用户名: 密码: 验证码:
寡糖及其衍生物分子离子ESI-MS~n碎裂行为初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近二十年来,生物质谱技术在糖类物质研究中得到广泛应用,已成为糖链定性定量分析特别是结构解析的强大工具。糖类物质在质谱中的碰撞诱导裂解是进行结构解析的基础,糖链裂解方式及其规律的研究,对糖类物质结构分析具有重要的理论指导意义。为了丰富和发展对糖链裂解规律的认识,为糖链结构解析提供参考依据,本研究分析了几种不同结构、不同连接方式的寡糖衍生物分子离子电喷雾电离多级质谱碎片,得到以下成果和结论:
     1.寡糖全甲基化及其ESI-MSn的研究
     采用Ciucanu和Kerek的甲基化方法对七种常见寡糖进行全甲基化,将全甲基化的寡糖产物进行ESI-MSn实验,并对重复产生的多级质谱结果进行比较和结构解析,研究具有不同结构的一些寡糖在多级质谱中的碎裂行为,获得了不同寡糖的一些裂解规律。
     1)组成不同、连接方式相同的全甲基化二糖多级质谱
     组成不同、连接方式相同的乳糖Gal-β(1-4)-Glc及麦芽二糖Glc-α(1-4)-Glc的全甲基化二级质谱都产生了m/z 445,m/z 415,m/z 329,m/z 259,m/z 241的碎片峰,其中乳糖m/z 445与m/z 241碎片峰信号强度分别是麦芽糖的2倍。在三级质谱中只有麦芽糖产生了m/z 315(2,4A2断裂)与m/z 372(0,4A2断裂)这两个穿环裂解碎片峰,而乳糖没有产生,并且在三级质谱中麦芽糖的m/z 259的丰度高达90,而乳糖的该峰丰度只有前者的三分之
     2)组成相同、连接方式不同的全甲基化二糖多级质谱
     组成相同、连接方式不同的全甲基化蔗糖Glc-α(1-2)- Fru与松二糖Glc-α(1-3)- Fru产生了具有明显区别的二级质谱图谱,蔗糖发生B1或C1断裂产生m/z 259和m/z 241的峰,而松二糖产生了m/z 245的峰,还产生了很高的m/z 431的峰;两种二糖都产生了m/z 359的峰。
     组成相同、连接方式不同的全甲基化蜜二糖Gal-α(1-6)- Glc与乳糖Gal-β(1-4)-Glc二级质谱中,蜜二糖产生了质荷比相差44的穿环裂解峰:m/z 301与m/z 345、m/z 329与m/z 373,乳糖只产生了m/z 329和m/z 372的穿环裂解。另外,乳糖的二级质谱有B1或C1断裂产生的m/z 241的峰,而蜜二糖中没有;可见1-4连接和1-6连接的二糖二级质谱有很大的区别。
     本研究所用的几种二糖,例如:麦芽二糖、乳糖、蜜二糖、松二糖、蔗糖都是同分异构体,这些二糖全甲基化后得出了多次重复的具有差别的多级质谱图,可用于这些同分异构体的鉴别。
     3)含有以上二糖结构的全甲基化三糖和四糖的多级质谱
     全甲基化棉子三糖Gal-α(1-6)- Glc-α(1-2)- Fru、蔗糖Glc-α(1-2)- Fru.水苏四糖Gal-α(1-6)-Gal-α(1-6)-Glc-α(1-2)- Fru、松二糖(turanose)Glc-α(1-3)- Fru的二级质谱中都产生了m/z 359的峰,而且棉子三糖的三级质谱与水苏四糖的四级质谱中,m/z 359的丰度是100,而本研究中的其它三种糖没有产生该峰,说明产生这种质谱结果是由结构中都含有果糖组分所致。
     全甲基化水苏四糖四级质谱与棉子三糖三级质谱图相比,棉子糖的三级质谱中除了产生m/z 375的峰以外,其他峰质荷比都与水苏四糖四级质谱峰的质荷比相同。说明质谱数据结果可以用于推断糖链的结构。
     2.寡糖的紫外及荧光试剂衍生物的ESI-MSn研究
     糖类物质没有发色基团,为了便于HPLC及LC-MS等分析,经常需要衍生化,使糖类物质带上紫外和荧光基团,带有氨基的芳香族试剂是常用的试剂,衍生之后的糖链与未衍生的糖链相比使质谱灵敏度明显提高。本研究中使用最常见的八种紫外及荧光衍生化试剂对两种同分异构体二糖还原性末端进行标记,得到了纯度很高的标记样品,在ESI-MSn质谱实验中以6-10pmol的量得到很好的信噪比,获得以下结论:
