用户名: 密码: 验证码:
污泥热解残渣作吸附剂去除水中Cr(VI)和Pb(II)的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题以城市污水处理厂的好氧生污泥和厌氧消化污泥为研究对象,通过简单热解制备污泥吸附剂,研究了热解温度和热解时间对污泥吸附剂性能的影响;之后将污泥残渣用于处理Cr(VI)和Pb(II)废水,研究了吸附时间、pH、吸附剂投加量对残渣吸附性能的影响;再将吸附饱和后的残渣进行解吸,考察解吸剂种类、解吸时间、解吸剂浓度对污泥残渣再生的影响;最后初步探讨了吸附机理。本论文得出了以下主要的研究结论。
     1)在污泥热解过程中,提高温度和延长热解时间均会导致污泥残渣产率下降。残渣的碘值和对Cr(VI)和Pb(II)的去除能力与热解温度和时间非正相关,存在最佳温度和时间,其中在700℃下热解1h的污泥残渣对两种重金属的吸附容量最大。经厌氧消化后,污泥吸附剂吸附性能有所降低。
     2)残渣对Cr(VI)和Pb(II)的去除率都随吸附时间增加而增加;Cr(VI)的去除率随pH增加减小,Pb(II)的去除率随pH增加而升高;增加吸附剂投加量,Cr(VI)和Pb(II)去除率上升,而单位吸附剂吸附容量迅速减小。在Cr(VI)初始浓度为200mg/L时,吸附3.0h,pH为4.0,吸附剂投加量为20g/L,污泥残渣对Cr(VI)的最大吸附容量(qmax)为13.9mg/g。在200mg/L的Pb(II)废水,吸附3.0h,pH为5.0,吸附剂投加量为20g/L,污泥残渣对Pb(II)的最大吸附容量(qmax)为9.63mg/g。
     3)污泥残渣对Cr(VI)和Pb(II)的吸附都符合准二级反应动力学模型。Langmuir模型比Freundlich模型能更好地拟合重金属离子吸附等温线。
     4)盐酸相对硝酸对残渣有较高的解吸率。解吸率随解吸时间、解吸酸浓度的增加而增加。用0.05mol/L的HCl解吸3h,残渣对Cr(Ⅵ)和Pb(II)解吸率分别为71%和64%。污泥残渣的解吸符合准二级反应动力学模型。
     5)污泥简单热解残渣对Cr(Ⅵ)和Pb(II)的去除有三种作用:静电吸附、表面络合、孔径吸附。
     以上结论表明,污泥活热解残渣可以作为一种廉价、安全、经济的吸附剂应用于重金属废水的处理。
The excessed sludge and anaerobic digestion sludge were taked as research object in the paper. Impacts of pyrolysis temperature and react time on properties of residue prepared by sludge pyrolysis were investigated. After that,the Cr(VI)and Pb(II) wastewater are treated by using sludge residue .Some factors such as contact time, solution pH and adsorbent dose were presented to perform Cr(VI) and Pb(II) removal from water.Furthermore,the satured sludge residues were desotped and the effect of desorption acid, contact time and acid concentration on desorption capacity of residues were studyed. Finally, the adsorption mechanism of the aerobic sludge adsorbent was also studied. Following main conclusions are obtained:
     1) With the increase of pyrolysis temperature and react time, the yield of sludge residues decreased. Iodine and adsorption capacity of residues is not correlated with prylosis temperature and time. There is an optimal parameter. The residues prepared by phosphorus–rich sludge in 700℃have the biggest adsorption capacity to Cr (VI) and Pb(II).
     2) With the contact time extend,the removal efficiency of Cr(VI)and Pb(II) increased. when the solution pH increased, the removal efficiency of Cr(VI)decreased ,and removal rate of Pb(II) increased. Adding adsorbent dose, removal efficiency of Cr(VI)and Pb increased but the adsorption capacity decreased. In the wastewater of Cr(VI)200mg/L, the maximum capacity of pyrolysis residue for Cr(VI) sorption was 13.9mg/g at pH=4.0, contact time 3.0h and adsorbent dose of 20g/L. When the initial concentration of Pb(II) wastewater is 200mg/L, the biggest capacity was 9.63mg/g at pH=5.0, contact time 3.0h and adsorbent dose of 20g/L.
