用户名: 密码: 验证码:
金属卟啉仿生催化对二甲苯氧化反应、机理及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对苯二甲酸(TPA)是一种制备聚对苯二甲酸乙烯酯(PET)的重要原料。目前世界范围内70%的对苯二甲酸是通过催化氧化对二甲苯(PX)反应的途径而得到的。现代工业生产是在80%HOAc溶剂中采用Co(OAc)2/Mn(OAc)2/HBr作催化剂来实现对二甲苯氧化制备对苯二甲酸的。因HOAc使用而造成的反应器壁的腐蚀以及因溴化物的使用引起的环境污染已成为现代工业生产过程的主要缺点。为了实现对二甲苯更好的催化氧化,科学家们已经尝试了很多新的催化方法。但是上述成就并没有撼动工业制备对苯二甲酸所选用的Co(OAc)2/Mn(OAc)2/HBr催化剂体系。因此发展一种新的符合绿色化学要求的对二甲苯氧化方法仍然是富有挑战意义的课题。
     本文我们首次研究了氯化[5,10,15,20-四苯基卟吩]合锰(Tp-Cl)PPMnCl)/Co(OAc)2催化空气无溶剂氧化对二甲苯制备对苯二甲酸的反应。无溶剂条件下T(p-Cl)PPMnCl与Co(OAc)2之间存在复合催化作用。我们还研究了金属卟啉-醋酸钴复合催化作用的机理以及对二甲苯氧化反应的动力学。论文工作内容如下:
     1、尝试了以T(p-Cl)PPMnCl/Co(OAc)2为催化剂,在无溶剂的条件下通过对二甲苯氧化制备对苯二甲酸的新方法。研究发现,T(p-Cl)PPMnCl和Co(OAc)2之间存在复合催化作用。当T(p-Cl)PPMnCl和Co(OAc)2共同使用时,对苯二甲酸产率较二者单独使用时显著提高。研究表明,对甲基苯甲酸氧化步骤是对二甲苯氧化为对苯二甲酸反应过程的速决步,向Co(OAc)2催化反应体系中添加少量的T(p-Cl)PPMnCl能明显加快反应的速决步。我们还详细考察了催化剂浓度和反应条件对对二甲苯氧化反应的影响。
     2、研究了T(p-Cl)PPMnCl/Co(OAc)2复合催化空气氧化对甲基苯甲酸(PTA)的反应。T(p-Cl)PPMnCl/Co(OAc)2在PTA的催化氧化反应中表现出复合催化作用。研究表明,对甲基苯甲酸氧化反应受催化剂组成、催化剂浓度以及反应条件的影响。
     3、探讨了T(p-Cl)PPMnCl/Co(OAc)2复合催化作用的机理,通过研究Co3+催化空气氧化对甲基苯甲酸的反应,我们发现T(p-Cl)PPMnCl与底物作用会产生更多的过氧化物,过氧化物将Co2+氧化为Co3+,Co3+促进氧化反应的进行。研究了对二甲苯氧化反应过程中生成的中间产物对甲基苯甲醇(TALC)对T(p-Cl)PPMnCl的结构以及催化性能的影响。通过光谱学分析,我们发现对甲基苯甲醇可以与T(p-Cl)PPMnCl以1:1的比例轴向配位,配位与对甲基苯甲醇的浓度正相关。T(p-Cl)PPMnCl与对甲基苯甲醇配位会导致锰卟啉催化性能降低。基于上述实验结果,我们提出了T(p-Cl)PPMnCl与Co(OAc)2复合催化对二甲苯空气氧化制备对苯二甲酸的作用机理。
     4、我们采用拟稳态假设建立了对二甲苯氧化反应的分数形式的动力学模型,并通过实验数据回归确定了模型参数。我们的动力学模型可以很好的解释实验中观察到的现象。动力学模型计算结果与实验数据能够较好地吻合,我们从动力学方面证明了金属卟啉在催化对二甲苯氧化时存在自由基逃逸和自由基捕获两种相互竞争途径的反应途径。
     与其它无溶剂催化体系相比,本工艺具有较高的对苯二甲酸产率,反应条件相对更加温和,环境更友好,并且无需任何添加剂和引发剂。
Terephthalic acid (TPA) is an important raw material for the production of polyethylene terephthalate (PET). Nowadays70%of TPA used worldwide is prepared by the catalytic oxidation of p-xylene (PX). Typically, the oxidation of PX is catalyzed by a combination of Co(OAc)2/Mn(OAc)2/HBr using80%HO Ac as solvent in industry. The corrosion of the reactors due to the use of HOAc as solvent and the serious environmental threat posed by bromide have become the major shortcomings. In order to find out a better way for PX oxidation, scientists have studied many new catalytic processes. However, above achievements did not agitate the industrial preparation of TPA catalyzed by Co(OAc)2/Mn(OAc)2/HBr. The development of new PX oxidation processes fitting the requirements of green chemistry still remains a challenge.
     In this paper, solvent-free oxidation of PX to TPA with air catalyzed by tetra(p-chlorophenylporphinato)manganese chloride (T(p-Cl)PPMnCl)/Co(OAc)2was reported for the first time, and the co-catalysis between T(p-Cl)PPMnCl and cobalt acetate was discovered. Mechanism and kinetics studies on the oxidation of p-xylene to terephthalate acid cocatalyzed by metalloporphyrin and cobalt acetate were conducted. The main work of this paper was as follows:
     Firstly, an attempt has been made to prepare TPA by solvent-free oxidation of PX with air over T(p-Cl)PPMnCl and cobalt acetate. The co-catalysis between T(p-Cl)PPMnCl and Co(OAc)2has been discovered. TPA yield could be increased significantly when T(p-Cl)PPMnCl and Co(OAc)2were used together. Studies indicate that the p-toluic acid (PTA) oxidation step is the rate-determining step of the oxidation process of PX to TPA. The addition of T(p-Cl)PPMnCl into the reaction mixture over Co(OAc)2significantly accelerated the rate-determining step. Effects of catalyst concentrations and reaction conditions on the reaction were also investigated.
     Secondly, the aerobic oxidation of PTA to TPA over T(p-Cl)PPMnCl and Co(OAc)2was studied. The co-catalysis of T(p-Cl)PPMnCl/Co(OAc)2was operative in the catalytic oxidation of PTA. The studies indicated that the PTA oxidation was influenced by the catalyst composition, catalyst concentrations and reaction conditions.
     Thirdly, the mechanism of co-catalysis between T(p-Cl)PPMnCl and Co(OAc)2 was investigated. The study of aerobic oxidation of PTA catalyzed by Co3+indicated that the function of T(p-Cl)PPMnCl might be to produce more peroxides from the substrate; The Co3+, obtained by the reaction of peroxides and Co2+, could promote the PTA oxidation. Effects of p-toluic alcohol (TALC) product on the structure and catalytic performance of T(p-Cl)PPMnCl in aerobic oxidation of PX were also studied. Axial coordination of TALC to T(p-Cl)PPMnCl was confirmed by spectroscopic analysis. The molecular TALC could axially coordinate to the T(p-Cl)PPMnCl in the ratio1:1, and the coordination is positively related with TALC concentration. The catalytic performance of T(p-Cl)PPMnCl dropped sharply when T(p-Cl)PPMnCl was coordinated with TALC. A preliminary mechanism of this co-catalyzed oxidation reaction was proposed based on these experimental results.