     1)发现各种试剂标记的二糖在二级及多级质谱中糖苷键断裂主要产生Y型及Z型离子,B型及C型离子不常见;各种试剂标记的二糖多级质谱中,同种试剂标记的L与M的质谱图差别较明显,可见根据该质谱图谱可以鉴定两种同分异构体二糖;研究中无论是糖苷键断裂还是糖环失水所形成的单烯六元环在下一级质谱中都很容易发生穿环裂解,很可能发生了RDA的裂解反应。
     2)苯胺与对苯二胺标记的两种二糖在多级质谱中裂解行为相似。2-AP与2-氨基蒽醌标记的二糖的碎裂行为相似,这两种试剂标记的糖链比较特殊,在二级质谱中不易发生C-N键的断裂形成失去标记物的峰,该峰的[M+Na+]m/z是349,而其他还原氨化标记的二糖都产生了相对很高的失去标记物峰。
     3)在该研究中乳糖的去标记物的m/z 349的峰明显比麦芽糖要高,在ABEE、AEC、苯胺、对苯二胺标记的二糖的二级质谱中L的m/z 349峰丰度为100,而相应的M的该峰丰度为20,可见多级质谱中乳糖更容易失去标记物。
     4)与不饱和糖环相比饱和糖环在多级质谱中不易发生裂解,而2-AP与2-氨基蒽醌标记的二糖比较特殊,其Y1离子在三级质谱中碎片很多;其它试剂标记的Y1离子在三级质谱中碎片很少,几乎没发生裂解,而Z1离子发生了较多的裂解,Z1离子是不饱和糖环。
     5)PMP标记的二糖多级质谱解析可知,两种二糖组成单体及其异头碳构象不同,产生的多级质谱图谱中,糖苷键断裂后的离子类型不同,丰度的区别更加明显,例如,以m/z 521和m/z 533作为前体离子的三级质谱图谱。我们还发现,与本研究中所用的其它衍生试剂相比,PMP标记的二糖在多级质谱实验中最稳定,例如以m/z 533作为前体离子的三级质谱中产生了丰富的穿环裂解,同样,失去一个PMP分子的以m/z 521为前体离子的三级质谱实验中也产生了很多的离子碎片。
Biomass spectrum technology has been widely used in the analysis of carbohydrates during the past two decades, and has become a powerful tool for qualitation, quantitation, and structure investigation of glycans. Studies on glycan fragmentation pattern and law is a significant work for carbohydrate structure elucidation, which is based on collision-induced glycan fragmentation in mass spectrometry. To increase and develope the knowlege about regular fragmentation pattern of glycans and provide essential reference data for their structure analysis, fragments of several oligosaccharide derivatives of different structures and connections in electrospray mass spectrometry were investigated in detail, and the results and conclusions are as follows:
     1. Oligosaccharides permethylated and analyzed by ESI-MSn
     Ciucanu and Kerek's permethylation method were employed here to study seven different oligosaccharides, the permethylated oligosaccharides were analyzed by ESI-MSn, and studied the reproducible ESI-MSn results to figure out the law of collision-induced fragmentation.