     3) The Cr (VI) and Pb (II) sorption process can be depicted by the pseudo-second-order kinetic. Langmuir model and Freundlich model were well fitting to the isotherm data, and the former appeared to be better. It is showed that the adsorption process is controed by reaction speed of many processes by Weber-Morris model.
     4) Compared with nitrate, hydrochloric acid has a higher desorption rate to pyrolysis residues. And desorption rate increase, when the contact time is extended or the concentration of hydrochloric is improved. With 0.05mol/L hydrochloric acid to desorpt 3h, the desorption rate of Cr (VI) and Pb(II) can separately reach up to 71% and 64%. The process of desorption can be depicted by the pseudo-second-order kinetic.
     5) The mechanisms of Cr (VI) and Pb (II) removal by pyrolysis residues included electrostatic adsorption, surface complexation, and aperture adsorption.
     The above results indicate that the pyrolysis sludge residue can be employed as an effective, safe and economically feasible adsorbent in treatment of heavy mental wastewater.
引文
[1]杨丽标,邹国元,张丽娟,等.城市污泥农用处置研究进展[J].农业资源与环境科学, 2008, 24(1): 420-423.
    [2]张晨.污泥处理处置技术研究进展[J].化学工业出版社. 2005:80-84.
    [3]沈光范.城市污水处理厂的污泥处理和处置[J].中国环保产业, 2003(4): 10-12.
    [4]徐强.污泥处理处置技术及装置[J].化学工业出版社, 2003. 46-49.
    [5]杨子江.城市污泥的综合利用研究[J].再生资源研究,2004(1): 32-36.
    [6]何品晶,顾国维,李笃中.城市污泥处理与利用[J].北京科学出版社, 2003: 13-14.
    [7]赵庆祥.污泥资源化技术[M].北京化学化工出版社, 2002:17-20.
    [8]周少奇.城市污泥处置与资源化[J].广州华南理工大学出版社, 2002, 1-3.
    [9]尹军,谭学军.污水污泥处理处置与资源化利用[J].北京化学工业出版社, 2005, 108-109.
    [10]黄雅曦,李季,李国学.污泥处理与资源化利用现状分析[J].农业环境科学学报, 2003, 22(6):765-768.
    [11]马娜,陈玲,熊飞.我国城市污泥的处置与利用[J].生态环境,2003, 1(1):92-95.
    [12]赵丽君,张大群,陈宝柱.污泥处理与处置技术的进展[J].中国给水排水, 2003(6):53-55.
    [13]陈涛,雄先哲.污泥的农林处置与利用[J].环境保护科学, 2000, 26(99): 32-34.
    [14]徐强.污泥处理处置技术及装置[M].北京:化学工业出版, 2003: 33-40.
    [15]王宝贞.水污染控制土程[M].北京:高等教育出版社, 1994: 303-305.
    [16]王静,卢宗文.国内外污泥研究现状及进展[J].市政技术, 2006, 24 (3): 140-143.
    [17]张辰.污泥处理处置技术研究进展[M].北京:化学工业出版社, 2005. 8
    [18] Davis R. The impact of EU and UK environmental pressures on the future of sludge treatment and disposal [J]. Water Environ Manage. 1996, 10 (2):65-69.
    [19]陈荣柱,任琳.日本污泥处理技术现状和动态[J].给水排水, 1999, 25 (10 ) : 20-21.
    [20]姚刚.德国的污泥利用和处置(I) [J].城市环境与城市生态, 2000, 13 (1): 43-47.
    [21]姚刚.德国的污泥利用和处置(II) [J].城市环境与城市生态, 2000, 13 (2): 24-26.
    [22]赵亚乾.英国污泥处置现状及其发展概述[J].给水排水, 1999, 24 (9): 28-29.
    [23]杨小文,杜英豪.污泥处理与资源化利用方案选择[J].中国给排水,2002 (18):31-32.
    [24]陈鸣.城市污水处理厂污泥最终处置方式的探讨[J].中国给排水, 2000, 16(8):23-24.