     Fourthly, a fractional-like kinetic model was derived from the assumed mechanism via the application of steady state approximation. We applied the experimental data to regress the kinetic model parameters in order to obtain those model parameters. Our kinetic model could explain and correlate the experimental observations well. Based on the fact that the kinetic model's well fitting of experimental data, we speculate that the aerobic oxidation of PX has two competing reaction paths, i.e. the radicals escape way and the radicals capture way.
     Compared with other solvent-free catalyst systems, the reaction system in this paper has the advantages of giving higher TPA yield, operating under relatively milder reaction conditions, being more environmental friendly and it do not require the use of any additive or initiator.
引文
[1]Suresh A K, Sharma M M, Sridhar T. Engineering aspects of industrial liquid-phase air oxidation of hydrocarbons. Industrial & Engineering Chemistry Research,2000,39(11):3958-3997
    [2]Sheehan J R. Ullmann's Encyclopedia of Industrial Organic Chemicals. Wiley-VCH, Weinheim,1999, pp.4573±4591
    [3]钱伯章.PTA市场现状及发展趋势.化工技术经济,2004,22(10):19-23
    [4]王豪忠.精对苯二甲酸(PTA)需求旺盛价格上涨http://www.cqvip.com, 2004-6-6
    [5]郭琛.论我国精TA的发展前景与发展思路.现代化工,2002,22(10):1-13
    [6]孙可华.PTA/对二甲苯市场概况.国内外石油化工快报,2005,35(5):28-29
    [7]Lawton A B, Robert M C. Oxidation process for preparation of terephthalic acid. US Patent.2636899,1953-04-28
    [8]Olivier K L, Gothlich L V E. Nitric acid catalysis in the oxidation of aromatic hydrocarbons. Oxidation of organic compounds. Washington DC:American Chemical Society,1968, Chapter 54, pp382-388
    [9]Saffer A, Barker R S. Preparation of aromatic polycarboxylic acid. US Pantent. 2833816,1958
    [10]Partenheimer W. Methodology and scope of metal/bromide autoxidation of hydrocarbons. Catalysis Today,1995,23(2):69-158
    [11]李希,谢刚,华卫琦.PTA技术国产化中的主要化学工程问题及其研究思路.聚酯工业,2001,14(1):1-7
    [12]朱培玉,顾道斌.对二甲苯液相氢化技术的研究进展.石油化工,2001,30(12):947-951
    [13]王海滨,张靖.我国精对苯二甲酸产业发展分析.化学工业,2009,27(4):13-16
    [14]钱伯章.国内外精对苯二甲酸投资情况与技术进展.化工技术经济,2007,25(1):21-23
    [15]Belmonte F G. Production of polycarboxylic acids with hafnium-activated cobalt catalyst. US Patent.5110984,1992-5-5
    [16]Partenheimer W. Production of polycarboxylic acids with a molybdenum-activated cobalt catalyst. US Patent.4992580,1991-2-12
    [17]Nakaoka K, Miyama Y, Matsuhisa S. Preparation of terephthalic acid using paraldehyde promotor. Industrial & Engineering Chemistry Product Research and Development,1973,12(2):150-155
    [18]Beychok M R. Environmental factors in producing supplemental fuels. Hydrocarbon Process,1975,54(10):78-81
    [19]Ichikawa Y, Yamashita G, Tokashiki M. New oxidation process for production of terephthalic acid from p-xylene. Industrial & Engineering Chemistry Research, 1970,62(4):38-42
    [20]Chester A W, Scott J E, Landis P S. Zirconium cocatalysis of the cobalt-catalyzed autoxidation of alkylaromatic hydrocarbons. Journal of Catalysis,1977,46(3):308-319
    [21]Ivanov A M, Chervinskii K A, Baranova E I. Role of the solvent during the catalytic oxidation of p-xylene. Neftekhimiya,1969,9:892-898
    [22]Grosskinsky O, Benning A. Chloroalkylation of organic compounds. US Patent. 1961-10-3130
    [23]Jhung S H, Lee K H, Park Y S. Effects of alkali metals on the liquid phase oxidation of p-xylene. Applied Catalysis A:General,2002,230(1-2):31-40
    [24]Yoo J S, Jhung S H, Lee K H. An advanced MC-type oxidation process-the role of carbon dioxide. Applied Catalysis A:General,2002,223(1-2):239-251
    [25]David R B, Jun K W, Yoo J S. Combined Promotional Effect of CO2 and Ni on Co/Mn/Br catalyst in the liquid-phase oxidation of p-xylene Catalysis Letters, 2002,81:169-173
    [26]Parternheimer W. The effect of zirconium in metal/bromide catalysts during the autoxidation of p-xylene Part Ⅰ. Activation and changes in benzaldehyde intermediate formation. Journal of Molecular Catalysis A:Chemical,2003,206: 105-119
    [27]Parternheimer W. The effect of zirconium in metal/bromide catalysts during the autoxidation of p-xylene Part Ⅱ. Journal of Molecular Catalysis A:Chemical, 2003,206:131-144
    [28]Jacob C R, Varkey S P, Ratnasamy P. Oxidation of para-xylene over zeolite-encapsulated copper and manganese complexes. Applied Catalysis A: General,1999,182(1):91-96
    [29]Chavan S A, Srinivas D, Ratnasamy P. Selective oxidation of para-xylene to terephthalic acid by μ3-oxo-bridged Co/Mn cluster complexes encapsulated in zeolite-Y. Journal of Catalysis,2001,204(2):409-419
    [30]Chavan S A, Srinivas D, Ratnasamy P. A novel, zeolite-encapsulated μ3-oxo Co/Mn cluster catalyst for oxidation of para-xylene to terephthalic acid. Chemical Communications,2001, (12):1124-1125
    [31]Ratnasamy P, Srinivas D. Selective oxidations over zeolite-and mesoporous silica-based catalysts:selected examples. Catalysis Today,2009,141(1-2):3-11
    [32]Gao J, Tong X, Li X, Miao H, Xu J. The efficient liquid-phase oxidation of aromatic hydrocarbons by molecular oxygen in the presence of MnCO3. Journal of Chemical Technology and Biotechnology,2007,82(7):620-625
    [33]Harustiak M, Hronec M, Ilavaky J. Kinetics and mechanism of cobalt bromide catalyzed oxidation of p-xylene in the presence of phase transfer catalysts. Journal of Molecular Catalysis,1989,53(2):209-217
    [34]Cvengrosova Z, Hronec M, Kizlink J. Study of p-xylene reaction with Co-Br-pyridine catalyst:Part Ⅱ. reaction in aqueous system. Journal of Molecular Catalysis,1987,40(2):235-242
    [35]Kwak J W, Lee J S, Lee K H. Co-oxidation of p-xylene and p-toluic acid to terephthalic acid in water solvent:Kinetics and additive effects. Applied Catalysis A:General,2009,358(1):54-58
    [36]吴鑫干,何斌鸿,王艳辉,等.精对苯二甲酸生产技术的进展.石油化工2005,34(1):89-93