     1) ESI-MSn analysis of permethylated glycans with different composition and in the same linkage
     Lactose Gal-β(1-4)-Glc and Maltobiose Glc-α(1-4)-Glc were in the same linkage but with different composition were produced the same fragments by ESI-MS2, m/z 445, m/z415, m/z 329, m/z 259 and m/z 241, in which m/z 445 and m/z241 produced by lactose is twice higher than that of maltobiose. In ESI-MS3, In ESI-MS3, Only Maltobiose produced two different crossing ring cleavage fragments, m/z 315 (2'4A2) and m/z 372 (0,4A2), but lactose did not. The relative abundance of maltobiose m/z 259 was 90, while lactose was only one-third of the former.
     2) ESI-MS" analysis of permethylated glycans with different linkage and in the same composition
     Significant differences were also found between permethylated sucrose [Glc-α(1-2)-Fru] and turanose [Glc-α(1-3)-Fru] in MS2 spectrogram, which have the same composition but different linkage. B1 or C1 cleavage of sucrose [Glc-α(1-2)-Fru] occurred, and produced the peaks of m/z 259 and m/z 241, while turanose [Glc-α(1-3)-Fru] generated m/z 245 and a higher peak of m/z 431. But both saccharides generated m/z 359.
     In MS2 analysis between permethylated melibiose[Gal-α(1-6)-Glc] and lactose[Gal-β(1-4)-Glc], melibiose generated two sets of crossing ring peak(m/z 301 and m/z 345, m/z 329 and m/z 373) which mass difference was 44Da, and lactose produced two crossing ring peak m/z 329 and m/z 372. In addition, lactose occurred B1 or C1 cleavage which only produced crossing ring peak m/z 241, while melibiose was not. So, the linkage of glycans were made a significant difference in MS2 analysis.
     Several disaccharides used in this study were isomers, such as maltobiose, lactose, melibiose, turanose and sucrose. These disaccharides were permethylated and subjected to MSn analysis reproducibly could be used for the identification of isomers.
     3) MSn analysis of trisaccharide and tetrasccharide which contain structures like the bisaccharide above.
     Permethylated raffinose[Gal-α(1-6)-Glc-α(1-2)-Fru], sucrose[Glc-α(1-2)-Fru], stachyose[Gal-α(1-6)-Gal-α(1-6)-Glc-α(1-2)-Fru], turanose[Glc-α(1-3)-Fru] all produced m/z 359 and the relative abundance of m/z 359 was 100 in MS3 analysis of raffinose and MS4 analysis of stachyose, but the others were significantly different, indicating that both raffinose and stachyose were containing fructose.
     Comparing the difference between MS3 of raffinose and MS4 of stachyose, all peaks they produced were identical except m/z 375 produced in the former one. These results of MS data can be used to infer the structure of glycans.
     2. ESI-MSn analysis of UV and fluorescent reagents derivatived oligosaccharide
     Carbohydrates did not have chromophore, in order to facilitate HPLC and LC-MS analysis, it is necessary to derivatize glycans with amino-aromatic reagent to make it bring an UV or fluorescence groups, and these glycan derivatives can be more sensitively detected by mass spectrometry. Eight most commonly used UV and fluorescent derivatizing reagents were employed to analyze disaccharide isomers, derivatized glycan samples of high purity were obtained, and a good signal-to-noise of 6-10pmol in the ESI-MS" mass spectrometry experiments was got.
     1) The study found that disaccharide labeled by a variety of reagents mainly produced the Y and Z ions in MS" analysis, and B and C ions did not frequently occured. In the multistage mass spectrometry of disaccharide labeled by various reagents, L and M labeled by the same reagents were obviously different, which indicated that the mass spectrum could be identified according to two kinds of disaccharide isomers. We also discovered that pyranosylene ring formed by either glycosidic bond cleavage or dehydration tends to break across the ring, and the cracking reaction RDA may occured.