    [25] Stolarek P, Ledakowicz S. Thermal processing of sewagesludge by drying, pyrolysis gasification and combustion [J]. Water Science and Technology, 2001, 44 10 : 333-339.
    [26]李海英,张书廷,赵新华,等.城市污水污泥热解实验及产物特性[J].天津大学学报, 2006(06):739-744.
    [27]王琼,邹鹏.污水污泥的热解处理[J].再生资源研究, 2004, 4:38- 41.
    [28] Chiang P C, You J H . Use of sewage sludge for manufacturing adsorbents[J]. Can. J. Chem. Eng,1987, 65(6):922-927.
    [29] Jeyaseelan S , Lu G Q. Development of adsorbent/catalyst from municipal wastewater sludge [J]. Water Sci Tech, 1996, 34(3-4):499-505.
    [30] L F Calvo, etc. Upgrading sewage sludge for adsorbent preparation by different treatments[J]. Bioresource Technology,2001, 80: 143-148.
    [31]吴桂萍,刘朝飞,许佳,等.化工厂剩余污泥作生物吸附剂对水溶液中活性红的吸附[J].中南民族大学学报, 2007, 26(2):25-28.
    [32]尹炳奎,朱石清,朱南文,等.化学活化法制备生物质活性炭及其应用研究[J].中国给水排水, 2006, 22(15):88-90.
    [33]余兰兰,钟秦,冯兰兰.剩余污泥制备活性炭吸附剂及其应用研究[J].安全与环境学报, 2005, 5(4):39-43.
    [34]余兰兰,钟秦.污水厂污泥制备吸附剂及其在水处理中的应用[J].应用化学, 2006, 23(4):419-423.
    [35]江刚.美国污水厂污泥焚烧装置面临更严格的排放限制[J].中国环境保护, 1999 (6):490-550.
    [36]谢光武,蔡明招,郑文芝.污泥的处理与处置技术[J].环境技术. 2003, (5):24-27.
    [37]赵庆祥.污泥资源化技术[J].化学工业出版社, 2002:25-42.
    [38]田宁宁,王凯军.污水厂污泥处置及利用途径研究[J].环境保护. 2001 ( 4 ) : 42-44.
    [39]徐强.污泥处理处置技术及装置[M].北京:化学工业出版, 2003:33-40 .
    [40]陈荣柱,任琳.日本污泥处理技术现状和动态[J].给水排水, 1999, 25 (10 ) : 20-21.
    [41]翟云波,魏先勋,曾光明等.城市污水处理厂污泥资源化利用途径探讨[J].工业水处理. 2004(2):9-11.
    [42]王西新,候坤章.粉煤灰的活化及应用研究[J].粉煤灰综合利用, 2002, 3(5):26-27.
    [43]张慧,李宁,戴友芝.重金属污染的生物修复技术[J].化工进展, 2004-23(5):562-565.
    [44]史会齐,周嵘,焦贺贤,等.花生壳综合利用研究-花生壳对Cr(Ⅵ)的吸附作用[J].河南大学学报, 2004, 34(2):41-43.
    [45]宋志敏,丁建础.用煤处理含铬(Ⅵ)废水的试验研究[J].矿业安全与环保, 2005, 32(4):9-13.
    [46]马宏瑞,黄宁选,张景飞等.泥炭对溶液中铬的吸附及其在制革废水处理中的应用[J].环境化学, 2003, 2(6):596-605.
    [47] J Pattanayak, K Mondal, S Mathew, etal. A parametric evaluation of theremoval of As(Ⅴ)and As(Ⅲ)by carbon-based adsorbents[J]. Catbon, 2000, 38:589-596.
    [48] Jianmin Wang, Heng Ban, xinjun Teng, et al. Impacts of pH and ammonia on the leaching of Cu(Ⅱ)and Cd(Ⅱ)from coal fly ash[J]. Chemosphere, 2006, 6(4):1892-1898.
    [49]马荣骏.絮凝的原理及应用[J].稀有金属与硬质合金, 1988, 5(3):8-16.
    [50]张建平,孙振声,尹连庆,等.粉煤灰处理废水机理及应用[J].粉煤灰综合利用, 1996, 3(4):33-35.