    [37]Kim Y L, Chung S J, Kim J D. Uncatalyzed partial oxidation of p-xylene in sub-and supercritical water. Reaction Kinetics and Catalysis Letters,2002,77(1): 35-42
    [38]Dunn J B, Savage P E. High-temperature liquid water:a viable medium for terephthalic acid synthesis. Environmental Science & Technology,2005,39(14): 5427-5435
    [39]Dunn J B, Savage P E. Terephthalic acid synthesis in high-temperature liquid water. Industrial & Engineering Chemistry Research,2002,41(18):4460-4465
    [40]Dunn J B, Burns M L, Hunter S E, et al. Hydrothermal stability of aromatic carboxylic acids. The Journal of Supercritical Fluids,2003,27(3):263-274
    [41]Tsang S C, Zhu J, Yu K M. A new oxidation catalyst system using fluorous cobalt (Ⅱ) species in water-supercritical carbon dioxide (C-H free environment). Catalysis Letters,2006,106(3-4):123-126
    [42]Francesco R, Carlo P. Free radical functionalization of organic compounds catalyzed by N-hydroxyphthalimide. Chemical Reviews,2007,107:3800-3824
    [43]Yasutaka T, Takahiro I, Satoshi S, et al. A new strategy for the preparation of terephthalic acid by the aerobic oxidation of p-xylene using N-hydroxyphthalimide as a catalyst. Advanced Synthesis & Catalysis,2001, 343(2):220-225
    [44]Saha B, Koshino N, Espcnson J H. N-Hydroxyphthalimides and metal cocatalysts for the autoxidation of p-xylene to terephthalic acid. Journal of Physical Chemistry A,2004,108(3):425-431
    [45]Ishii Y. A novel catalysis of N-hydroxyphthalimide (NHPI) combined with Co(acac)n (n= 2 or 3) in the oxidation of organic substrates with molecular oxygen. Journal of Molecular Catalysis A:Chemical,1997,117(1-3):123-137
    [46]姜瑞霞,畅延青,唐泓,等.对二甲苯氧化非溴催化体系研究新进展.石油化工,2007,36(1):100-104
    [47]Burton S G. Oxidizing enzymes as biocatalysts. Trends in Biotechnology,2003, 21(12):543-549
    [48]Boyd D R, Sharma N D, Allen C C R. Aromatic dioxygenases:molecular biocatalysis and applications. Current Opinion in Biotechnology,2001,12(6): 564-573
    [49]Cirino P C, Arnold F H. Protein engineering of oxygenases for biocatalysis. Current Opinion in Chemical Biology,2002,6(2):130-135
    [50]Julsing M K, Cornelissen S, Buhler B, et al. Heme-iron oxygenases:powerful industrial biocatalysts? Current Opinion in Chemical Biology,2008,12(2): 177-186
    [51]Van Beilen J B, Duetz W A, Schmid A, Witholt B. Practical issues in the application of oxygenases. Trends in Biotechnology,2003,21(4):170-177
    [52]Morgan J A, Lu Z, Clark D S. Toward the development of a biocatalytic system for oxidation of p-xylene to terephthalic acid:oxidation of 1,4-benzenedimethanol. Journal of Molecular Catalysis B:Enzymatic,2002, 18(1-3):147-154
    [53]Yu H, Kim B J, Rittmann B E. The roles of intermediates in biodegradation of benzene, toluene, and p-xylene by pseudomonas putida F1. Biodegradation, 2001,12(6):455-463
    [54]Maruyama T, Iida H, Kakidani H. Oxidation of both termini of p-and m-xylene by escherichia coli transformed with xylene monooxygenase gene. Journal of Molecular Catalysis B:Enzymatic,2003,21(4-6):211-219
    [55]Denisov I G, Makris T M, Sligar S G., et al. Structure and chemistry of cytochrome P450. Chemical Reviews,2005,105(6):2253-2278
    [56]Loew G H, Harris D L. Role of the heme active site and protein environment in structure, spectra, and function of the cytochrome P450s. Chemical Reviews, 2000,100(2):407-420
    [57]Sono M, Roach M P, Coulter E D, et al. Heme-containing oxygenases. Chemical Reviews,1996,96(7):2841-2888
    [58]Morooka Y, Akita M. Bio-inorganic approach to hydrocarbon oxidation. Catalysis Today,1998,41(4):327-338
    [59]Groves J T, Nemo T E, Myers R S. Hydroxylation and epoxidation catalyzed by iron-porphine complexes. Oxygen transfer from iodosylbenzene. Journal of the American Chemical Society,1979,101(4):1032-1033
    [60]Kadish K M, Fre'mond L, Shen J, et al. Catalytic activity of biscobalt porphyrin-corrole dyads toward the reduction of dioxygen. Inorganic Chemistry, 2009,48(6):2571-2582
    [61]Han A, Jeong Y J, Kang Y, et al. Direct evidence for an iron(IV)-oxo porphyrin pi-cation radical as an active oxidant in catalytic oxygenation reactions. Chemical Communications,2008, (9):1076-1078
    [62]Gross Z, Ini S. Dual role of pyridine N-oxides in ruthenium porphyrin-catalyzed asymmetric epoxidation of olefins. Inorganic Chemistry,1999,38 (7): 1446-1449
    [63]Takahashi A, Kurahashi T, Fujii H. Effect of imidazole and phenolate axial ligands on the electronic structure and reactivity of oxoiron(IV) porphyrin π-cation radical complexes:drastic increase in oxo-transfer and hydrogen abstraction reactivities. Inorganic Chemistry,2009,48(6):2614-2625
    [64]Liu H, Zhang L, Zhang J, et al. Electrocatalytic reduction of 02 and H2O2 by adsorbed cobalt tetramethoxyphenyl porphyrin and its application for fuel cell cathodes. Journal of Power Sources,2006,161(2):743-752
    [65]Nam Wonwoo, Park Se-Eun, Lim In Kyung, et al. First direct evidence for stereospecific olefin epoxidation and alkane hydroxylation by an oxoiron(IV) porphyrin complex. Journal of the American Chemical Society,2003,125(48): 14674-14675
    [66]Wang L, She Y, Zhong R, et al. A green process for oxidation of p-nitrotoluene catalyzed by metalloporphyrins under mild conditions. Organic Process Research & Development,2006,10(4):757-761
    [67]Pan Z, Wang Q. Sheng X, et al. Highly reactive porphyrin-iron-oxo derivatives produced by photolyses of metastable porphyrin-Iron(IV) diperchlorates. Journal of the American Chemical Society,2009,131(7):2621-2628
    [68]Vasbinder M J, Bakac A. Hydrogen-Atom Transfer from Transition Metal Hydroperoxides, Hydrogen Peroxide, and Alkyl Hydroperoxides to Superoxo and Oxo Metal Complexes. Inorganic Chemistry,2007,46(7):2921-2928