     2) Comparative products analysis(MSn) of lactose and maltose derivated by amino benzene and p-phenylene diamine provided a similar spectrum. The 2-AP and 2-aminoanthraquinone derivatives were similar as well, and the cleavage of C-N bond with a [M+Na]+ ion product m/z 349 did not happen easily, while all of the other derivatives by the reductive amination method produced this peak of much high relative abundance.
     3) In this research the peak m/z 349 formd by C-N bond cleavage from derivatized lactose is obviously high than that of maltose. In MS2 analysis, lactose derivatized by ABEE, AEC, amino benzene and p-phenylene diamine produced the ion m/z 349 with an abundance up to 100, while the abundance of maltose derivatives is just 20.
     4) Comparing to the unsaturated ring, saturated ring is not easily to cleave in the form of cross-ring. But it is disparate for the 2-AP and 2-aminoanthraquinone derivatives, whose Y1 ion generated several fragments. The Y1 ion of other derivatives generated few fragments, but Z1 produced more cleavage ions, as Z1 ion was unsaturated ring.
     5) We concluded from the MS" analysis of the disaccharides derivatized by PMP analysis that the ion type generated can be different if there were different monomer composition and anomeric carbon conformation in oligosaccharide, and there could be much more differences in abundance, such as m/z 521 and m/z 533 in the MS3. We also discovered that PMP-labeled disaccharides were most stable in the derivatives studied in the MSn experiment. For example, as a precursor ion m/z 533 produced much more crossing ring cleavage, and PMP-labeled disaccharides is the same.
引文
[1]郭慧,邓文星,张映.糖蛋白的研究进展.生物技术通报,2009,(3):16-19
    [2]陈海霞,耿美玉.细胞膜糖蛋白及其寡糖链分析方法的研究进展.中国生物工程杂志,2003,23(3):20-24
    [3]龙宪连,于嘉屏.肝癌组织和肝癌旁组织中γ-谷氨酰转肽酶糖链结构分析.上海医学检验杂志,2002,17(6):337-339
    [4]傅德贤.糖化学与糖生物学对人类健康的关系.科学技术时报,2005,(第B03版):1-3
    [5]蒋秋燕,乔旭光.生命科学的新领域—糖生物学.山东农业大学学报(自然科学版),2003,34(2):294-298
    [6]刘厚宝,王炳生.检测胆汁糖蛋白糖链结构变化鉴别良性胆道疾病.中华实验外科杂志,2007,24(9):1143
    [7]陈国千,张万忠.凝集素亲和沉降法检测磷酸酶糖链结构.临床检验杂志,2000,18(6):336-337
    [8]黄思玲,凌沛学.糖生物学概述.食品与药品,2005,7(7A):61-64
    [9]贾晓慧.糖生物学—生命科学研究的新热点.洛阳大学学报,2005,20(2):41-44
    [10]E.V.Chandrasekaran, et al. The Pattern of glycosyl-and sulfotrasferase activitise in cancer cell lines:a predictor of individual cancer-associated distinct carbohydrate structrues for the structral identification of signature glycans. carbohydrate Research,2006, (341): 983-994
    [11]Naoyuki Taniguch, et al. The second Golden Age of Glycomics:From Functional Glycomics to Clinical Applications. Journal of Proteome Research,2009,8(2):425-426
    [12]罗建平,贾敬芬.植物寡糖素的结构和生理功能.植物学通报,1996,13(4):28-33
    [13]段文录.寡糖的分离及结构研究.商丘职业技术学院学报,2003,2(6):35-37
    [14]李学红,张鑫.以苹果渣为原料制备天然食品防腐剂—果胶酶解物的工艺研究.食品工业科技,2004,25(2):122-123
    [15]邓红,张宝善.从苹果渣中提取食用纤维和果胶的研究.食品科技,2002,(5):61-62
    [16]苏艳玲,巫东堂.果胶研究进展.山西农业科学,2009,37(6):82-86
    [17]孙兴权,李静.糖组学研究中糖蛋白糖链结构分析技术.化学进展,2007,19(1):131-135
    [18]王镜岩,朱圣庚,徐长法.生物化学-3版,北京:高等教育出版社,2002,ISBN7-04-011088-1