    [51]李娜,靳晓洁.含重金属废水处理技术的研究进展概述[J].电力科学与工程, 2008, 24(4) :42-44.
    [52]李玉文,郭军,尤铁学.重金属废水处理工艺的研究[J].内蒙古科技与经济, 2008, 11(165):78-79 .
    [53]刘斐文,韩力慧,孙秀珍.胶体超滤法去除废水中低浓度重金属离子[J].水处理技术. 1993, 19(6):345-348.
    [54] A. Dabrowski, Z. Hubicki, P. Podkoscielny. Selective Removal of the Heavy Metal Ions From Waters and Industrial Wastewaters by Ion-exchange Method [J]. Chemosphere,2004, (56):92-103.
    [55] Bleam W F, Mcdride M B. Chemistry of adsorbed Cu(II)in aqueous titanium dioxide suspensions[J]. Journal of Colloid and Interface Science, 1985, 11 (2):335-346.
    [56]杨智宽.用蛇纹石处理含钢废水的研究[J].环境科学技术, 1997, 10(2):15-17.
    [57]刘频,赵黔榕,袁朗白,等.改性硅藻土对Pb( II)的吸附作用[J].云南化工, 2003, 30(5):11-13.
    [58]蒋建国,王伟,杜竹玮.高分子螯合剂捕集重金属Pb2+的机理研究[J].环境科学. 1997, 18(3):31-33.
    [59]彭清涛.植物在环境污染治理中的应用[J].环境保护, 1998(2):24-27.
    [60] S H Lin, S L Lai, H G Leu. Removal of Heavy Metals from Aqueous Solution by Chelating Resin in a Multistage Adsorption Process [J]. HazardMater. 2000, 76(1):139-153.
    [61]莫健伟,姚兴东.海藻去除水中双偶氮染料机理及重金属离子研究[J].中国环境科学, 1997, 17(3):241-243.
    [62]胡洪波.微生物吸附贵重金属的研究与应用[J].徽生物学通报. 2002, 29 (3): 94-97.
    [63]李明春,姜恒,侯文强,等.酵母菌对重金菌离子吸附的研究[J].菌物系统, 1998, 17(4): 367-373.
    [64]程永清,杨晶华,胡权刚.活性污泥对重金属离子的吸附研究[J].中国科技论文在线, 2009, 4(9):691-693.
    [65]饶清华,林秀珠,邱宇,等.活性污泥对Pb2+的生物吸附特征研究[J],工业用水与废水, 2009, 6(40):53-56.
    [66]周爱申,张爱华,马丽.剩余活性污泥吸附重金属影响因素研究[J],黑龙江环境通报,2008, 7, 32(2):33-35.
    [67] Kasan , Corapcioglu M O , Huang C P. The adsorption of heavymetals onto hydrous activated carbon [J]. Water Research, 1987(21): 1031-1044.
    [68]蒋成爱,黄国锋,吴启堂.城市污水污泥处理利用研究进展[J],农业环境与发展, 1999, 52-56.
    [69] F Rozada. Dye adsorption by sewage sludge-based activated carbons in batch and fixed-bed systems[J]. Bioresource Technology, 2003, 87:221-230.
    [70] Otero M, Rozada F, Calvo L F, et al. Elimination of organic water pollutants using adsorbents obtained from sewage sludge[J]. Dyes and Pigments, 2003, 57:55-65.
    [71] Gasco G, Blanco C G, Guerrero F, et al. The influence of organic matter on sewage sludge pyrolysis[J]. Pyrolysis, 2005(74):413-420.
    [72] Seredych M, Bandosz T J. Sewage sludge as a single precursor for development of composite adsorbents/catalysts [J]. Chemical Engineering Journal, 2007, 12(8):59-67.
    [73] Menendez J, A Dominguez, A Inguanzo, Met al. Microwave-induced dryingpyrolysis and gasification (MWDPG) of sewage sludge Vitrification of the solid residue [J]. J. Anal. Appl. Pyrolysis, 2005(74):406-412.
    [74]余兰兰,钟秦.污水厂污泥制备吸附剂及其在废水处理中的应用[J].应用化学,2006, 23(4):419-423.
    [75]任爱玲,王启山,郭斌.污泥活性炭的结构特征及表面分形分析[J].化学学报, 2006, 64(10):1068-1072.