    [69]Reboucas J S, DeFreitas-Silva Gilson, Spasojevic Ivan, et al. Impact of electrostatics in redox modulation of oxidative stress by Mn porphyrins: Protection of SOD-deficient Escherichia coli via alternative mechanism where Mn porphyrin acts as a Mn carrier. Free Radical Biology & Medicine,2008,45: 201-210
    [70]Fabbri Claudia, Aurisicchio Claudia, Lanzalunga Osvaldo. Iron porphyrins-catalysed oxidation of a-alkyl substituted mono and dimethoxylated benzyl alcohols. Central European Journal of Chemistry,2008,6(2):145-153
    [71]Zhang R, Nagraj N, Lansakara P Ds, et al. Kinetics of two-electron oxidations by the compound I derivative of chloroperoxidase, a model for cytochrome P450 oxidants. Organic Letters,2006,8(13):2731-2734
    [72]Lee J, A Julianne, Hunt, et al. Manganese porphyrins as redox-coupled peroxynitrite reductases. Journal of the American Chemical Society,1998, 120(24):6053-6061
    [73]Lee J, Hunt J A, Groves J T. Mechanisms of iron porphyrin reactions with peroxynitrite. Journal of the American Chemical Society,1998,120(30): 7493-7501
    [74]Shimanovich R, Groves J T. Mechanisms of peroxynitrite decomposition catalyzed by FeTMPS, a bioactive sulfonated iron porphyrin. Archives of biochemistry and biophysics,2001,387(2):307-317
    [75]Lindsay Smith J R, Iamamoto Y, Vinhado F. Oxidation of alkanes by iodosylbenzene (PhIO) catalyzed by supported Mn(Ⅲ) porphyrins:Activity and mechanism. Journal of Molecular Catalysis A:Chemical,2006,252(1-2):23-30
    [76]Baciocchi Enrico, Gerini Maria Francesca, Lapi Andrea. Synthesis of sulfoxides by the hydrogen peroxide induced oxidation of sulfides catalyzed by iron tetrakis(pentafluorophenyl)porphyrin:scope and chemoselectivity. Journal of Organic Chemistry,2004,69(10):3586-3589
    [77]Guo C C, Huang G, Li Z P, et al. Study of the selective catalysis of metalloporphyrins for 2-methyl-butane oxidation with PhIO under mild conditions. Journal of Molecular Catalysis A:Chemical,2001,170(1-2):43-49
    [78]Guo C C. Liu X Q, Li Z P, et al. Selective catalysis of μ-oxo- bismetalloporphyrins for 2-methylbutane oxidation with PhIO under mild conditions. Applied Catalysis A:General,2002,230(1-2):53-60
    [79]Groves J T, Quinn R. Models of oxidized heme proteins. Preparation and characterization of a trans-dioxoruthenium(Ⅵ) porphyrin complex. Inorganic Chemistry,1984,23(24):3844-3846
    [80]Ellis P E, Lyons J E. Effect of fluorination of the meso-phenyl groups on selective tetraphenylporphyrinatoiron(Ⅲ)-catalysed reactions of propane with molecular oxygen. Journal of the Chemical Society, Chemical Communications, 1989, (18):1315-1316
    [81]Ellis P E, Lyons J E. Halogen substituent effects on the catalytic activity of iron porphyrin complexes for selective air-oxidation of alkanes in the liquid phase Catalysis Letters,1989,3:389-397
    [82]Lyons J. E., Ellis P. E., Myers H. K. Halogenated Metalloporphyrin Complexes as Catalysts for Selective Reactions of Acyclic Alkanes with Molecular Oxygen. Journal of Catalysis,1995,155(1):59-73
    [83]Ellis P E, Lyons J E. Effect of fluorination of the meso-phenyl groups of selective tetraphenylporphyrinato metal(Ⅲ)-catalysed reactions of isobutene with molecular oxygen. Journal of the Chemical Society, Chemical Communications,1989,10:1187-1188
    [84]Lyons J E, Ellis P E, Shaikh S N. Azide promotion of alkane oxidations catalyzed by metal complexes in solution. Inorganica Chimica Acta,1998, 270(1-2):162-168
    [85]Ellis P E, Lyons J E. Hydrocarbon oxidation catalyzed by azide or nitride-activated metal coordination complexes. EP Patent.274909,1988-12-10
    [86]Ellis P E, Lyons J E. Process and ionic iron coordination complex catalysts containing halogenated ligands for hydrocarbon oxidation. EP Patent.296712, 1988-4-5
    [87]刘强.金属卟啉催化的碳氢化合物空气选择性氧化反应研究:[湖南大学博士学位论文].长沙:湖南大学化学化工学院,2004,15-67
    [88]Guo C C, Chu M F, Liu Q, Liu Y, Guo D C, Liu X Q. Effective catalysis of simple metalloporphyrins for cyclohexane oxidation with air in the absence of additives and solvents. Applied Catalysis A:General,2003,246(2):303-309
    [89]Guo C C, Liu X Q, Liu Y, et al. Studies of simple μ-oxo-bisiron(Ⅲ)porphyrin as catalyst of cyclohexane oxidation with air in absence of cocatalysts or coreductants. Journal of Molecular Catalysis A:Chemical,2003.192(1-2): 289-294
    [90]Guo C C. Synthesis of μ-oxo-bisiron(Ⅲ)porphyrin compounds and their catalysis for cyclohexane hydroxylation. Journal of Catalysis,1998,178(1): 182-187
    [91]Guo C C, Li H P, Xu J B. Study of synthesis of μ-oxo-bismanganese(Ⅲ) porphyrin compounds and their catalysis of cyclohexane oxidation by PhIO. Journal of Catalysis,1999,185(2):345-351
    [92]Guo C C, Liu X Q, Liu Q, Liu Y, Chu M F, Lin W Y. First industrial-scale biomimetic oxidation of hydrocarbon with air over metalloporphyrins as cytochrome P-450 monooxygenase model and its mechanistic studies. Journal of Porphyrins and Phthalocyanines,2009,13:1250-1254
    [93]徐克文.金属卟啉催化空气氧化对二甲苯制备对甲基苯甲酸和对苯二甲酸:[湖南大学硕士学位论文].长沙:2005,15-35
    [94]Jiang Q, Hu HY, Guo CC, Liu Q. Aerobic liquid-phase oxidation of p-xylene over metalloporphyrins. Journal of Porphyrins and Phthalocyanines,2007,11: 524-530
    [95]Jiang Q, Xiao Y, Tan Z, Li QH, Guo C C. Aerobic oxidation of p-xylene over metalloporphyrin and cobalt acetate:Their synergy and mechanism. Journal of Molecular Catalysis A:Chemical,2008,285(1-2):162-168
    [96]李帅,刘强,肖洋,罗伟平,龚天保,郭灿城(Tp-C1 PPFe)2O/Co(OAc)2催化对二甲苯空气氧化反应及条件优化.化工学报,2009,60(1):69-74
    [97]Dawson J H. Probing structure-function relations in heme-containing oxygenases and peroxidasese. Science,1988,240(4851):433-439
    [98]Meunier B, Samuel P D V, Sason S. Mechanism of oxidation reactions catalyzed by cytochrome P-450 enzymes. Chem. Rev.,2004,104(9):3947-3980;