    [19]赵镇文,熊蕾,等.壳聚糖的基质辅助激光解吸电离飞行时间质谱分析.分析化学研究简报,2007,35(7):1025-1028
    [20]张惟杰.糖复合物生化研究技术.第二版;ISBN 7-308-02125-4/Q.014
    [21]李亚娜,林永成.甘薯糖蛋白的分离、纯化和结构分析.华南理工大学学报(自然科学版),2004,32(9):60-62
    [22]陈焕文,等.表面解吸常压化学电离源的研制及应用.分析化学,2007,35(8):1233-1240
    [23]吴世容,李志良.生物质谱的研究及其应用.重庆大学学报,2004,27(1):124-127
    [24]周毅峰,等.生物质谱在生命科学中的应用.湖北民族学院学报,2004,22(2):12-16
    [25]N. Viseux, et al, Structural Analysis of Permethylated Oligosaccharides by Electrospray Tandem Mass Spectrometry. Anal. Chem,1997, (69):3193-3198
    [26]Mechref Y, Novotnymv, krishnan., structral characterization of oligosaccharides using MALDI-TOF/TOF tandem mass spectrometry. JaNALcHEM,2003,75(18):4895-4903
    [27]Akihiko Kameyama, Norihiro Kikuchi. A Strategy for Identification of Oligosaccharide Structures Using Observational Multistage Mass Spectral Library. Anal. Chem,2005, (7): 4719-4725
    [28]Ayako Kurimoto, Shusaku Daikoku; Analysis of Energy-Resolved Mass Spectra at MSn in a Pursuit To Characterize Structural Isomers of Oligosaccharides. Anal. Chem,2006, (78):3461-3466
    [29]David J. Ashline, Anthony J. Lapadula. Carbohydrate Structural Isomers Analyzed by Sequential Mass Spectrometry. Anal.Chem,2007, (79):3830-3842
    [30]焦安英,李永峰.多糖糖链一级结构的测定技术.中国甜菜糖业,2008,(3):37-39
    [31]Ola M.Saad, Julie A.Leary. Heparin Sequencing Using Enzymatic Digestion and ESI-MS" with HOST:A Heparin/HSOligosaccharide Sequencing Tool. Anal. Chem, 2005, (77):5902-5911
    [32]Andrew S, Weiskopf, et al. Electrospray Ionization-Ion Trap Mass Spectrometry for Structural Analysis of Complex N-Linked Glycoprotein Oligosaccharides. Anal. Chem, 1998, (70):4441-4447
    [33]Dirk C, van Setten.G, Multiple-Stage Tandem Mass Spectrometry for Structural Charact erization of Saponins. Anal. Chem,1998, (70):4401-4409
    [34]Vemon N. Reinhold, et al, Carbohydrate Molecular Weight Profiling, Sequence, Linkage, and Branching Data:ES-MS and CID. Anal. Chem,1995, (67):1772-1784
    [35]董群,方积年.寡糖及多糖甲基化方法的发展及现状.天然产物研究与开发,1995,7(2):61-65
    [36]Pilsoo Kang, et al. Solid-phase permethylation of glycans for mass spectrometric analysis. Mass Spectrom.2005, (19):3421-3428
    [37]Hailong Zhang, Suddham Singh, et al, Congruent Strategies for Carbohydrate Sequencing. 2. FragLib:An MSn Spectral Library. Anal. Chem,2005, (77):6263-6270
    [38]Douglas M. Sheeley, Vernon N. Reinhold. Structural Characterization of Carbohydrate Sequence, Linkage, and Branching in a Quadrupole Ion Trap Mass Spectrometer:Neutral Oligosaccharides and N-Linked Glycans. Anal. Chem.1998, (70):3053-3059
    [39]Touradj Solouki, et al. Electrospray Ionization and Matrix-Assisted Laser Desorption/ Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of Permethylated Oligosaccharides. Anal. Chem,1998, (70):857-864
    [40]David J;Harvey.Electrospray Mass Spectrometry and Fragmentation of N-Linked Carbohydrates Derivatized at the Reducing Terminus.[J] Am Soc Mass Spectrom 2000, (11):900-915
    [41]Andreas H. Franz, Tadeusz F, MALDI-FTMS Characterization of Oligosaccharides Labeled with 9-Aminofluorene, J Am Soc Mass Spectrom,2001, (12):1254-1261.