    [76] S Jeyaseelan, Gao Qing Lu. Development of adsorbent/catalyst from municipal wastewater sludge[J]. Water Science and Technology, 1996, 34(34):499-505.
    [77] ANDREY BAGREEV. Sewage sludge-derived materials as efficient adsorbents for removal of hydrogen sulfide[J]. Environ sci technol, 2001, 35:1537-1543.
    [78]翟云波,曾光明,李彩亭,等.污泥基多孔吸附材料对SO2吸附机理研究[J].环境科学与技术, 2007, 30(3):16-18.
    [79]三羽宏明.炭化处理系统的开发和炭化污泥的有效利用[J].再生与利用, 2001, 24(90):6-13.
    [80]马志毅,侯红娟,刘瑞强,等.污水厂污泥作吸附剂的试验研究[J].中国给水排水. 1997, 13(41):10-13.
    [81]张德见,魏先勋,曾光明,等.化学活化法制取污泥衍生吸附剂的实验研究[J].安全与环境学报, 2003, 3(5):44-45.
    [82]翟云波,魏先勋,曾光明,等.污泥衍生吸附剂去除水溶液中镉、镍离子的研究[J]现代化工,2003, 23(10):36-39.
    [83]张瑶,张克荣,罗永义,等.活性炭对铅镉镍钴离子的吸附机理探讨[J].华西医大学报, 1995, 26(3): 322 - 325.
    [84] Mohan D, Chander S. Single component and multi -component adsorption of metal ions by activated carbon[J]. Colloids and Surfaces, 2001(177): 183 - 196.
    [85] Kadirvelu K, Thamaraiselvi K, Namasivayam C. Removal of heavy metals from industrial wastewaters by adsorption ontoactivated carbon prepared from an agricultural solid waste [J]. Bioresource Technology, 2001(76): 63 - 65.
    [86]李海英,张书廷,赵新华,等.城市污水污泥热解温度对产物分布的影响[J].太阳能学报, 2006, 27(8):835-840.
    [87]王秀芳,张会平,肖新颜,等.高比表面积活性炭研制进展[J].功能材料, 2005, 36(7):975-977.
    [88]余兰兰,钟秦.活性炭污泥吸附剂的制备研究[J].环境化学, 2005, 24(4):401-404.
    [89]解建华,宋薇,聂永丰.污泥衍生活性炭技术研究[J].环境卫生工程, 200614(1):14-16.
    [90]岳宇明,顾余宏.活性炭碘值测试方法探讨[J].净水技术, 1999, 17(4):21-23.
    [91]赵芝清,徐天有,张彦,等.污泥活性炭吸附含Cr(Ⅵ)废水的试验研究[J].工业用水与废水, 2009, 40(1):77-78.
    [92] Hattacharya A K, Naiya T K, Monda S N, et al. Adsorption -kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions using different low-cost adsorbents[J]. Chemical Engineering Journal, 2008, 137(3):529-541.
    [93] G M Gadd, T Kobayashi. Adsorption of metal ions on yeast cells at various cellconcentrations [J]. Plant Cell Physiol, 1975(16): 1167-1169.
    [94] Rozada F, Otero M, Moran A, and Garcia A. I. Adsorption of heavy metals onto sewage sludge-derived materials[J]. Bioresource Technology, 2008(99):6332-6338.
    [95]赵启涛,陈雯,刘中华.活性炭的应用与研究进展[[J].昆明理工大学学报, 2000, 25:8-12.
    [96] Y S Ho, G. McKay. Pseudo-second order model for sorption processes [J]. Process Biochemistry, 1999, 34(5):451-465.
    [97] Y S Ho, G McKay. Sorption of dye from aqueous solution by peat[J]. Chemical Engineering Journal, 1998, 70(2):115-124.
    [98] Y C. Sharma, C H Weng. Removal of chromium(Ⅵ) from water and wastewater by using riversed sand: Kinetic and equilibriym studies[J]. Journal of Hazardous Materials, 2007, 142(1-2):449-454.