    [99]Ilia G D, Thomas M M, Stephen G S, et al. Structure and chemistry of cytochrome P-450. Chemical Reviews,2005,105(6):2253-2277
    [100]Sason S, Devesh K, Ahmet A,et al. The oretical perspective on the structure and mechanism of cytochrome P-450 enzymes. Chemical Reviews,2005,105(6): 2279-2328
    [101]Schlichting llme, Berendzen Joel, Chu Kelvin, et al. The catalytic pathway of cytochrome P450cam at atomic resolution. Science,2000,287(5458): 1615-1622
    [102]Hessenauer-Ilicheva Natalya, Franke Alicja, Wolak Maria, et al. Spectroscopic and mechanistic studies on oxidation reactions catalyzed by the functional model SR complex for cytochrome P450:Influence of oxidant, substrate, and solvent. Chemistry-A European Journal,2009,15(45):12447-12459
    [103]Poulos T L, Cupp-Vickery J, Li H. Cytochrome P450:Structure, mechanism, and biochemistry, Plenum:New York,1995, Chapter 4, ppl25-150
    [104]Davydov Roman, Makris Thomas M, Kofman Victoria, et al. Hydroxylation of camphor by reduced oxy-cytochrome P450cam:Mechanistic implications of EPR and ENDOR studies of catalytic intermediates in native and mutant enzymes. Journal of the American Chemical Society,2001,123(7):1403-1415
    [105]Davydov Roman, Kofman Viktoria, Fujii Hiroshi, et al. Catalytic mechanism of heme oxygenase through EPR and ENDOR of cryoreduced oxy-heme oxygenase and its asp 140 mutants. Journal of the American Chemical Society,2002, 124(8):1798-1808
    [106]Davydov Roman, Macdonald Iain D. G., Makris Thomas M., et al. EPR and ENDOR of catalytic intermediates in cryoreduced native and mutant oxy-cytochromes P450cam:mutation-induced changes in the proton delivery system. Journal of the American Chemical Society,1999,121(45):10654-10655
    [107]Groves J T, Nemo T E. Aliphatic hydroxylation catalyzed by iron porphyrin complexes. Journal of the American Chemical Society,1983,105(20): 6243-6248
    [108]Schlichting I, Berendzen J B, Chu K, Stock A M, Maves S A, Benson D E,Sweet R M, Ringe D, Petsko G A, Sligar S G,. The catalytic pathway of cytochrome P450cam at atomic resolution. Science,2000,287,1615-1622
    [109]Davydov R, Makris T M, Kofman V, Werst D E, et al. Hydroxylation of camphor by reduced oxy-cytochrome P450cam:mechanism implications of EPR and ENDOR studies of catalytic intermediates in native and mutant enzymes. Journal of the American Chemical Society,2001,123,1403-1415
    [110]Meunier B. Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage. Chemical Reviews,1992,92(6):1411-1456
    [111]Ortiz de Montellano P R, Stearns R A. Timeing of the radical recombination step in cytochrome P-450 catalysis with ring-strained probes. Journal of the American Chemical Society,1987,109(11),3415-3420
    [112]Atkinson J K, Ingold K U. Cytochrome-p450 hydroxylation of hydrocarbons-variation in the rate of oxygen rebound using cyclopropyl radical clocks including 2 new ultrafast probes. Biochemistry,1993,32,9209-9214
    [113]Auclair K. Hu Z B, Little D M, Ortiz de Montellano P R, Groves J T. Revisting the mechanism of P450 enzymes with the radical clocks norcarane and spiro[2,5]octane. Journal of the American Chemical Society,2002,124(21), 6020-6027
    [114]Toy P H, Newcomb M, Hollenberg P F. Hypersenstive mechanistic probe studies of cytochrome P450-catalyzed hydroxylation reactions. Implications for the cationic pathway. Journal of the American Chemical Society,1998,120, 7719-7729
    [115]Newcomb M, Toy P H. Hypersenstive radical probes and the mechanism of cytochrome P450-catalyzed hydroxylation reactions. Accounts of Chemical Research,2000,33(7),449-455
    [116]Ogliaro F, Harris N, Cohen S, Filatov M, de Visser S P, Shaik S. A model "rebound" mechanism of hydroxylation by cytochrome P450:stepwise and effectively concerted pathyways, and their reactivity patterns. Journal of the American Chemical Society,2000,122(37),8977-8989
    [117]Ogliaro F, de Visser S P, Cohen S, Sharma P K, Shaik S. Searching for the second oxidant in the catalytic cycle of cytochrome P450:a theoretical investigation of the iron(Ⅲ)-hydroperoxo species and its epoxidation pathways. Journal of the American Chemical Society,2002,124(11),2806-2817
    [118]Schroder D, Shaik S, Schwarz H. Two-state reactivity as a new concept in organometallic chemistry. Accounts of Chemical Research,2000,33,139-145
    [119]Ellis P E, Lyons J E. Selective air oxidation of light alkanes catalyzed by activated metalloporphyrins the search for a suprabiotic system. Coordination Chemistry Reviews,1990,105(2):181-193
    [120]Lyons J E, Ellis P E, Mayers H K. Halogenated metalloporphyrin complexes as catalysts for selective reactions of acyclic alkane with molecular oxygen. Journal of Catalysis,1995,155(1):59-73
    [121]Moore K T, Horvath I T, Therien M J. Mechanistic studies of (porphinato)iron-catalyzed isobutane oxidation, comparative studies of three classes of electron-deficient porphyrin catalysts, Inorganic Chemistry,2000, 39(15):3125-3139
    [122]Moore K T, Horvath I T, Therien M J. High-pressure NMR studies of (porphi-nato)iron-catalyzed isobutane oxidation utilizing dioxygen as the stoichiometric oxidant. Journal of the American Chemical Society,1997, 119(7):1791-1792
    [123]Grinstaff M W, Hill M G, Labinger J A, et al. Mechanism of catalytic oxygenation of alkanes by halogenated iron porphyrins. Science,1994, 264(5163):1311-1313
    [124]Labinger J A. A simplified model for catalyzed isobutane autoxidation: implications for the mechanism of catalysis by halogenated porphyrin complexes. Catalysis Letters.1994,26(1-2):95-99
    [125]Birnbaum E R, Grinstaff M W, Labinger J A, Bercaw J E, Gray H B. On the mechanism of catalytic alkene oxidation by molecular oxygen and halogenated iron porphyrins. Journal of Molecular Catalysis A:Chemical,1995,104(2), L119-L122.