    [42]Kanta Yanagida, Shunji Natsuka, A Pyridylamination Method Aimed at Automatic Oligosaccharide Analysis of N-Linked Sugar Chains, Analytical Biochemistry,1999, (274):229-234
    [43]Hase S, Ibuki T, Ikenaka T. Reexamination of the Pyridylamination Used for Fluorescence Labeling of Oligosaccharides and its Application to Glycoproteins.[J]. Biochem,1984, (95):197-203
    [44]Okamoto M, Takahashi K, et al.High- Sensitivity Detection and Postsource Decay of 2-Aminopyridine-Derivatized Oligosaccharides with Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Chem,1997, (69):2919-2926
    [45]Jin Yuan, Noritaka Hashii, Isotope tag method for quantitative analysis of carbohydrates by liquid chromatography-mass spectrometry. Journal of Chromatography A,2005, (1067):145-152
    [46]Suzuki S, Kakehi K, Honda S. Comparison of the Sensitivity of Various Derivatives of Oligosaccharides in LC/MS with Fast Atom Bombardment and Electrospray Ionization Interfaces. Anal. Chem,1996, (68):2073-2083
    [47]Bigge J, Patel T. P, et al, Nonselective and Efficient Fluorescent Labelingof Glycans Using 2-Aminobenzamide and Anthranilic Acid. Anal. Biochem,1995, (230):229-238
    [48]Harvey D.J. Collision-Induced Fragmentation of 2-Aminobenzamide-Labeled Neutral N-Linked Glycans. Analyst,2000, (125):609-617
    [49]Anumula K. R, Dhume S. T. High Resolution and High Sensitivity Methods for Oligosaccharide Mapping and Characterization by Normal Phase High Performance Liquid Chromatography Following Derivatization with Highly Fluorescent Anthranilic Acid. Glycobiology,1998, (8):685-694
    [50]Camilleri P., TolsonD., Birrell H. Direct Structural Analysis of 2-Aminoacridone Derivatized Oligosaccharides by High-Performance Liquid Chromatography/Mass spectrometric detection. Rapid Commun. Mass Spectrom,1998, (12):144-148
    [51]Okafo G., Burrow L., et al, Coordinated High-Performance Liquid Chromatographic, CapillaryElectrophoretic, and Mass Spectrometric Approach for the Analysis of Oligosaccharide Mixtures with 2-Aminoacridone.Anal.Chem,1996, (68):4424-4430
    [52]Charlwood J., Birrell H.,et al, Probe for the Versatile Analysis and Characterization of N-Linked Oligosaccharides. Anal. Chem,2000, (72):1453-1461
    [53]Takao T, Tambara Y, et al, Sensitive Analysis of Oligosaccharides Derivatized with 4-Aminobenzoic Acid 2-(Diethylamino) Ethyl Ester by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. RapidCommun. Mass Spectrom,1996, (10): 637-640
    [54]Susumu Honda, et al. Analysis of carbohydrates as 1-phenyl-3-methyl-5-pyrazolone derivatives by capillary/microchip electrophoresis and capillary electrochromatography. Journal of Pharmaceutical and Biomedical Analysis,2003, (30):1689-1714
    [55]Kalyan R. Anumula. Advances in fluorescence derivatization methods for high-perform ance liquid chromatographic analysis of glycoprotein carbohydrates, Analytical Bioche mistry,2006, (350):1-23