    [99] D Mohan, S Chander. Single component and multi-component adsorption of metal ions by activated carbons[J]. Colloids and Surfaces . A: Physicochemical and Engineering Aspects, 2001, 177 ( 2-3):183-196.
    [100] Nadhem K. Hamadi, Xiao Dong Chen, Mohammed M. Farid et al. Adsorption kinetics for the removal of chromium(VI)from aqueous solution by adsorbents derived from used tyres and sawdust[J]. Chemical Engineering Journal, 2001, 84 (2): 95-105.
    [101]周隽.木屑和花生壳对低浓度重金属离子的吸附性能研究[D].南京大学硕士学位论文, 2005, 41-54.
    [102]付献彩.物理化学[M].北京:高等教育出版社, 1990:248-252.
    [103]谢志刚,吉芳英,邱雪敏,等.橘皮渣吸附剂对六价铬的吸附性能[J].重庆大学学报, 2009, 32(2):192-195.
    [104] Banerjee S S, Joshi M V, Jayaram R V. Removal of Cr(VI) and Hg(II) from Aqueous Solutions Using Fly Ash and Impregnated Fly Ash[J]. Separation Science and Technology, 2005, 39(7): 1611– 1629.
    [105] Fang J, Gu Z M, Gang D C, et al. Cr (VI) removal from aqueous solution by activated carbon coated with quaternized poly(4-vinylpyridine)[J]. Environmental Science & Technology, 2007, 41(3): 4748-4753.
    [106] Selomulya C, Meeyoo V, Amal R. Mechanisms of Cr (VI) removal from water by various types of activated carbons [J]. Chem Techno & Biotechno, 1999, 74(2) : 111-122.
    [107] Chand R, Watari T, Inoue K, et al. Evaluation of wheat straw and barley straw carbon for Cr(VI) adsorption[J]. Separation and Purification Technology, 2009, 65(3):331-336.
    [108] Wu Y H, Li B, Feng S X, et al. Adsorption of Cr(VI) and As(III) on coaly activated carbon in single and binary systems[J]. Desalination, 2009, 249(3):1067-1067.
    [109] Liu S X , Sun J , Huang Z H. Carbon spheres/activated carbon composite materials with high Cr(VI) adsorption capacity prepared by a hydrothermal method[J]. Journal of Hazardous Materials, 2010, 173(1-3): 377-383.
    [110]张德见,污泥衍生吸附剂的制备及其对Pb2+、Cu2+、SO2的吸附研究[D].湖南大学硕士学位论文, 2004, 4:56-61.
    [111]尹萌.泥炭对废水中铅和镉的吸附特性研究[D].南华大学硕士学位论文, 2008, 5:45-47.
    [112]李山.改性花生壳对水中重金属离子和染料的吸附特性研究[D].西北大学硕士学位论文, 2009, 6:51-54.
    [113]卢丹丹.以纤维素类生物废弃物-草为基质的新型吸附材料的制备及其对吸附重金属Pb(Ⅱ)和Cd(Ⅱ)的应用研究[D].东北师范大学硕士学位论文, 2009, 5:36-42.
    [114]赵芳玉.临江三级硅藻土吸附重金属的研究[D].吉林大学硕士学位论文, 2009, 5:42-48.
    [115]陈锦.大洋多金属结核及富钴结壳浸出渣动态吸附重金属离子试验研究[D].中国地质大学硕士学位论文, 2005, 5:53-57.
    [116]赖坤荣,改性聚丙烯酸钠的合成及其对水中重金属离子Pb2+、Zn2+、Ni2+的去除研究[D].西北大学硕士学位论文, 2004, 4:46-59.
    [117]郭观林,周启星.重金属镉在黑土和棕壤中的解吸行为比较[J],环境科学, 2006, 27(5):1013-1015.
    [118]李振泽,土对重金属离子的吸附解吸特性及其迁移修复机制研究[J].浙江大学. 2003:67-68.
    [119] Ortiz N, Pires M A F, Bressiani I C, Use of steel converter slag as nickel adsorber to wastewatertreatment[J]. Waste Management, 2001. 21: 631-635.
    [120] Panday K K, Prasad G, Singh VN, Copper (II) removal from aqueous solutions by the fly ash[J]. Water Res, 1985. 19: 869-873.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700