    [126]Haber J, Matachowski L, Pamin K, Poltowicz J. Manganese porphyrins as catalysts for oxidation of cyclooctane in Lyons system. Journal of Molecular Catalysis A:Chemical,2000,162(1-2),105-109
    [127]Haber J, Matachowski L, Pamin K, Poltowicz J. The effect of peripheral substituents in metalloporphyrins on their catalytic activity in Lyons system. Journal of Molecular Catalysis A:Chemical,2003,198(1-2),215-221
    [128]Maldotti A, Varani B G, Molinari, et al. Oxidation of cyclohexane by molecular oxygen photoassisted by meso-tetraarylporphyrin iron(Ⅲ)-hydroxo complexes. Inorganic Chemistry.1996,35(5),1126-1131
    [129]Takeuchi M, Kodera M, Kano K, Yoshida Z-I. Mechanism for (porphyriato)iron(Ⅲ)-catalyzed oxygenation of styrenes by O2 in presence of BH4-. Journal of Molecular Catalysis A:Chemical,1996,113,51-57
    [130]Mansuy D. Activation of alkanes:the biomimetic approach. Coordination Chemistry Reviews,1993,125(1-2):129-141
    [131]Barton D H R, Gastiger M J, Motherwell W B. A new prodedure for the oxidation of saturated hydrocarbons. Journal of the Chemical Society, Chemical Communications,1983,(1):41-43
    [132]Partenheimer W. Characterization of the reaction of cobalt(Ⅱ) acetate, dioxygen and acetic acid, and its significance in autoxidation reactions. Journal of Molecular Catalysis,1991,67(1):35-46
    [133]Partenheimer W. A chemical model for the Amoco "MC" oxygenation process to produce terephthalic acid. In:Catalysis of organic reaction. New York:CRC Press,1989
    [134]Nakaoka K, Miyama Y, Matsuhisa S et al. Preparation of terephthalic acid using paraldehyde promoter. Industrial & Engineering Chemistry Research,1989, 28(10):1467-1470
    [135]Sheldon R A, Kochi J K. Metal-catalyzed oxidation of organic compound. New York:Academic Press,1981,301-330
    [136]Saha B, Koshino N, Espcnson J H. N-Hydroxyphthalimides and metal cocatalysts for the autoxidation of p-xylene to terephthalic acid. The Journal of Physical Chemistry A,2004,108(3):425-431
    [137]Cao G, Alberto S, Massimo P, et al. Kinetics of p-xylene liquid-phase catalytic oxidation. AIChE Journal,1994,40(7):1156-1166
    [138]Cao G, Massimo P, Massimo M, et al. A lumped kinetic model for liquid-phase catalytic oxidation of p-xylene to terephthalic acid. Chemical Engineering Science,1994,49(24B):5775-5783
    [139]Cincotti A, Orru R, Cao G. Kinetics and related engineering aspect of catalytic oxidation of p-xylene to terephthalic acid. Catalysis Today,1999,52:331-347
    [140]Cincotti A, Orru R, Bori A, et al. Effect of catalyst concentration and simulation of precipitation processes on liquid-phase catalytic oxidation of p-xylene to terephthalic acid. Chemical Engineering Science,1997,52(21-22):4205-4213
    [141]Jones G H. p-Xylene autoxidation studies:oxidation of cobalt(Ⅱ) and manganese(II) acetates by peracids. Journal of the Chemical Society, Chemical Communications,1979,12(4):536-537
    [142]Jones G H. A mechanistic study of the origin of synergy and antagonism in the Co(OAc)Br-catalyzed autoxidation of p-xylene. Journal of Chemical Research, 1982,8:2137-2163
    [143]Jones G H. A kinetic and mechanistic study of the redox chemistry of cobalt acetate in aqueous acetic acid. Journal of Chemical Research,1981,7: 2801-2868
    [144]Suresh A K, Sridhar T, Potter O E. Catalysed oxidation of cyclohexane in the liquid phase. AIChE Journal,1990,36(1):137-145
    [145]Scott E J, Chester A W. Kinetics of the cobalt-catalyzed autoxidation of toluene in acetic acid. Journal of Chemical,1978,76(11):112-124
    [146]Kamiya Y. Catalysis by cobalt and bromide ions in the autoxidation of alkyl benzenes in acetic acid. Journal of Catalysis,1974,33(3):480-485
    [147]Hronec M, Hrabe Z. Liquid-phase oxidation of p-xylene catalyzed by metal oxides. Industrial & Engineering Chemistry Product Research and Development, 1986,25:257-261
    [148]Hronec M, Cvengrosova Z, Ilsvsky J. Kinetic and mechanistic of cobalt-catalyzed oxidation of p-xylene in the presence of water. Industrial & Engineering Chemistry Product Research and Development,1985,24(3): 787-794
    [149]周国华.对二甲苯液相催化氧化动力学的研究[D].天津:天津大学,1988
    [150]温同礼.对二甲苯液相催化氧化为对苯二甲酸的动力学[D].天津:天津大学,1989
    [151]Partenheimer W, The structure of metal/bromide catalysts in acetic acid/water mixtures and its significance in autoxidation. Journal of Molecular Catalysis A: Chemical,2001,174(1):29-33
    [152]王丽军,李希,谢刚,成有为,司马坚.对二甲苯液相催化氧化动力学(I)反应机理和动力学模型.化工学报,54(7):946-952
    [153]谢刚,李希.对二甲苯液相催化氧化动力学(Ⅱ)温度效应.化工学报,54(7):1013-1016
    [154]Wang Q, Cheng Y, Wang L, et al. Semicontinuous studies on the reaction mechanism and kinetics for the liquid-phase oxidation of. p-xylene to terephthalic acid. Industrial & Engineering Chemistry Research,2007,46(26): 8980-8992
    [155]Cheng Y, Li X, Wang L, et al. Optimum ratio of Co/Mn in the liquid-phase catalytic oxidation of p-xylene to terephthalic acid. Industrial & Engineering Chemistry Research,2006,45(12):4156-4162
    [156]Wang Q, Li X, Wang L, et al. Kinetics of p-xylene liquid-phase catalytic oxidation to terephthalic acid. Industrial & Engineering Chemistry Research, 2005,44(2):261-266
    [157][157] Sun W, Pan Y, Zhao L, et al. Simplified free-radical reaction kinetics for p-xylene oxidation to terephthalic acid. Chemical Engineering and Processing, 2008,31(10):1402-1409
    [158]Adler A D, Longo F R, Finarelli J D, et al. A simplified synthesis for meso-tetraphenylporphine. The Jounal of Organic Chemistry,1967,32(2): 476-478
    [159]Adler A D, Longo F R, Kampas F, et al. On the preparation of metalloporphyrins. Journal of Inorganic and Nuclear Chemistry,1970,32(7):2443-2445
    [160]Vorbeck M L, Mattick L R, Lee F A, et al. Preparation of methyl esters of eatty acids for gas-liquid chromatography. Quantitative Comparison of Methylation Techniques. Analytical Chemistry.1961,33(11):1512-1514
    [161]Hedgley E, Overend W. Trimethylsilyl derivatives of carbohydrates. Chemical Industry,1960,14:378-380
    [162]Katnik R. Toluic acid isomer determination by gas chromatography. Journal of Chromatography Science,1970,8:361-365
    [163]李福详.煤及干馏物氧化产品中苯羧酸的GC分析.燃烧化学学报,1998,26(1):93-96
    [164]林玲.利用毛细管电泳分析精对苯二甲酸中的杂质.石油化工,1994,23(6):393-395
    [165]张莉,李希,林燕飞.毛细管胶束电动色谱结合气相色谱分析对二甲苯氧化过程的产物.石油化工,2002,31(11):932-934
    [166]Viola A, Cao G. Rapid direct analysis of of p-xylene oxidation products by reversed high-performance liquid chromatography. Journal of Chromatography Science,1996,34(1):27-33
    [167]平德来.高效液相色谱测定对苯二甲酸中4—羧基苯甲醛和对甲基苯甲酸.石油化工,1995,24(7):493-497
    [168]平德来.高效液相色谱法分析对二甲苯的氧化残渣.石油化工,1998,27(4):281-283
    [169]成有为,张莉,谢刚.对二甲苯液相催化氧化动力学实验技术.化学反应工程与工艺,2003,19(2):182-187
    [170]徐海波,王勤波,李希.对二甲苯氧化产物的色谱分析.聚酯工业,2006,19(1):19-24
    [171]冯钰安,庄海青,周辉.高效液相色谱法分析精对苯二甲酸中的微量杂质.色谱,1996,14(3):199-201
    [172]杜曦,施颖,刘小华,等.对二甲苯氧化产物的高效液相色谱分析.化学研究与应用,2004,16(1):107-108.