    [56]Hsing-Ling Cheng, et al. Linkage and Branch Determination of N-linked Oligosaccharides Using Sequential Degradation/Closed-Ring Chromophore Labeling/Negative Ion Trap Mass Spectrometry. J Am Soc Mass Spectrom,2007, (18): 248-259
    [57]Martin Pabst, Daniel Kolarich, et al. Comparison of fluorescent labels foroligosaccharides and introduction of a new post labeling purification method. Anal. Biochem,2009, (384): 263-273
    [58]郭文,张英,高效液相色谱一质谱联用法分析3-氨基-9-乙基咔唑柱前衍生化壳寡糖.色谱,2010,28(8):776-781
    [59]ZHANG Ying, HUANG Lin-Juan. A sensitive derivation method for the determination of the sugar composition after pre-column reductive amination with 3-Amino-9-ethyl carbazole(AEC) by high performance liquid chromatography. Chin.J.chem,2007, (25): 1522-1528
    [60]牟青,张英,黄琳娟.3-氨基-9-乙基咔唑衍生化寡糖混合物的高效相色谱分离及激光解吸电离飞行时间质谱分析.色谱,2009,27(1):24-28
    [61]David J., Harvey. Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates and glycoconjugates. International Journal of Mass Spectrometry,2003 (226):1-35
    [62]Fotini N., Reinhard Kuhnb, et al, Derivatization of carbohydrates for chromatographic, electrophoreticand mass spectrometric structure analysis. Chromatogr,2003, (793): 15-36
    [63]王仲孚,张英.1-苯基-3-甲基-5-吡唑啉酮(PMP)柱前衍生化寡糖链的HPLC分离及其激光解吸电离质谱分析.化学学报,2007,65(23):2761-2764
    [64]林雪,王仲孚.改进的PMP柱前衍生化方法用于单糖的组成分析.高等学校化学学报,2006,(8):1456-1458
    [65]Hofmeister G. E., Zhou Z., Leary J. A. Linkage position determination in lithium catonised disaccharide:tandam mass spectrometry and semiempirical calculations. Am.Chem. Soc.1991, (113):5964-5970
    [66]韩瑶,吕志华.电喷雾多级串联质谱技术区分人乳寡糖异构体.分析化学研究报告,2006,34(9):1213-1218
    [67]王仲孚,贺建宇,用于寡糖链分析的HPLC柱前衍生化方法研究进展.有机化学,2006,26(5):592—598
    [68]Shigeo Suzuki, Takahiro Fujimori. Recovery of free oligosaccharides from derivatives labeled by reductive amination. Anal. Biochem,2006, (354):94-103
    [69]Sumihiro Hase, Precolumn derivatization for chromatographic and electr ophoretic analyses of carbohydrates. Journal of chromatography A,1996, (720):173-182
    [70]Willy Morelle. Structural Analysis of O-Linked Oligosaccharide-Al-ditols by Electrospray-Tandem Mass Spectrometry after Mild Peri odate Oxidation and Derivation with 2-aminopyridine, Anal. Biochem,1998, (259):16-27
    [71]Steven L Ramsay, Craig Freeman. Mild tagging procedures for the structural analysis of Glycans. Carbohydrate Research,2001, (333):59-71
    [72]杨兴斌,赵燕.柱前衍生化高效液相色谱法分析当归多糖的单糖组成.分析化学研究简报,2009,33(9):1287-1290
    [73]姜瑞芝,王颖.猴头菌寡糖的分离及其结构确定.高等学校化学学报,2007,28(7):1313—1315
    [74]Erika Lattova, Sergei Snovida, et al. Influence of the Labeling Group on Ionizationand Fragmentation of Carbohydrates in Mass Spectrometry. J Am Soc Mass Spectrom,2005, (16):683-696

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700