyl radicals in a pulsed corona discharge. J. Phy. D: Appl. phys., 2002, 35:2133-2138
    [62] Su Z, Kim H H, Tsutsui M, et al. OH radical generation by atmospheric pressure plasma and its quantitative analysis by monitoring CO oxidation. Thirty-Fourth IAS Annual Meeting, Industry Applications Conference, Conference Record of the 1999 IEEE. 3 (1999) 1473.
    [63] Park C W and Hahn J W. Measurement of OH radical in nonthermal plasma for NO/NO_2 reduction. The Pacific Rim Conference on Lasers and Electro-Optics. CLEO/Pacific Rim, 1999, 2:356-357
    [64] Zoran Falkenstein. The influence of ultraviolet illumination on formation in dielectric barrier discharges of Ar/O_2/H_2O: The Joshi effect. J. Appl. Phys., 1997,81(11):7158-7162
    [65] Kocik M, Mizeraczyk J, Kanazawa S, et al. Observation of Ground-State OH by LIF Technique in DC Nozzle-to-Plate Positive Streamer Coronas. IEEE LAS, 2004, 5:244-249
    [66] Mok Y S, Nam In-Sik, Modeling of pulsed corona discharge process for the removal of nitric oxide and sulfur dioxide. Chemical Engineering Journal, 2002, 85:87-97
    [67] 李杰,吴彦,王宁会,张彦彬.脉冲放电等离子体烟气脱硫中水蒸气活化作用.大连理工大学学报,2000,40:267-270
    [68] 孙明,吴彦,张家良,李杰,王宁会,吴疆,商克峰.空气中电晕放电中的OH自由基发射光谱.光谱学与光谱分析,2005,25:108-112
    [69] 王文春,吴彦,李学初,沈关林.NO,N_2气体中电晕放电高能电子密度分布的光谱实验研究.环境科学学报,1998,18:51-55
    [70] 李谦,李劲.脉冲电晕烟气脱硫脱硝的化学动力学分析.环境科学学报,1998,18(3):236-241
    [71] 王文春,刘峰,张家良,任春生.利用发射光谱研究脉冲电晕放电中的自由基.光谱学与光谱 分析,2004,24:1288-1292
    [72] 徐学基,诸定昌.气体放电物理.上海:复旦大学出版社,1995年
    [73] 杨津基.气体放电.北京:科学出版社,1983年
    [74] 赵君科,王保健,任先文,等.脉冲电晕等离子体烟气脱硫工程试验研究.中国工程科学,2002,4(2):74-78
    [75] Mok Y S, Han S W and Nam I S. Evaluation of energy utilization efficiencies for SO_2 and NO removal by pulsed corona discharge process. Plasma Chemistry and Plasma Processing, 1998,18(4): 535-550.
    [76] Eliasson B and Kogelschatz U. Electron impact dissociation in oxygen. J. Phys. B: Atomic, Molecular and Optical Physics, 1986, 19: 1241-1247.
    [77] Horvath M and Kiss E, Comparison of unidirectional and hi-directional pulse driven corona discharge reactors for decomposition of hazardous gases. Journal of Electrostatics. 2005, 63: 993-98
    [78] Heung-Jin J, Jeong-Ho P, Kwang-Cheol K, et al. Discharge processes of NO gas using bidirectional pulsed voltage. Plused power plasma science, 2001, IEEE Conference Record-Abstracts 17-22 June 2001,308

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700