    [173]孙雅茹.反相液相色谱法测定PTA中的4-CBA和PT酸含量.石油化工,2003,32(9):805-807
    [174]茅力,龚雁,练鸿振,等.高效液相色谱法测定间羟基苯甲酸.色谱,1998,16(5):448-450
    [175]许红兵,刘伟,畅延青.高效液相色谱法测定精对苯二甲酸中微量杂质.分析测试技术与仪器,2003,9(1):10-13
    [176]许红兵,刘伟,畅延青.高效液相色谱法测定精对苯二甲酸中微量杂质.广西师范大学学报(自然科学版),2003,21(3):125-126
    [177]董国君,苏玉.间羟基苯甲酸的高效液相色谱分析.化学工程师,2000,81(6):57-58
    [178]章渊,潘志彦,林春绵.高效液相色谱法分析测定间甲基苯甲酸的含量.浙江工业大学学报,1998,26(1):78-82
    [179]Raghavendrchar P, Ramachandran S. Liquid-phase catalytic oxidation of p-xylene. Industrial & Engineering Chemistry Research,1992,31(2):453-462
    [180]Bregeault J M. Transition-metal complexes for liquid-phase catalytic oxidation: some aspects of industrial reactions and of emerging technologies. Journal of the Chemical Society, Dalton Transactions,2003, (17):3289-3302
    [181]Zeng W, Li J, Qin S. An efficient aerobic oxidation for p-xylene to p-toluic acid using azacrown ether-tethered Mn(Ⅲ) schiff Base complexes as catalysts. Supramolecular Chemistry,2004,16(8):569-572
    [182]Halligudi S B, Devassy B M, Kala Raj N K, Degaonkar MP, Gopinathan S. Metal schiff-base complex catalyzed oxidation of p-xylene and methyl 4-methykbenzoate to carboxylic acids. Reaction Kinetics and Catalysis Letters, 2000,71(2):289-294
    [183]Shaabani A, Soleimani K, Bazgir A Silica sulfuric acid catalysis the oxidation of organic compounds with sodium bromate. Synthesis Communications,2004, 34(18):3303-3315
    [184]Garcia-Verdugo E, Fraga-Dubreuil J, Hamley P A, Thomas W B, Whiston K, Poliakoff M. Simultaneous continuous partial oxidation of mixed xylenes in supercritical water. Green Chemistry,2005 7(5):294-300
    [185]Dunn J B, Urquhart D I, Savage P E. Terephthalic acid synthesis in supercritical water. Advanced Synthesis & Catalysis,2002,344(3+4):385-392
    [186]Higashijima M, Nagayama K. Non-halogen redox catalysis toward green processing. Studies in Surface Science and Catalysis,2003,145:551-552
    [187]Alekar N A, Gopinathan S, Gopinathan C. Catalytic liquid phase oxidation of p-xylene using transition metal substituted polyoxometalates. Indian Journal of Chemistry-Section A,2000,39(4):439-441
    [188]Yang F, Sun J, Zheng R, Qiu W W, Tang J, He M Y. Oxidation of toluenes to benzoic acids by oxygen in non-acidic solvents. Tetrahedron,2004,60(5): 1225-1228
    [189]Gupta M, Paul S, Gupta R, Loupy A. ZnO:a versatile agent for benzylic oxidations. Tetrahedron Letters,2005,46(30):4957-4960
    [190]Tashiro Y, Iwahama T, Sakaguchi S, Ishii Y. A new strategy for the preparation of terephthalic acid by the aerobic oxidation of p-xylene using N-hydroxyphthalimide as a catalyst. Advanced Synthesis & Catalysis,2001, 343(2):220-225
    [191]Saha B, Espenson J H. Combined acid additives and the MC catalyst for the autoxidation of p-xylene to terephthalic acid. Journal of Molecular Catalysis A: Chemical,2005,241(1-2):33-38
    [192]Dolphin D, Forman A, Borg D C, Fajer J, Felton R H. Compounds I of catalase and horse radish peroxidase:π-cation radicals. Proceedings of the National Academy of Sciences of the United states of America,1971,68(3):614-618
    [193]Huang G, Wang A P, Liu S Y, Guo Y A, Zhou H, Zhao S K. An efficient oxidation of toluene over Co(Ⅱ)TPP supported on chitosan using air. Catalysis Letters,2007,114(3-4):174-177
    [194]Evans S, Lindsay Smith J R. The oxidation of ethylbenzene and other by dioxygen alkylaromatics catalysed by iron(Ⅲ)tetra(pentafluorophenyl) porphyrin and related iron porphyrin. Journal of the Chemical Society, Perkin Transactions,2000,2(7):1541-1551
    [195]Agarwala A, Bandyopadhyay D. New mechanistic insights in the cytochrome P-450 model reactions:direct identification of the reactive intermediates. Catalysis Letters,2008,124(3-4):392-396
    [196]Black J F. Metal-catalyzed autoxidation. The unrecognized consequences of metal-hydroperoxide complex formation. Journal of the American Chemical Society,1978,100(2):527-535
    [197]Musie G T, Wei M, Subramaniam B, Busch D H. Autoxidation of substituted phenols catalyzed by cobalt schiff base complexes in supercritical carbon dioxide. Inorganic Chemistry,2001,40(14):3336-3341
    [198]Xiao Y, Luo W P, Zhang X Y, Guo C C, Liu Q, Jiang G F, Li Q H. Aerobic oxidation of p-toluic acid to terephthalic acid over T(p-Cl)PPMnCl/Co(OAc)2 under moderate conditions. Catalsis Letters,2010,134(1-2):155-161
    [199]Emerson S W, Shafer T C, Heimsch R A. A study of the conversion of p-toluic acid to terephthalic acid with high pressure oxygen. Journal of Organic Chemistry,1951,16(12):1839-1845
    [200]Hirai N, Sawatari N, Nakamura N, Sakaguchi S, Ishii Y. Oxidation of substituted toluenes with molecular oxygen in the presence of N,N',N"-trihydroxyisocyanuric acid as a key catalyst. Journal of Organic Chemistry,2003,68(17):6587-6590.
    [201]Satya P, Puja N, Rajive G.. Solvent-free benzylic oxidations using urea-hydrogen peroxide complex (UHP) under microwave irradiation. Synthesis letters,2004,3:531-533
    [202]Nemecek A M., Hendriks C F. Hendrik C A, C. A. van Beek H, et al. Conversion of cobalt(II) acetate into cobalt(III) acetate by autoxidizing benzaldehyde. Industrial & Engineering Chemistry Product Research and Development,1978, 17(2):133-138
    [203]Sefrestaa J, Verite P, Estour F, et al. Improvement of a biomimetic porphyrin catalytic system by addition of acids. Chemical & Pharmaceutical Bulletin, 2002,50(6):744-748
    [204]Kadish K M, Morrison M M. Solvent and substituent effects on the redox reactions of para-substituted tetraphenylporphyrin. Journal of the American Chemical Society,1976,98(11):3326-3328
    [205]Birnbaum E R, Grinstaff M W, Labinger J A, et al. On the mechanism of catalytic alkene oxidation by molecular oxygen and halogenated iron porphyrins. Journal of Molecular Catalysis A:Chemical,1995,104(2):L119-L122
    [206]Parshall G W, Ittel S D. Homogeneous catalysis,2nd edn. Wiley, New York, 1992, p237.
    [207]Lande S S, Falk C D, Kochi J K. Cobalt(Ⅲ) acetate from the ozonation of cobaltous acetate. Journal of Inorganic and Nuclear Chemistry.1971,33(12): 4101-4109
    [208]Babushkin D E, Talsi E P. Multinuclear NMR spectroscopic characterization of Co(III) species key intermediates of cobalt catalyzed autoxidation. Journal of Molecular Catalysis A:Chemical,1998,130(1):131-137
    [209]Bhaduri S, Mukesh D. Homogeneous catalysis mechanisms and industrial applications. Wiley, New York,2000, p 176
    [210]Cheng R J, Chen P Y, Lovell T, Liu T, Noodleman L, Case DA. Symmetry and bonding in metalloporphyrins. A modern implementation for the bonding analyses of five-and six-coordinate high-spin iron(III)-porphyrin complexes through density functional calculation and NMR spectroscopy. Journal of the American Chemical Society,2003,125(22):6774-6783
    [211]Zheng N, Zhang J, Bu X, Feng P. Cadmium-porphyrin coordination networks: rich coordination modes and three-dimensional four-connected CdSO4 and (3,5)-connected hms nets. Crystal Growth & Design,2007,7(12):2576-2581
    [212]D'Souza F, Deviprasad G R, Zandler M E, Hoang V T, Klykov A, VanStipdonk M, Perera A, E1-Khouly M E, Fujitsuka M, Ito O. Self-assembled via axial coordination magnesium porphyrin-imidazole appended fullerene dyad: spectroscopic, electrochemical, computational, and photochemical studies. Journal of Physical Chemistry B,2005,109(20):10107-10114
    [213]Visser J, Katsonis N, Vicario J, Feringa B L. Two-dimensional molecular patterning by surface-enhanced Zn-porphyrin coordination. Langmuir,2009, 25(10):5980-5985
    [214]Mak C C, Bampos N, Darling S L, Montalti M, Prodi L, Sanders J K M. A strategy for the assembly of multiple porphyrin arrays based on the coordination chemistry of Ru-centered porphyrin pentamers. Journal of Organic Chemistry, 2001,66(13):4476-4486
    [215]Iamamoto Y, Assis M D, Ciuffi K J, Sacco H C, Iwamoto L, Melo A J B, Nascimento O R, Prado C M C. Factors which affect the catalytic activity of iron(Ⅲ) meso tetrakis(2,6-dichlorophenyl) porphyrin chloride in homogeneous system. Journal of Molecular Catalysis A:Chemical,1996,109(3):189-200
    [216]Scheidt W R, Pearson W B, Gosal N. Structure of bis (methanol) (meso-tetraphenylporphinato)manganese(Ⅲ) hexachloroantimonate bis (tetrachloroethane) solvate. Acta crystallographica. Section C, Crystal Structure Communications,1988, C44(5):927-928
    [217]Brown Jr. R B, Williamson M M, Hill C L. Structural and chemical properties of a reactive metalloporphyrin with aliphatic amine N-oxide axial ligands. crystal and molecular structure of bis (N-methylmorpholine N-oxide) (tetraphenylporphinato) manganese(Ⅲ) perchlorate. Inorganic Chemistry,1987, 26(10):1602-1608
    [218]Mu X H, Schultz F A. Methanol bonding to and electron-transfer reactivity of chloro(tetraphenylporphinato)manganese(Ⅲ). Inorganic Chemistry,1992, 31(16):3351-3357
    [219]Stephenson N A, Bell A T. Influence of solvent composition on the kinetics of cyclooctene epoxidation by hydrogen peroxide catalyzed by iron(III) [tetrakis(pentafluorophenyl)] porphyrin chloride [(F20TPP)FeCl]. Inorganic Chemistry,2006,45(6):2758-2766
    [220]Kelly S L, Kadish K M. Counterion and solvent effects on the electrode reactions of manganese porphyrins. Inorganic Chemistry,1982,21(10): 3631-3639
    [221]Suslick K S, Watson R A. Photochemical reduction of nitrate and nitrite by manganese and iron porphyrins. Inorganic Chemistry,1991,30(5):912-919
    [222]Boucher L J. Manganese porphyrin complexes. Coordination Chemistry Reviews,1972,7(3):289-329
    [223]Benesi H A, Hildebrand J H. A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. Journal of the American Chemical Society,1949,71(8):2703-2707
    [224]Feng H X, Zhu Z A, Ruan W J, Wang C Z, Yan SK. Liu Q X. Thermodynamic studies on the axial coordination reaction of Co-2,9,16,23-tetracarboxyphthalocyanine with 2-mercaptoethanol and thiophenol. Chinese Journal of Inorganic Chemistry,1999,15(6):732-738
    [225]Liu S X, Feng Y L. Synthesis, crystal structure and spectral properties of [Mn2(bzacen)2(MeOH)2 (μ-4,4'-bipy)](C104)2. Chemical Journal of Chinese Universities,1996,17(4):509-514
    [226]Groves J T, Stern M K. Synthesis, characterization, and reactivity of oxomanganese(IV) porphyrin complexes. Journal of the American Chemical Society,1988,110(26):8628-8638
    [227]Groves J T, Watanabe Y, McMurry T J. Oxygen activation by metalloporphyrins. Formation and decomposition of an acylperoxymanganese(Ⅲ) complex. Journal of the American Chemical Society,1983,105(13):4489-4490
    [228]Czernuszewicz R D, Su Y O, Stern M K, Macor K A, Kim D, Groves J T, Spiro T G. Oxomanganese(IV) porphyrins identified by resonance Raman and infrared spectroscopy. Weak bonds and the stability of the half-filled t2g subshell. Journal of the American Chemical Society,1988,110(13):4158-4165

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700